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a b s t r a c t

In this paper,we consider a numerical European-style option pricingmethod under two regime-switching
underlying assets depending on the market regime. For a risk neutral market condition, we consider
regime-switching model with two assets using a Feynman–Kac type formula. And to solve the option
problemwith regime-switchingmodel, we apply an operator splittingmethod. Numerical examples show
the volatility smile and the volatility term structure under varying parameters on a two state regime
switching model.
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1. Introduction

The Black–Scholes (BS) formula for option pricing is widely
applied to the pricing of numerous European options; see Haug
(1997). The underlying securities of the Black–Scholes formula are
supposed to be geometric Brownian motions that contain pairs
of two parameters, the expected rate of return and the volatility.
Both parameters are assumed to be constants in the general
Black–Scholes model, and these assumptions are not applicable to
option pricing in real markets. To overcome the shortfall of the BS
model, the volatility smile and term structure are used to capture
the change in volatility in terms of the price and the maturity of a
security.

The regime-switching model is an alternative model to illus-
trate the stochastic volatility. Since stock parameters practically
are depended on the market mode that switches among a finite
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number of states, we naturally allow the key parameters of the un-
derlying assets to reflect a randommarket environment.

The regime-switching model is invoked to formulate such pa-
rameters that are governed by the random market mode. In 1989,
the regime-switching model was first introduced by Hamilton
(1989) to describe a regime-switching time series. In option pric-
ing, regime-switching model has been applied in various other
problems. Zhang (2001) used this model to calculate an optimal
selling rule and Yin and Zhang (1998) applied this in portfolioman-
agement. Also, Yin and Zhou (2003) studied a dynamic Markowitz
problem for a market consisting of one bank account and multiple
stocks.

In this study, we consider an efficient and accurate numerical
method of a regime-switching model for European options (Kim,
Jang, & Lee, 2008). Among several numerical methods for pricing
of optionswithmulti-underlying assets, the operator splitting (OS)
scheme will be used: see Duffy (2006) and Ikonen and Toivanen
(2004). In general, standard finite difference methods (FDM) do
not work well for discrete options due to non-smooth payoffs
or discontinuous derivatives at the exercise price. On the other
hand, the OS scheme does not result in problematic oscillations
due to the source term (Jeong & Kim, 2013). The main purpose
of this paper is to observe the volatility smile and term structure
of a regime-switching model by using an efficient and accurate
numerical method. This work is an extension of the earlier one-
dimensional study of Buffington and Elliott (2002).

This paper is organized as follows. In Section 2, we briefly in-
troduce the risk-neutral valuation method and regime-switching.
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In Section 3, we discuss the Feynman–Kac type formula that is sat-
isfied by the option valuation function. We describe the algorithm
of the OS method for the formula at the end of this section. In Sec-
tion 4, we perform convergence test and comparison study of ADI
and OS methods. The volatility smile and term structure with a
simple regime-switching model are reported in Section 5. In this
section, we propose an algorithm for finding the implied volatility
and by using this algorithm,we carry out several numerical param-
eter tests. We conclude this study in Section 6.

2. Risk neutral pricing

Standard research in derivative pricing follows the idea that
the expected rate of return of all securities has the same risk-
free interest rate in an appropriate probability space. We call the
probability space the risk-neutral world, and the discount asset
price is a martingale in this world.

Let (Ω, F , P) denote the probability space and {α(t)} denote
a continuous-time Markov chain with state space M = {1, 2,
. . . ,m}. In a regime-switchingmodel, {α(t)} represents themarket
regime that determines the rate of return and volatility. Then, for
example, the price of a stock X(t) at time t is governed by:

dX(t) = X(t) [µ(α(t))dt + σ(α(t))dw(t)] ,
for 0 ≤ t ≤ T , X(0) = X0.

