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Quantum dot formation on a strain-patterned epitaxial thin film
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We model the effect of substrate strain patterning on the self-assembly of quantum dots �QDs�.
When the surface energy is isotropic, we demonstrate that strain patterning via embedded substrate
inclusions may result in ordered, self-organized QD arrays. However, for systems with strong cubic
surface energy anisotropy, the same patterning does not readily lead to an ordered array of pyramids
at long times. We conclude that the form of the surface energy anisotropy strongly influences the
manner in which QDs self-assemble into regular arrays. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2061852�
When a single-component thin film is coherently bonded
to a planar lattice-mismatched substrate, small perturbations
with certain wavelengths on the surface of the film will grow.
The process is well-understood by the linear theory devel-
oped by Asaro, Tiller, Grinfeld �ATG�.1,2 The ATG theory
must be modified when the film’s surface comes near the
substrate because the substrate interacts energetically with
the trough of the surface wave. If the film wets the substrate
and the film is initially not too thick, islands can develop
without forming dislocations and subsequently coarsen as
mass flows along the wetting layer. This scenario is generally
termed Stranski–Krastanow �SK� growth.3 In SK growth the
film must exceed a critical thickness before it becomes un-
stable because of the wetting layer effect, which tends to
hold the film flat against the substrate. The kinetics of SK
island growth depend on a number of factors, including the
initial thickness of the film; the relative sizes of the rate of
attachment of adatoms during vapor deposition and the rate
associated with surface diffusion; the competition between
the strain and surface energies, and their associated anisotro-
pies; and the wetting layer thickness.

The interest in SK growth lies with its recognized im-
portance as a potential pathway for the formation of ordered
quantum dot �QD� arrays. Recent experimental work has
suggested that the spatial ordering of islands may be con-
trolled by patterning the substrate through strain
localization.4–6 In this work we investigate the controllability
of forming ordered island arrays using strain patterning by
embedded inclusions in the substrate, which may be formed
by a multilayer deposition process.6 The effect of strain pat-
terning in two dimensions on ordered array development was
investigated by Wise et al.7 The use of a buried pyramidal
island to produce a single QD was investigated using a 2
+1 dimensional model in Quek and Liu.8

We use a three-dimensional Cahn–Hilliard-type equation
with a source term modeling mass deposition. In order to

simulate strong surface energy anisotropy, a high-order cor-
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ner energy is added to regularize the instability that can arise
from missing orientations on the Wulff shape, yielding a
sixth-order evolution equation. The three-dimensional cubic-
elastic equilibrium equations are coupled to the evolution
and describe the state of strain arising due to epitaxial misfit
and the buried inclusions. Wetting is described through an
explicit wetting potential, such that the bulk free energy den-
sity has a double-welled form outside the substrate and a
single-welled form inside the substrate. The phase-fields �
and c describe the system: substrate, �=1, c=1; film, �=0,
c=1; and vapor, �=0, c=0. The nondimensional governing
equations are7,9

c,t =
1

�0
2 � · �M��,c� � �� + n3
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where �0 is the gradient energy parameter; M is the surface
mobility; n3 is the component of the surface unit normal in
the direction of mass deposition; V is the random deposition
rate; � is the chemical potential; f is the bulk free energy
density; Z measures the relative strength of the elastic energy
to the surface energy on a characteristic length scale; W is
the elastic energy density; A is the surface anisotropy matrix;
n= �n1 ,n2 ,n3�T=−�c / ��c�; �0 is a corner regularization pa-
rameter; and �s is the wetting energy parameter. Previously
published continuum-level models have either been two7,9,10

or 2+1-dimensional.8,11–16 Ours is a fully three-dimensional
phase-field model of QD formation in an epitaxial thin film
capable of handling strong interfacial anisotropy in a consis-

17
tent manner. Very recently Ratz et al. have used a three-
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dimensional viscous Cahn–Hilliard equation to model QD
formation, but they do not consider strong surface anisotropy
or substrate patterning.

We solve this system of equations using an efficient non-
linear multigrid method7,18 on a locally refined Cartesian
mesh. In all of the following simulations we use periodic
boundary conditions in the plane of the substrate. We use a
prescribed substrate thickness, with clamped elastic bound-
ary conditions at the bottom, of sufficient size such that in-
creasing the thickness does not noticeably change the evolu-
tion of the film. The elastic boundary conditions at the top of
the computational domain are traction-free. For the order pa-
rameter c and chemical potential � homogeneous Neumann
boundary conditions are used at the top and bottom of the
domain.

