
European Journal of Mechanics B/Fluids 42 (2013) 30–36
Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Numerical investigations on self-similar solutions of the nonlinear
diffusion equation
Yibao Li, Junseok Kim ∗

Department of Mathematics, Korea University, Seoul, 136-713, Republic of Korea

h i g h l i g h t s

• We describe a numerical method for calculating self-similar solutions of this film.
• We perform several numerical tests to demonstrate that the numerical simulations are in qualitative agreement with self-similar solutions.
• Various numerical experiments are performed to show that the proposed algorithm can generate a self-similar solution.
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a b s t r a c t

In this paper, we present the numerical investigations of self-similar solutions for the nonlinear diffusion
equation ht = −(h3hxxx)x, which arises in the context of surface-tension-driven flow of a thin viscous
liquid film. Here, h = h(x, t) is the liquid film height. A self-similar solution is h(x, t) = h(α(t)(x −

x0) + x0, t0) = f (α(t)(x − x0)) and α(t) = [1 − 4A(t − t0)]−1/4, where A and x0 are constants and
t0 is a reference time. To discretize the governing equation, we use the Crank–Nicolson finite difference
method, which is second-order accurate in time and space. The resulting discrete system of equations
is solved by a nonlinear multigrid method. We also present efficient and accurate numerical algorithms
for calculating the constants, A, x0, and t0. To find a self-similar solution for the equation, we numerically
solve the partial differential equation with a simple step-function-like initial condition until the solution
reaches the reference time t0. Then, we take h(x, t0) as the self-similar solution f (x). Various numerical
experiments are performed to show that f (x) is indeed a self-similar solution.

© 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

The objective of this paper is to numerically investigate self-
similar solutions for the nonlinear diffusion equation

ht = −(h3hxxx)x, (1)

which arises in the context of thin liquid film flow. Here h =

h(x, t) denotes the liquid film height, x, a spatial coordinate, and
t , time (see Fig. 1). h∞ is the constant upstream height and b is the
precursor film thickness. Eq. (1) can be considered as a zero gravity
and no surface tension gradient limit of the following equation:

ht + (h2
− h3)x = −(h3hxxx)x (2)

which governs a thin layer of liquid on an inclined substrate driven
by thermally created surface tension gradients and influenced by
gravity. This equation has been extensively studied experimen-
tally, analytically, and numerically [1–24]. A liquid film driven by a
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thermal gradient with a counteracting gravitational force has been
studied experimentally [15–17].

Jump initial data, from a moderately thick film to a thin pre-
cursor layer, is shown to give rise to a double wave structure that
includes an undercompressive wave [15]. The wave structure of
solutions observed in numerical simulations with Eq. (2) is related
to the hyperbolic theory of the underlying scalar conservation law,
ht + (h2

− h3)x = 0 [18]. See [19,20] and the references therein for
related mathematical problems concerning the dynamics of thin
films.

Alternating direction implicit schemes are constructed for the
solution of the fourth-order thin film equation for surface-tension-
driven fluid flows [21]. Adaptive mesh refinement for thin film
equations is developed in [22]. A detailed implementation of an
adaptive finite element method was presented in [23]. In [24], the
authors numerically investigated the effect of the convection term
treatment using the Godunov scheme, the WENO scheme, and an
upwind-type scheme of a driven thin film equation.

Bernoff and Witelski [25] studied the compactly-supported
self-similar solutions of ht = −(hnhxxx)x for 0 < n < 3. Further,
using linear stability analysis, they showed that the source-type
solutions are stable. For further details about the self-similar

http://dx.doi.org/10.1016/j.euromechflu.2013.05.003
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.euromechflu.2013.05.003&domain=pdf
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://dx.doi.org/10.1016/j.euromechflu.2013.05.003


Y. Li, J. Kim / European Journal of Mechanics B/Fluids 42 (2013) 30–36 31
Fig. 1. Schematic diagram of thin film problem.

solutions of fourth-order nonlinear diffusion equations, we refer
the reader to [25–34] and the references therein.