Let Q = (qij)m×m be the generator of α(t) with qij ≥ 0 for i ≠ j
and

m
j≠i qij = −qii for each i ∈ M. For any function f on M, we

denote Qf (·)(i) :=
m

j=1 qijf (j).
In this paper, one of our objectives is to price European style

options under regime-switchingmulti-underlying assets. Consider
Xk(t) as the price of stock k at time t with

dXk(t) = Xk(t) [µk(α(t))dt + σk(α(t))dwk(t)] ,
for 0 ≤ t ≤ T , k = 1, 2, . . . , d, and Xk(0) = Xk0, (1)

where µk(i) and σk(i) respectively represent the expected rate of
return for Xk and the volatility of the stock price Xk at regime
i ∈ M, and wk(·) denotes the standard Brownian motion. The
Wiener processes are correlated by

⟨dwk, dwl⟩ = ρkldt, for ρkl ∈ [−1, 1].

In order to introduce derivative pricing in the risk neutral market,
we also discuss themartingale measure characterized in Lemma 1.
Assume that X0, α(·), and wk(·) are mutually independent, and
σ 2
k (i) > 0 for all i ∈ M. Let Ft denote the sigma field generated

by {(α(s), wk(s)) : 0 ≤ s ≤ t}, and let r > 0 denote the risk-free
rate. For 0 ≤ t ≤ T , let

Zt := exp
 t

0
βk(s)dwk(s) −

1
2

 t

0
β2
k (s)ds


,

where

βk(s) :=
r − µk(α(s))

σk(α(s))
.

Then, in lieu of Ito’s rule,
dZt
Zt

= βk(t)dwk(t)

and Zt is a local martingale with

E[Zt ] = 1, 0 ≤ t ≤ T .

We define an equivalent measureP with the following

dP
dP

= ZT .

Therefore Lemma 1 is a generalized Girsanov’s theorem for
Markov-modulated processes.
Lemma 1. (1) Let wk(t) := wk(t) −
 t
0 βk(s) ds(k = 1 : d). Then,wk(t) is aP-Brownian motion.

(2) X0, α(·), and wk(·) are mutually independent under P.
(3) Let X(t) := (X1(t), X2(t), . . . , Xd(t)), c ≤ t, and σXk(i) :=

the volatility of stock Xk at regime i. Dynkin’s formula holds: for any
smooth function F (t,X, i), we have

F (t,X(t), α(t)) = F (c,X(c), α(c))

+

 t

c
AF (s,X(s), α(s))ds + M(t) − M(c),

where M(·) is aP-martingale and A is a generator given by

AF =
∂

∂t
F (t,X, i) +

d
k=1

rXk
∂

∂Xk
F (t,X, i)

+
1
2

d
k=1

d
l=1

ρkl(i)σXk(i)σXl(i)XkXl
∂2

∂Xk∂Xl
F (t,X, i)

+QF (t,X, ·)(i),

where ρkk = 1 for 1 ≤ k ≤ d.

Proof. See Chapter 14 in Yao, Zhang, and Zhou (2006). �

From Lemma 1 and this point of view of Fouque, Papanicolaou,
and Sircar (2000) and Hull (2000), (Ω, F , {Ft},P) defines a risk-
neutral world. And e−rtX(t) is aP-martingale.

3. A numerical approach with OS methods

In this paper, we consider European style option pricing under
two regime-switching underlying assets X1(t) and X2(t). Let x :=

X1(t), y := X2(t), and U(x, y, t, i) be the values of a European style
call option with two underlying assets with regime i for i = 1, 2.
Using a Feynman–Kac formula, a partial difference equation with
respect toU(x, y, t) = (u(x, y, t), v(x, y, t))T is derived as follows:

∂U
∂t

+ rx
∂U
∂x

+ ry
∂U
∂y

− rU +
1
2
(σxx)2

∂2U
∂x2

+
1
2
(σyy)2

∂2U
∂y2

+ ρxyσxσyxy
∂2U
∂x∂y

+ QU = 0,

where Q =


−λu λu

λv
−λv


and λu, λv represent jumping rates for u

and v, respectively.
Then, by each component of U, we have the following system:

∂u
∂t

+ rux
∂u
∂x

+ ruy
∂u
∂y

− ruu

+
1
2
(σ u

x x)
2 ∂2u
∂x2

+
1
2
(σ u

y y)
2 ∂2u
∂y2

+ ρu
xyσ

u
x σ u

y xy
∂2u
∂x∂y

+ λu(v − u) = 0, (2)

∂v

∂t
+ rvx

∂v

∂x
+ rvy

∂v

∂y
− rvv

+
1
2
(σ v

x x)
2 ∂2v

∂x2
+

1
2
(σ v

y y)
2 ∂2v

∂y2

+ ρv
xyσ

v
x σ v

y xy
∂2v

∂x∂y
+ λv(u − v) = 0. (3)

The terminal conditions u(x, y, T ) = v(x, y, T ) are given by
Λ(x, y).
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3.1. Discretization

Let Lu(u) be the operator value as

Lu(u) = rux
∂u
∂x

+ ruy
∂u
∂y

− ruu +
1
2
(σ u

x x)
2 ∂2u
∂x2

+
1
2
(σ u

y y)
2 ∂2u
∂y2

+ ρu
xyσ

u
x σ u

y xy
∂2u
∂x∂y

+ λu(v − u). (4)

Then Eq. (2) can be written as

∂u
∂τ

= Lu(u) for (x, y, τ ) ∈ Ω × [0, T ],

where τ = T − t . Eq. (3) can be written easily by using operator
Lv as in ∂v/∂τ = Lv(v).

In the computational domain Ω = (0, L) × (0,M), we use the
Dirichlet boundary conditions at x = L and y = M and the linear
boundary conditions at x = 0 and y = 0. Similarly, the linear
boundary conditions are applied to v.

3.2. Operator splitting method (OSM)

The operator splitting (OS) scheme is used extensively in
mathematical finance for solving multi-asset option pricing
models numerically. The idea of the OS method (Duffy, 2006) is
to divide each time step into fractional time steps with simpler
operators.We shall introduce the basic idea behind the OSmethod,
which is to replace a two-dimensional scheme as

un+1
ij − un

ij

∆τ
= Lx

u


u∗

ij


+ Ly

u


un+1
ij


,

vn+1
ij − vn

ij

∆τ
= Lx

v


v∗

ij


+ Ly

v


vn+1
ij


,

where u∗ and v∗ are values at an intermediate time level ∗which is
between time level n and n+1 and the discrete difference operator
Lx

u. And L
y
u are defined by

Lx
u


u∗

ij


= ruxi

u∗

i+1,j − u∗

ij

h
−

1
2
ruu∗

ij

+
1
2
(σ u

x xi)
2 u

∗

i−1,j − 2u∗

ij + u∗

i+1,j

h2

+
1
2
ρu
xyσ

u
x σ u

y xiyj
un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2

+
1
2
λu(vn

ij − u∗

ij),

Ly
u


un+1
ij


= ruyj

un+1
ij+1 − un+1

ij

h
−

1
2
ruun+1

ij

+
1
2
(σ u

y yj)
2 u

n+1
ij−1 − 2un+1

ij + un+1
ij+1

h2

+
1
2
ρu
xyσ

u
x σ u

y xiyj
u∗

i+1,j+1 + u∗

ij − u∗

ij+1 − u∗

i+1,j

h2

+
1
2
λu(vn

ij − un+1
ij ).

Here, we apply the implicit scheme for time derivative and the
mixed scheme for space derivativeswhich is forward for first order
derivatives and central for second order derivative. In order to
deal with non-derivative terms in each step, we split evenly the
non-derivative terms. And the remaining operators Lx

v and Ly
v are

defined similarly as the operators Lx
u and L

y
u.