The physical parameters are chosen for the SiGe/Si
system,19 with the exception of those describing the surface
energy. For simplicity, we assume the surface energy is cubic
anisotropic. The periodic domain is 320 nm in length and
width, and the total process time is about 384 s. The vapor
phase is modeled as a very soft elastic solid, with the ratio of
the elastic stiffnesses between the film/substrate and the va-
por being 104. The buried inclusions are assumed coherent,
with the same misfit as the film. The diffuse interface thick-
ness is approximately 10 nm based on the choice of �0. In the
locally refined region there are at least five points across the
interface, which give adequate resolution based on our re-
finement studies. To achieve smaller interface thicknesses,
more efficient numerical solvers are currently being devel-
oped that incorporate adaptive mesh refinement and parallel-
ization. In all simulations the substrate is a flat �001� plane
and the initial film surface is parallel to the substrate with
thickness equal to 12.5 nm, which is above the critical wet-
ting thickness. All figures show the c=0.5 isosurface.

In Fig. 1, a film is shown evolving on an unpatterned
substrate. At early times the film undergoes the ATG insta-
bility and a relatively ordered arrangement of QDs emerges.
The dots are initially aligned in the elastically soft �100�
directions. At later times the dots coarsen yielding irregular
island distributions. The disordered arrangement of the dots
is a result of the combination of the random nature of the
deposition and coarsening processes. Thus from this simula-
tion, the elastic anisotropy is not sufficient to guarantee an
ordered arrangement of QDs at long times.

For the simulation of Fig. 2, the substrate is strain-
patterned using a spherical inclusion of radius 30 nm buried

FIG. 1. Snap shots of an evolving isotropic film on a flat, unpatterned
substrate.
50 nm beneath the substrate surface. The ATG instability is
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enhanced and localized by the strain-patterning, and surface
perturbations appear much earlier compared to the case with
no patterning �Fig. 1�. A regular pattern emerges. However,
in contrast to the unpatterned case, as the system coarsens
the arrangement maintains more regularity. The strain local-
ization results in a dominant QD above the inclusion, sur-
rounded by ordered satellites that form on the edges of the
domain, aligned in the elastically soft directions. Since the
configuration is periodic, this corresponds to an arrangement
of a doubly periodic array of QDs. Although it seems likely
that the satellite dots will coarsen at later times, the time
scale for coarsening appears to be significantly longer than
the simulated time. The strain patterning also makes the sys-
tem less susceptible to the randomness continually intro-
duced by the deposition.

The evolution with two embedded inclusions is shown in
Fig. 3. The spheres have the same radius and depth as in Fig.
2, but are placed along a diagonal of the periodic domain.
Now the patterning results in the formation of two larger
QDs above the inclusions. As the system coarsens two satel-
lite dots emerge, resulting in a doubly periodic four-dot con-
figuration. Thus from two inclusions, a four-dot pattern may
be produced, leading to an array of dots with a length scale
smaller than the initial strain patterning.

In Fig. 4 the effect of surface energy anisotropy is
shown. The cubic anisotropic coefficient is taken to be large
enough so that there are missing orientations on the Wulff
shape. There is an embedded inclusion, with the same geom-
etry as in Fig. 2. The flat initial film is unstable due both to
an ATG-type instability and to surface energy anisotropy.

FIG. 2. Snap shots of an evolving isotropic film on a substrate strain-
patterned using a single buried inclusion. Inset, x1 slice through the middle
of the computational domain.

FIG. 3. An evolving isotropic film on a substrate strain-patterned using two

coherent inclusions.
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The latter is because the film’s initial orientation has a large
energy and is missing from the Wulff shape. The surface
perturbations at early times are less localized than in the
isotropic case. The evolution is influenced by the random
deposition flux to a greater degree than the isotropic case
because the strong surface energy anisotropy allows the
growth of perturbations with small wavelengths that would
normally be damped in the ATG instability for the isotropic
case. Localization is only seen at later times, as a large py-
ramidal QD forms above the inclusion. Unlike the case with
isotropic surface energy, this strain-patterned system does
not seem to result in an ordered arrangement of pyramids at
long times. In addition to the enhanced instability due to
strong surface energy anisotropy, the elastically soft direc-
tions correspond to high energy orientations on the islands,
which may further contribute to the lack ordering. Thus, the
form of the surface energy anisotropy strongly influences the
manner in which QDs self-assemble into regular arrays. This
result is similar to that obtained earlier for deposition on
morphologically patterned substrates.9 Thus, it is clear that
the magnitude of the surface energy anisotropy plays an im-
portant role in the efficacy of many methods for directed self

FIG. 4. An evolving film, with strongly anisotropic surface energy, on a
patterned substrate with one buried inclusion.
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assembly. Further, our results suggest that, for this strain pat-
terning geometry, an ordering transition occurs at a critical
value of the anisotropy coefficient �which depends on �0 and
�0� and will be the subject of future investigation.

We have shown that embedded strain centers can be used
to direct the self-assembly of quantum dots on surfaces. In
particular, these strain centers can be used to produce a pat-
tern that is of smaller scale than that of the strain centers,
thus avoiding the challenge of patterning at the size scale of
the dots. However, the directed self-assembly of dots can be
more difficult in systems with strongly anisotropic surface
energy.
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