To find a self-similar solution of Eq. (1), we numerically solve
the partial differential equation with a simple step-function like
initial condition until the solution reaches a reference time. Then,
we take the self-similar solution as the one at the reference time.
Note that, this numerical self-similar solution is an approximation
to the analytic one.

The remainder of this paper is organized as follows. In Section 2,
we briefly review the governing equation and introduce a self-
similar solution for the nonlinear diffusion equation. In Section 3,
we present the Crank–Nicolson finite difference discretization of
the governing equation and its nonlinear full-approximation stor-
age (FAS) multigrid solver. Efficient and accurate numerical algo-
rithms for calculating the constants, A, x0, and t0 are also described.
In Section 4, we present various numerical results. Finally, we state
our conclusions in Section 5.

2. Governing equation

We consider the dynamics of a thin layer of liquid of thickness
h = h(x, t) on a substrate, driven by surface tension. The configu-
ration is shown schematically in Fig. 1. The spatial variables x and
z denote the direction of flow and the film height, respectively. We
model the dynamics of the thin film using lubrication approxima-
tion with a ‘‘depth averaged’’ velocity:

ū(x, t) =
1

h(x, t)

 h(x,t)

0
u(x, z, t)dz =

γ h2(x, t)hxxx(x, t)
3η

, (3)

where γ denotes the surface tension coefficient and η, the vis-
cosity of the fluid [35]. Coupling Eq. (3) with the conservation of
mass [15], we obtain

ht(x, t)+ [h(x, t)ū(x, t)]x = 0. (4)

To non-dimensionalize Eq. (4), we employ the non-dimensional
variables denoted by hats, ĥ = h/H, x̂ = x/L, and t̂ = t/T ; thus
we obtain

H
T
ĥt̂ +


H4γ ĥ3ĥx̂x̂x̂

3L4η


x̂

= 0, (5)

where H, L, and T are the characteristic height, length, and time
scales, respectively. Now choose the time scale T = 3L4η/(H3γ )

so that we have ĥt̂ +


ĥ3ĥx̂x̂x̂


x̂

= 0. Drop the ‘ ˆ ’ to obtain the
dimensionless thin film equation:

ht = −(h3hxxx)x (6)

with the boundary conditions, limx→−∞ h(x, t) = h∞ and
limx→∞ h(x, t) = b.

In this paper, we present a self-similar solution of Eq. (6) of the
form

h(x, t) = f (φ) and φ = α(t)(x − x0), x ∈ R, t ≥ t0, (7)

where x0 and t0 are the reference points that satisfy ht(x0, t) = 0
and α(t0) = 1, respectively. Substitution of the similarity ansatz
(7) into Eq. (6) yields the ordinary differential equations:

α′(t)
α5(t)

= −
[f 3(φ)f ′′′(φ)]′

φf ′(φ)
= A, (8)
where the prime symbol denotes differentiation with respect to
the argument variable of each function and A is a constant. From
Eq. (8), α(t) is given as

α(t) = [1 − 4A(t − t0)]−1/4. (9)

Here we have used the initial condition α(t0) = 1. The similarity
solution f should satisfy the equation

[f 3(φ)f ′′′(φ)]′ = −Aφf ′(φ) (10)

subject to the boundary conditions: limφ→−∞ f (φ) = h∞ and
limφ→∞ f (φ) = b.

In this study, we use dual approaches to calculate self-similar
solutions. One is to calculate f directly from Eq. (10) by using the
bvp5c program [36–39], which is an ordinary differential equation
solver. A sample MATLAB code is given in Appendix A. The other
approach is to solve the evolution equation (6) with an initial
condition such as a step-function, andwe take f as an intermediate
solution at a certain time t = t0.

3. Numerical method

We split the fourth-order equation (6) into a system of second
order equations

ht(x, t) = [M(h(x, t))µx(x, t)]x, (11)
µ(x, t) = −hxx(x, t), x ∈ Ω = (0, L), t > 0, (12)

where M(h) = h3. Boundary conditions are given by

h(0, t) = h∞, h(L, t) = b, (13)
µx(0, t) = µx(L, t) = 0, (14)

where h∞ is the constant upstream height and b is the precursor
film thickness. The first two boundary conditions are Dirichlet
boundary conditions and the last two boundary conditions are
homogeneous Neumann boundary conditions, which are no-flux
boundary conditions.