Then, we approximate each sub-problem by a semi-implicit
scheme as

u∗

ij − un
ij

∆τ
= Lx

u


u∗

ij


, (5)
un+1
ij − u∗

ij

∆τ
= Ly

u


un+1
ij


, (6)

v∗

ij − vn
ij

∆τ
= Lx

v


v∗

ij


, (7)

vn+1
ij − v∗

ij

∆τ
= Ly

v


vn+1
ij


. (8)

We describe a numerical algorithm based on an operator splitting
method for the governing Eqs. (5)–(8).

• Step 1

Eq. (5) is rewritten as follows:

αiu∗

i−1,j + βiu∗

ij + γiu∗

i+1,j = fij. (9)

With a fixed index j and for i = 1 : Nx, the vector u∗

1:Nx,j can be
found by solving the tridiagonal system

Axu∗

1:Nx,j = f1:Nx,j,

where Ax is a tridiagonal matrix constructed from Eq. (9) with the
Dirichlet and linear boundary conditions, i.e.,

Ax =



2α1 + β1 γ1 + α1 0 · · · 0 0
α2 β2 γ2 · · · 0 0
0 α3 β3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βNx−1 γNx−1
0 0 0 · · · αNx βNx − γNx

 .

Here, the elements of the matrix Ax are

αi = −
(σ u

x xi)
2

2h2
, (10)

βi =
1

∆τ
+

(σ u
x xi)

2

h2
+

ruxi
h

+
1
2
(ru + λu), (11)

γi = −
(σ u

x xi)
2

2h2
−

ruxi
h

, for i = 1 : Nx. (12)

For given the un
ij, the elements of the vector f1:Nx,j are

fij =
un
ij

∆τ
+

1
2
λuvn

ij

+
1
2
ρu
xyσ

u
x σ u

y

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
,

for i = 1 : Nx. (13)

Then, the first step of the governing equation is implemented in a
loop over the y-direction as follows:

Algorithm 1 (Step 1)
Require: Previous data un, vn.
procedure Find the solution u∗

for j = 1; j ≤ Ny; j++ do
for i = 1; i ≤ Nx; i++ do

Set αi, βi, γi, and fij by Eqs. (10)–(13)
end for
Solve Axu∗

1:Nx,j = f1:Nx,j
by using the Thomas algorithm

end for
end procedure
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• Step 2

The second step which is given by Eq. (6) is rewritten as

αjun+1
ij−1 + βjun+1

ij + γjun+1
ij+1 = gij, (14)

for given the u∗

ij and where

αj = −
(σ u

y yj)
2

2h2
, (15)

βj =
1

∆τ
+

(σ u
y yj)

2

h2
+

ruyj
h

+
1
2
(ru + λu), (16)

γj = −
(σ u

y yj)
2

2h2
−

ruyj
h

, (17)

gij =
u∗

ij

∆τ
+

1
2
λuvn

ij

+
1
2
ρu
xyσ

u
x σ u

y

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
. (18)

For a fixed index i and for j = 1 : Ny, the vector un+1
i,1:Ny

can be found
by solving the tridiagonal system

Ayun+1
i,1:Ny

= gi,1:Ny ,

where the matrix Ay is a tridiagonal, i.e.,

Ay =



2α1 + β1 γ1 + α1 0 · · · 0 0
α2 β2 γ2 · · · 0 0
0 α3 β3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βNy−1 γNy−1
0 0 0 · · · αNy βNy − γNy

 .

The second step of the governing equation is implemented in a loop
over the x-direction as follows:

Algorithm 2 (Step 2)
Require: Previous data u∗, vn.
procedure Find the solution un+1

for i = 1; j ≤ Nx; i++ do
for j = 1; j ≤ Ny; j++ do

Set αj, βj, γj, and gij by Eqs. (15)–(18)
end for
Solve Ayun+1

i,1:Ny
= gi,1:Ny

by using the Thomas algorithm
end for

end procedure

As with Steps 1 and 2, the third and fourth steps are imple-
mented by using Eqs. (7) and (8), respectively. Here, the descrip-
tion for Steps 3 and 4 will be omitted because it follows a similar
process.