3.1. Discretization and numerical solver

Now, we present fully discrete schemes for Eqs. (11) and (12) in
one dimensional spaceΩ = (0, L). LetN be a positive even integer,
1x = L/N , the uniform mesh size, and xi = (i − 0.5)1x, 1 ≤

i ≤ N , the cell-center node point. Let hn
i andµ

n
i be approximations

of h(xi, n1t) and µ(xi, n1t), respectively. Then, a Crank–Nicolson
finite difference discretization of Eqs. (11) and (12) is given by

hn+1
i − hn

i

1t

=

M

hn+1
i+ 1

2


(µn+1

i+1 − µn+1
i )− M


hn+1
i− 1

2


(µn+1

i − µn+1
i−1 )

2(1x)2

+

M

hn
i+ 1

2


(µn

i+1 − µn
i )− M


hn
i− 1

2


(µn

i − µn
i−1)

2(1x)2
, (15)

µn+1
i = −

hn+1
i−1 − 2hn+1

i + hn+1
i+1

(1x)2
, (16)

where hi+1/2 = (hi+hi+1)/2. The boundary conditions are defined
as

h0 = 2h∞ − h1, hN+1 = 2b − hN , (17)
µ0 = µ1, µN+1 = µN . (18)

In this paper, we use amultigridmethod [40] to solve the nonlinear
discrete system (15) and (16) at the implicit time level. A detailed
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description of the numerical solution is provided in Appendix B.
Note that by summing Eq. (15), we have the conservation property

N
i=1

hn+1
i − hn

i

1t

=

M

hn+1
N+

1
2


(µn+1

N+1 − µn+1
N )− M


hn+1

1
2


(µn+1

1 − µn+1
0 )

2(1x)2

+

M

hn
N+

1
2


(µn

N+1 − µn
N)− M


hn

1
2


(µn

1 − µn
0)

2(1x)2
= 0,

wherewe applied the zero Neumann boundary condition equation
(18).

3.2. Calculation of a self-similar solution

In this subsection, we describe our proposed numerical algo-
rithm for calculating a self-similar solution by solving the evolution
equation (6) with an initial condition such as a step-function.

A suitable self-similar solution f (φ) = h(x, t0) should satisfy

(i) maxx∈Ω h(x, t) = maxφ∈Ω f (φ) and minx∈Ω h(x, t) = minφ∈Ω

f (φ),
(ii) A(t) = (α4(t) − 1)/[4(t − t0)α4(t)] is constant for t > t0,

where t0 is the reference time when the self-similar solution
begins.

Let hn
max and hn

min denote the maximum and minimum values
of h(x, t) at t = n1t . First, we evolve the equation with a given
initial condition until the relative errors |hn+1

max − hn
max|/h

n
max and

|hn+1
min − hn

min|/h
n
min are smaller than a given tolerance, tol = 1e−6.

Initially, we set t0 = n1t and carry out the following two steps
until we get the reference time t0.

Step 1. Compute A(t) = (α(t)4 − 1)/[4(t − t0)α(t)4] at three
different times t = t0 + β1t, t0 + 2β1t, and t0 + 3β1t . Here β
is some integer and we use β = 10 in this study.

Let x∗(t) be the position at time t such that h(x∗(t), t) =

maxx∈Ω h(x, t). Since the maximum value of h(x, t) should be the
same in the self-similar solution, i.e., h(x∗(t), t) = f (φ∗) =

h(x∗(t0), t0), from Eq. (7) we have

α(t) = (x∗(t0)− x0)/(x∗(t)− x0). (19)

Let hn0
k = max1≤i≤N hn0

i and we define the quadratic polynomial
approximation passing through the three points, (xk−1, h

n0
k−1), (xk,

hn0
k ), and (xk+1, h

n0
k+1). Then define x∗(t0) as the critical point of the

polynomial and x∗(t) is defined similarly.
Next, we calculate x0 which satisfies ht(x0, t) = 0 and hx(x0, t)