• Execution from Steps 1 to 4 advances the numerical solution
with a ∆τ step in time.

4. Numerical experiments

We consider a vanilla call option whose payoff is given as

Λ(x, y) = max{x − K1, y − K2, 0}. (19)

Fig. 1 shows the payoff function (19).
The parameters used are K1 = K2 = 50, σ u

x = 0.3, σ v
x =

0.8, σ u
y = σ v

y = 0.3, ρu
xy = ρv

xy = 0.5, ru = rv
= 0.05, T = 0.5.

The computational domain is [0, 150] × [0, 150] with space step
Fig. 1. European call option payoff on the maximum of two assets.

Nx = Ny = 150. And we set λu
= 0.0, λv

= 4.0 which means that
regime state i = 1 is an absorbing state.

Fig. 2(a) and (b) shows the value function of u, which has no
regime-switching until the total time T = 0.5, and v, which has
at most one regime-switching during the life time of the option,
under the operator splitting scheme with 50 time steps per 0.5
year. And Fig. 2(c) represents the difference between u and v which
comes from the probability of change in the x-asset volatility σx.

4.1. Convergence test

In this section, we perform a number of simulations with
increasingly finer grids h = 3/2n for n = 0, 1, 2, and 3 on a
computational domain Ω = [0, 150]× [0, 150]. For each case, the
calculation is run up to time T = 0.5with time step∆τ = 0.01/4n.
The initial conditions for u and v are taken as maximum option
payoff as shown in Fig. 1.

Since there is no closed-form analytic solution for this problem,
we use the Richardson method. We define the error of a grid as
the discrete l2-norm of the difference between that grid and the
average of the reference solution cell neighboring it as

eh/ h
2 ij

:= vhij −


v h

2 2i−1,2j−1
+ v h

2 2i,2j−1
+ v h

2 2i−1,2j
+ v h

2 2i,2j


/4.

The rate of convergence is defined as the ratio of successive
errors which is log2


∥eh/ h

2
∥2/∥e h

2 / h
4
∥2


. The errors and rates of

convergence obtained using these definitions are given in Table 1.
First-order accuracy with respect to space is observed, as expected
from the discretization.

4.2. Comparison between ADI and OS methods

In order to highlight why OS method can be particularly useful
in regime-switchingmodel, we compare standard ADI (Alternating
Directions Implicit) method with OS methods. Before we do this,
we explain briefly about ADI method.

The main idea of the ADI method (Chin, Manteuffel, & Pillis,
1984; Hout & Foulon, 2010) is to proceed in two steps, treating
only one operator implicitly at each stage. First, a half-step is taken
implicitly in x and explicitly in y. Then, the other half-step is taken
implicitly in y and explicitly in x. The followings are the applied
scheme to Eq. (2) as

u∗

ij − un
ij

∆τ
= Lx

ADI


u∗

ij


, (20)

un+1
ij − u∗

ij

∆τ
= L

y
ADI


un+1
ij


, (21)
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Table 1
Errors and rates of convergence for numerical solution u.

Case 50–100 Rate 100–200 Rate 200–400

l2-error 0.0299 1.12 0.0137 1.05 0.0067

where the discrete difference operators Lx
ADI and L

y
ADI are defined

by

Lx
ADI


u∗

ij


=

1
2
ruxi

u∗

i+1,j − u∗

ij

h
+

1
2
ruyj

un
ij+1 − un

ij

h

−
1
2
ruu∗

ij +
1
4
(σ u

x xi)
2 u

∗

i+1,j − 2u∗

ij + u∗

i−1,j

h2

+
1
4
(σ u

y yj)
2 u

n
i,j+1 − 2un

ij + un
i,j−1

h2

+
1
2
ρu
xyσ

u
x σ u

y xiyj
un
i+1,j+1 + un

ij − un
ij+1 − un

i+1,j

h2

+
1
2
λu(vn

ij − u∗

ij), (22)

L
y
ADI


un+1
ij


=

1
2
ruxi

u∗

i+1,j − u∗

ij

h
+

1
2
ruyj

un+1
ij+1 − un+1

ij

h

−
1
2
ruun+1

ij +
1
4
(σ u

x xi)
2 u

∗

i+1,j − 2u∗

ij + u∗

i−1,j

h2

+
1
4
(σ u

y yj)
2 u

n+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2

+
1
2
ρu
xyσ

u
x σ u

y xiyj
u∗

i+1,j+1 + u∗

ij − u∗

ij+1 − u∗

i+1,j

h2

+
1
2
λu(vn

ij − un+1
ij ). (23)

Here, u∗ is the value at an intermediate time level ∗ which is
between time level n and n + 1. Similar to Eqs. (20) and (21),
Eq. (3) is applied with ADI method for v.

Fig. 3 shows numerical results using the ADI and OS methods
with∆τ = 0.5 and h = 1. The first and second columns are results
with solutions v∗ and v1, respectively. Here, v1 is the numerical
solution at time T = ∆τ after one iteration. And v∗ is the value
at an intermediate time level between v0 and v1. In Fig. 3(a), the
solution v∗ exhibits oscillation around y = K2 which is from the
y-derivatives in the source term. On the other hand, for the OS
method, we do not have the y-derivatives in the source term and
the solution v

1
2 is smooth around y = K2 as shown in Fig. 3(b).

After one complete time step, the result with the ADI shows a non-
smooth numerical solution. However, the OS method results in a
smooth numerical solution. Therefore, the results showed that the
OS method is very efficient and robust than the ADI method with
large time steps. For more details, see the texts of Jeong and Kim
(2013).

5. Volatility smile and volatility term structure

In this section,we discuss the volatility smile phenomenon gen-
erated by the regime-switching model. We illustrate the volatility
smile and the term structure for the case of two-underlying assets
with payoff function (19).

Since the volatility smile can be described for a simple case, we
especially focus on a special case of the regime-switching model
that has two states with one absorbing state; Q is given by

Q =


0 0
λ −λ


with λ > 0.
a

b

c

Fig. 2. Numerical results using the OS method with European call option on the
maximum of two assets at T = 0.5. (a) Numerical solution u, (b) numerical solution
v, and (c) difference between |u − v|.

5.1. Algorithm of implied volatility

Following Algorithm 3 is for finding the implied volatility. To
find the implied volatility σimp on the interval [σlow, σhigh], we first
need the numerical solution v for regime-switching model with
givenparameter set. Then, by computing thenumerical value at the
midpoint 0.5(σlow+σhigh), we can find the implied volatility. In this
case, the numerical values for the bisection method are calculated
numerically with the Black–Scholes model because λu

= 0 means
the classical Black–Scholes part which is with no jump.

5.2. Numerical simulation for implied volatility

In this section, we perform numerical simulations for implied
volatility on a computational domainΩ = [0, 150]×[0, 150]with
space step h = 1 and time step ∆τ = 0.0025.
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(a) ADI method.

(b) OS method.

Fig. 3. Numerical results using the (a) ADI and (b) OS methods with European call option on the maximum of two assets. First and second columns represent the solution
v∗ and v1 , respectively.
Algorithm 3 Bisection method for finding implied volatility
Require: Previous data v; endpoints σlow and σhigh; tolerance tol.
procedure Find the implied volatility

Set σimp = 0.5(σlow + σhigh) and i = 0.
while |σhigh − σimp| > tol do

i = i + 1.
Phigh = Numerical OSM(σhigh).
Pimp = Numerical OSM(σimp).
if (Pimp − v)(Phigh − v) ≤ 0 then

σlow = σimp.
else

σhigh = σimp.
end if
σimp = 0.5(σlow + σhigh).

end while
end procedure

The following numerical parameters are used to illustrate the
volatility smile in our model.