≠ 0 for all t ≥ t0. Choose t1 = n11t > t0 = n01t; then,
h(x0, t1) = h(x0, t0) (see Fig. 2). We can find the unique index k
such that (hn0

k+1 − hn1
k+1)(h

n0
k − hn1

k ) ≤ 0 and b + 0.1(h∞ − b) <
hn0
k < b+0.9(h∞−b).We define the point x0 as the x-coordinate of

the intersection point of two line segments. One line connects the
points (xk, h

n0
k ) and (xk+1, h

n0
k+1), whereas the other passes through

the points (xk, h
n1
k ) and (xk+1, h

n1
k+1). Then, x0 is defined as

x0 = xk + (xk+1 − xk)(h
n0
k − hn1

k )/(h
n0
k − hn0

k+1 − hn1
k + hn1

k+1).

Using Eq. (19),we can calculateA(t) = (α4(t)−1)/[4(t−t0)α4(t)].

Step2. Ifmax
 A(t0+2β1t)−A(t0+β1t)

A(t0+β1t)

 ,  A(t0+3β1t)−A(t0+2β1t)
A(t0+2β1t)

 <
tol, we set t0 = n1t . Otherwise, we go back to Step 1 with t0 =

t0 + β1t .
After this algorithm, we get t0, x0, A, and f (φ).
Fig. 2. Schematic illustration of finding x0 .

We note that unless the initial condition is the similarity solu-
tion and the domain is infinite, the numerical solution will always
have small deviations from the similarity solution. The similarity
solution will be approached as time increases (but not converged
to in finite time) on the infinite domain. If the width of the domain
is finite, then the boundary conditionswill eventually override this
approach to the similarity solution and the numerical solution con-
verges to the steady-state solution (also only in the limit of infinite
time).

4. Numerical experiments

In this section, we describe various numerical experiments,
such as a convergence test, as well as other experiments to demon-
strate the finite computational domain effect, long time evolution,
a numerical self-similar solution, and the effect of parameters and
initial profiles on self-similarity. Unless otherwise specified, we
use the computational domain Ω = (0, 100) with an N = 1024
mesh grid and a time step1t = 1.

4.1. Convergence test

We start with spatial and temporal convergence tests of the
numerical scheme. In order to obtain the spatial convergence rate,
we perform a number of simulations with increasingly finer grids
1x = 100/2n−1 for n = 6, 7, 8, 9, and 10. The initial condition is

h(x, 0) = 0.5[h∞ + b − (h∞ − b) tanh(3(x − 50))], (20)
where h∞ = 0.3 and b = 0.1. Numerical solutions are computed
up to time T = 100 with the time step 1t = 1x. We define the
error of the numerical solution on a grid as the discrete l2-norm of
the difference between that grid and the average of the next finer
grid numerical solution: e1x/1x

2 i
:= h1xi − (h1x

2 2i−1 + h1x
2 2i)/2.

The rate of convergence is defined as the ratio of successive errors:
log2(∥e1x/1x

2
∥2/∥e1x

2 /
1x
4

∥2). Here ∥e∥2
2 is a discrete l2 norm and is

defined as ∥e∥2
2 =

N
i=1 e

2
i /N . Fig. 3 shows a log–log plot of

l2-norm of errors (circle) against various mesh grids at T =

100 with a linear fitting (solid line). The second-order accuracy
with respect to space and time is observed as expected from the
discretization.

Furthermore, we consider the CPU time in seconds for the
convergence test. Tests were performed on a system with a 3-GHz
Intel Pentium CPU and 3-GB RAM, loaded with C++. If we refine
the spatial and temporal grids by a factor of 2, the CPU time
should increase by a factor of 4. As can be observed from Table 1,
using the multigrid method, the CPU time increases by a factor of
approximately four. This result indicates that the computational
complexity of the multigrid method is indeed O(N).
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Fig. 3. Log–log plot of l2-norm of errors (circle) against various mesh grids at
T = 100 with a linear fitting (solid line).

Table 1
CPU time in seconds.

Grid 256 512 1024 2048
CPU time 5.787 28.360 114.563 442.828
Factor 4.90 4.04 3.87

4.2. Evolution of thin liquid film

In this subsection, we show the evolution of the thin liquid film
and its self-similar solution. The initial condition is the same as in
Eq. (20). Solutions are computed up to time T = 5000. Fig. 4(a)
shows the evolutions of the thin film height h. We can observe
that there exits a point x0 = 50.02, which satisfies ht(x0, t) = 0
and hx(x0, t) ≠ 0 for all t ≥ t0 = 891 with A = −1.81e−4.
In Fig. 4(b), the starred and circled lines represent the evolutions
of hn

max − h∞ and b − hn
min, respectively. They start from zero and

converge quickly to constant values. Fig. 4(c) shows snapshots of
the thin film shapes at t0 and t = 5000. A comparison of the
numerical solutions at t = 5000 and from a self-similar solution
at t0 is shown in Fig. 4(d). This result shows that our numerical
algorithm can generate a self-similar solution.

4.3. Effect of the finite computational domain size

The original equation is in the infinite domain; however, to get
numerical solutions by using a finite difference method, the do-
main must be truncated and suitable boundary conditions should
be applied. In order to show the effect of the computational do-
main size on the numerical solutions, we take a set of different do-
mains Ω = (−25, 25), (−50, 50), and (−100, 100), with a fixed
space step size 1x = 50/512. The initial condition is h(x, 0) =

0.5[h∞+b−(h∞−b) tanh(3x)], where h∞ = 0.3 and b = 0.1.We
run the computation up to T = 2000. Fig. 5 shows a comparison
of the thin liquid film profiles in three different computational do-
mains. This result suggests that the effect of the domain size on the
numerical result is negligible as long as the computational domain
is sufficiently large and the temporal evolution is not too long.

Next, we perform a long time evolution. The initial condition is
h(x, 0) = h∞, if x < 0 and h(x, 0) = b, otherwise, where h∞ = 0.3
and b = 0.1. Fig. 6(a) shows the evolution of the thin film in the do-
mainΩ = (−25, 25) up to time T = 8000 000. As can be seen, the
numerical solution becomes a steady state (thick solid line) that
is nearly linear profile owing to the boundary conditions. The sym-
bol ‘o’ indicates the self-similar solution, f (φ), from theODE solver.
We can observe a good agreement between f (φ) and one of evo-
lution profiles. In Fig. 6(b), we show the discrete l2-norm of the
difference between the numerical solution and the self-similar so-
lution (circled line in Fig. 6(a)) obtained by solving Eq. (10) with
a b

c d

Fig. 4. (a) Evolution of the thin film height h with h∞ = 0.3 and b = 0.1. (b) The starred and circled lines represent evolutions of hmax − h∞ and b − hmin , respectively.
(c) Snapshots of the thin film shapes at t0 = 891 and t = 5000. (d) Profiles of h(x, 5000) and h(α(5000)(x − x0)+ x0, t0).
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Fig. 5. Comparison of the thin liquid film profiles in three different computational
domains at T = 2000.

Table 2
Comparison of A with different b and h∞ . Here, t0 = 2000.

b h∞ = 0.2 h∞ = 0.3 h∞ = 0.4

0.05 −1.23e−4 −1.24e−4 −1.24e−4
0.1 −1.22e−4 −1.25e−4 −1.26e−4
0.15 −1.23e−4 −1.26e−4 −1.26e−4

Table 3
Comparison of A with different t0 . Here, b = 0.1 and h∞ = 0.3.

t0 2000 2400 2800 3200

A −1.25e−4 −1.04e−4 −8.67e−5 −7.86e−5

A = −1.81e−4. The result shows that the error starts at a mod-
erate initial value, decreases for a while, then increases for longer
times.