ΩKx = {30, 35, . . . , 70},
ΩKy = {30, 35, . . . , 70},

ΩT =


1
12

,
2
12

, . . . , 1


,

Ωλ = {2, 4, . . . , 20},
Ωρ = {−0.8, −0.6, . . . , 0.8},
Ωσ = {0.1, 0.2, . . . , 1},

where, in particular, Ωσ is the set of volatility jump sizes |σ v
x −

σ u
x | ∈ Ωσ . In all cases, we set ru = rv

= 0.05, σ u
y = σ v

y =

0.3, Ky = 50, ρv
xy = 0.5, λu

= 0, and x = y = 50 while
varying other parameters. We calculate the implied volatilities
about the variable strike price for x-assetKx against one of the other
parameters Ky, T , λv, σ u

x , σ v
x , and ρu

xy.

5.2.1. Kx and Ky

As shown in Fig. 4, we estimate the implied volatility about v
under the varying parameters Kx ∈ ΩKx , Ky ∈ ΩKy . We consider
two different cases with σ u

x > σ v
x and σ u

x < σ v
x in Fig. 4(a) and (b),

respectively.
In Fig. 4(a), we use the fixed parameters (T , λv, σ u

x , σ v
x , ρu

xy) =

(0.25, 4, 0.8, 0.3, 0.5). And in the other case (b), we set the fixed
parameters (T , λv, σ u

x , σ v
x , ρu

xy) = (0.25, 4, 0.3, 0.8, 0.5).
As the same volatility smile phenomenon in Hull (2000), the

implied volatility reaches its minimum at Kx = 50 and Ky = 50
(at the money) and increases as Kx and Ky move away from 50.

Note that we do not use any practical option pricing data and
that the option pricing values arise purely from our two-state
continuous-time Markov regime-switching model.

5.2.2. Kx and T
In this example, we set (Ky, λ

v, ρu
xy) = (50, 4, 0.5) and vary

Kx ∈ ΩKx against T ∈ ΩT .
For the first case which is σ u

x > σ v
x , we take σ u

x = 0.8, σ v
x =

0.3. As the result, Fig. 5(a) shows that for each fixed T ∈ ΩT , the
implied volatility reaches its minimum at Kx = 50 (at the money)
and increase as Kx moves away from Kx = 50. In addition, for fixed
Kx ∈ ΩKx , the implied volatility is increasing in T , corresponding
to a jump from σ v

x to σ u
x .

On the contrary to Fig. 5(a), (b) represents the implied volatility
when σ u

x < σ v
x . For this, we use σ u

x = 0.3, σ v
x = 0.8. In this

case, we can see that the implied volatility is decreasing in T ,
corresponding to a jump from σ v

x to σ u
x .
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(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 4. Volatility smile and the term structure under the varying parameters Kx and Ky .
(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 5. Volatility smile and the term structure under the varying parameters Kx and T .
(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 6. Volatility smile and the term structure under the varying parameters Kx and λ.
5.2.3. Kx and λ

Then, we set (Ky, T , λv, ρu
xy) = (50, 0.25, 4, 0.5) and vary Kx ∈

ΩKx versus λu
∈ Ωλ.

For the first case, we set σ u
x = 0.8, σ v

x = 0.3. As shown in
Fig. 6(a), a large λu forces the implied volatility around σ u

x for each
fixed Kx ∈ ΩKx .