4.4. Effect of parameters, h∞, b, and t0

In this subsection, we study the effect of the parameters, h∞, b,
and t0 on self-similarity. The initial condition is the same as in
Eq. (20) with different h∞ and b values. Here, we take t0 =

2000. With a set of numerical solutions of the thin film at t =

2200, 2400, . . . , 4000, the averaged values of A are calculated
and listed in Table 2. From the results, we observe that although
different values of h∞ and b are used, the value of A is nearly the
same. However, with different t0 values, the value of A is different
(see Table 3). Here h∞ = 0.3, b = 0.1,N = 2048, and 1t = 0.5
are used.
4.5. Simulation with another initial condition

To demonstrate the independence of the initial profiles on gen-
erating a self-similar solution, we perform a numerical test with
another initial condition

h(x, 0) =


0.5[h∞ + hf − (h∞ − hf ) tanh(3(x − 45))]
if x < 48

0.5[h∞ + b − (h∞ − b) tanh(3(x − 50))]
otherwise.

Here h∞ = 0.3, hf = 0.35, and b = 0.1 are used. Solutions are
computed up to time T = 20 000. Fig. 7(a) shows the temporal
evolution of the numerical solution. Fig. 7(b) shows snapshots of
the thin film shapes at t0 = 9542 and t = 20 000. Fig. 7(c) shows
profiles of h(x, 20 000) and h(α(20 000)(x − x0) + x0, t0), where
α(20 000) = 1.201 and x0 = 50.13. The results indicate that the
numerical self-similar solution is in good agreement. Further, the
self-similar solution is independent of initial profiles.

5. Conclusions

In this article, we numerically investigated the self-similar solu-
tions for the nonlinear diffusion equation ht = −(h3hxxx)x, which
arises in the context of surface-tension driven flow of thin vis-
cous liquid film. The suggested self-similar solution is h(x, t) =

h(α(t)(x − x0) + x0, t0) = f (α(t)(x − x0)) and α(t) = [1 −

4A(t − t0)]−1/4, where A and x0 are constants and t0 is a reference
time. To numerically solve the governing equation, we used the
Crank–Nicolson finite difference method with a nonlinear multi-
grid solver. We provided numerical algorithms for calculating the
constants,A, x0, and t0 in detail. To find a self-similar solution of the
equation, we numerically solved the partial differential equation
with a simple step-function like initial condition until the solution
reached the reference time t0. Then, we took h(x, t0) as the self-
similar solution f (x). Various numerical experiments were per-
formed to demonstrate that f (x) is indeed a self-similar solution. In
particular, we found a self-similar solution could be obtained from
arbitrary initial profiles.
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a b

Fig. 6. (a) Evolution of thin film on a domainΩ = (−25, 25) until time T = 8000 000, solid lines. The symbol ‘o’ indicates the self-similar solution, f (x), from the ODE solver.
(b) Discrete l2-norm of the difference between the numerical solution and the self-similar solution (circled line in Fig. 6(a)) obtained by solving Eq. (10) with A = −1.81e−4.
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a

b c

Fig. 7. Simulation with another initial condition. (a) Temporal evolution of the numerical solution. (b) Snapshots of the thin film shapes at t0 = 9542 and t = 20 000. (c)
Profiles of h(x, 20 000) and h(α(20 000)(x − x0)+ x0, t0).
Appendix A

A MATLAB m-file, which calculates the self-similar solution by
solving Eq. (10).

function selfODE % This solves f’’’’= -(Axf’+3f’f’’’f^2)/f^3

global heq b A

b=0.1; heq=0.3; A=-1.81e-4; x=linspace(-25,25,3000);

sol=bvp5c(@twoode,@twobc,bvpinit(x,@mat4init)); y=deval(sol,x); plot(x,y(1,:),’k-’);

function yinit = mat4init(x) % initial guess

global heq b

m=0.01; yinit = [0.5*(heq+b)-0.5*(heq-b)*tanh(m*x); -0.5*(heq-b)*m*sech(m*x)^2

(heq-b)*m*m*tanh(m*x)*sech(m*x)^2

(heq-b)*m*m*m*sech(m*x)^2-2*(heq-b)*m*m*m*tanh(m*x)*sech(m*x)^2];

function dydx = twoode(x,y) % ODEs

global A

rhs=-(A*x*y(2)+3*y(1)^2*y(2)*y(4))/y(1)^3; dydx = [y(2);y(3);y(4);rhs];

function res = twobc(ya,yb) % Boundary condition

global heq b

res = [ya(1)-heq; yb(1)-b; ya(2); yb(2)];

Appendix B

To solve the discrete system (15) and (16), we use a nonlinear
full approximation storage (FAS) multigrid method. Let us rewrite
Eqs. (15) and (16) as

N(hn+1, µn+1) = (φn, ψn),

where the left- and right-hand side equations contain n + 1 and
n time level terms, respectively. Let us assume that a sequence of
gridsΩk (Ωk−1 is coarser thanΩk by a factor of 2).
FAS multigrid cycle

{hm+1
k , µm+1

k } = FAScycle(k, hm
k , µ

m
k ,Nk, φ

n
k , ψ

n
k , ν),
where ν is the number of smoothing relaxation sweeps. hm
k and

hm+1
k are the approximations of hn+1

k before and after an FAS cycle.
(1) Presmoothing

Compute {h̄m
k , µ̄

m
k } by applying ν smoothing steps to {hm

k , µ
m
k }

{h̄m
k , µ̄

m
k } = SMOOTHν(hm

k , µ
m
k ,Nk, φ

n
k , ψ

n
k ),

which implies performing ν smoothing steps with the initial ap-
proximations hm

k , µ
m
k , source terms φn

k , ψ
n
k , and SMOOTH relax-

ation operator to get the approximations h̄m
k , µ̄

m
k . One SMOOTH

relaxation operator step consists of solving the system (21) and
(22) given below by 2 × 2 matrix inversion for each i.

h̄m
i

1t
+

Mm
i+ 1

2
+ M̄m

i− 1
2

2(1x)2
µ̄m

i = φn
i +

Mm
i+ 1

2
µm

i+1 + M̄m
i− 1

2
µ̄m

i−1

2(1x)2
, (21)

−
2h̄m

i

(1x)2
+ µ̄m

i = ψn
i −

hm
i+1 + h̄m

i−1

(1x)2
, (22)

whereMm
i+ 1

2
= M(hm

i+ 1
2
) and the other terms are similarly defined.

(2) Compute the defect: (d̄1
m
k , d̄2

m
k ) = (φn

k , ψ
n
k )− Nk(h̄m

k , µ̄
m
k ).

(3) Restrict the defect and {h̄m
k , µ̄

m
k }

(d̄1
m
k−1, d̄2

m
k−1) = Ik−1

k (d̄1
m
k , d̄2

m
k ),

(h̄m
k−1, µ̄

m
k−1) = Ik−1

k (h̄m
k , µ̄

m
k ).

(4) Compute the right-hand side

(φn
k−1, ψ

n
k−1) = (d̄1

m
k−1, d̄2

m
k−1)+ Nk−1(h̄m

k−1, µ̄
m
k−1).

(5) Compute an approximate solution {ĥm
k−1, µ̂

m
k−1} of the coarse grid

equation onΩk−1, i.e.,

Nk−1(hm
k−1, µ

m
k−1) = (φn

k−1, ψ
n
k−1). (23)
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If k = 1, we explicitly invert a 2 × 2 matrix to obtain the solution.
If k > 1, we solve (23) by performing an FAS k-grid cycle using
{h̄m

k−1, µ̄
m
k−1} as an initial approximation:

{ĥm
k−1, µ̂

m
k−1} = FAScycle(k − 1, h̄m

k−1, µ̄
m
k−1,Nk−1,

φn
k−1, ψ

n
k−1, ν).

(6) Compute the coarse grid correction (CGC):

v̂m1k−1 = ĥm
k−1 − h̄m

k−1, v̂m2k−1 = µ̂m
k−1 − µ̄m

k−1.

(7) Interpolate the correction: v̂m1k = Ikk−1v̂
m
1k−1, v̂

m
2k = Ikk−1v̂

m
2k−1.

(8) Compute the corrected approximation onΩk

h̄m+1
k = h̄m

k + v̂m1k, µ̄m+1
k = µ̄m

k + v̂m2k.

(9) Postsmoothing

{hm+1
k , µm+1

k } = SMOOTHν(h̄m+1
k , µ̄m+1

k ,Nk, φ
n
k , ψ

n
k ).

This completes the description of a nonlinear FAS cycle. See the
reference text [40] for additional details and background.
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