For the second case which is σ u
x < σ v

x , we take σ u
x = 0.3, σ v

x =

0.8. Fig. 6(b) shows that for fixed Kx ∈ ΩKx , the implied volatility
decreases in larger λu.
5.2.4. Kx and σ

Toobtain thenumerical results in Fig. 7,we set (Ky, T , λv, ρu
xy) =

(50, 0.25, 4, 0.5) and vary Kx ∈ ΩKx versus σ ∈ Ωσ .
In the first case, we take that σ u

x is varied from 0.3 to 1.3 when
σ v
x is fixed at 0.3. As can be seen from Fig. 7(a), the smile increases

in the jump size. In addition, the implied volatility is an increasing
function of σ u

x − σ v
x for each fixed Kx ∈ ΩKx .

Alternatively in the second case, we set σ u
x = 0.3 and vary σ v

x
from 0.3 to 1.3 by the volatility jump size σ v

x −σ u
x ∈ Ωσ . As shown

in Fig. 7(b), this result is similar to case (a).
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(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 7. Volatility smile and the term structure under the varying parameters Kx and σ .
(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 8. Volatility smile and the term structure under the varying parameters Kx and ρ.
(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 9. Volatility smile and the term structure under the varying parameters T and σ .
5.2.5. Kx and ρ

Now, we set (Ky, T , λv) = (50, 0.25, 4), Kx ∈ ΩKx , and ρu
xy ∈

Ωρ . And we take (σ u
x , σ v

x ) = (0.8, 0.3) for case (a), (σ u
x , σ v

x )
= (0.3, 0.8) for the other case (b). The numerical results are
illustrated in Fig. 8. The volatility tend to increase asρu

xy approaches
to 1 for each fixed Kx.

5.2.6. T and σ

Here, we fix (Kx, Ky, T , λv, ρu
xy) = (50, 50, 0.25, 4, 0.5) and we

plot the implied volatility against thematurity T and the jump size
|σ u

x − σ v
x | in Fig. 9.
As can be observed in Fig. 9(a), we consider the case of σ u
x −σ v

x .
For this, we fix σ v

x = 0.3 and vary σ u
x from 0.3 to 1.3. As a result,

the implied volatility increases in T and σ u
x − σ v

x .
In the other case, we set σ u

x = 0.3 and vary σ v
x from 0.3 to 1.3.

In Fig. 9(b), we can see that implied volatility decreases in T and
σ u
x − σ v

x .

5.2.7. T and λ

As the final example, we consider the implied volatility against
the maturity T and the jump rate λv as shown in Fig. 10. To do this,
we take (Kx, Ky, ρ

u
xy) = (50, 50, 0.5).
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(a) σ u
x > σ v

x . (b) σ u
x < σ v

x .

Fig. 10. Volatility smile and the term structure under the varying parameters T and λ.
For the first case when σ u
x > σ v

x , we set σ u
x = 0.8 and σ v

x =

0.3. Then, we can observe that for fixed T , the implied volatility
increases in λ. Similarly, for fixed λ, the implied volatility also
increase in T .

For the other case, we set σ u
x = 0.3 and σ v

x = 0.8. Then we
can see that the implied volatility decreases in λ when T and λ are
increased.

6. Conclusion

We have considered the volatility smile phenomenon gener-
ated by two-asset European style options under a continuous-
time two-state Markov chain regime-switching model. Because
of the difficulty to find closed-form solution of the Feynman–Kac
style formula, an algorithm for a numerical solution was de-
signed. We confirmed the suitability of the OS scheme by con-
ducting convergence test and comparing with ADI scheme. While
the volatility smile is observed to obviate the constant-volatility
assumption of the Black–Scholes model, the regime-switching
model has the clear advantage that it implies the volatility
smile structure through the model itself. In addition, the regime-
switching model has relatively simple additional parameters
(λ, σx(i), σy(i), ρxy) to realize an appropriate volatility smile com-
pared to the Black–Scholes model. One needs to estimate the pa-
rameters λ, σx(i), σy(i), and ρxy to apply the model in practice. The
estimation procedure is given in Zhang (2001).
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