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Abstract

We present efficient, second-order accurate and adaptive finite-difference methods to solve the regularized, strongly
anisotropic Cahn–Hilliard equation in 2D and 3D. When the surface energy anisotropy is sufficiently strong, there are
missing orientations in the equilibrium level curves of the diffuse interface solutions, corresponding to those missing from
the sharp interface Wulff shape, and the anisotropic Cahn–Hilliard equation becomes ill-posed. To regularize the equation,
a higher-order derivative term is added to the energy. This leads to a sixth-order, nonlinear parabolic equation for the
order parameter. An implicit time discretization is used to remove the high-order time step stability constraints. Dynamic
block-structured Cartesian mesh refinement is used to highly resolve narrow interfacial layers. A multilevel, nonlinear
multigrid method is used to solve the nonlinear equations at the implicit time level. One of the keys to the success of
the method is the treatment of the anisotropic term. This term is discretized in conservation form in space and is discretized
fully implicitly in time. Numerical simulations are presented that confirm the accuracy, efficiency and stability of the
scheme. We study the dynamics of interfaces under strong anisotropy and compare near-equilibrium diffuse interface solu-
tions to the sharp interface Wulff shapes in 2D and 3D. We also simulate large-scale coarsening of a corrugated surface (in
3D) evolving by anisotropic surface diffusion. We show the emergence of long-range order during coarsening and an inter-
esting mechanism of ordered coarsening.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Cahn–Hilliard equation is an integral part of many physical models describing the evolution of differ-
ent material phases via an order parameter (or multiple order parameters). The equation was initially derived
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.04.020

* Corresponding author. Tel.: +1 949 824 2655; fax: +1 949 824 7993.
E-mail addresses: swise@math.uci.edu (S. Wise), cfdkim@dongguk.edu (J. Kim), lowengrb@math.uci.edu (J. Lowengrub).

mailto:swise@math.uci.edu
mailto:cfdkim@dongguk.edu
mailto:lowengrb@math.uci.edu


S. Wise et al. / Journal of Computational Physics 226 (2007) 414–446 415
as a model for spinodal decomposition in solid materials [1,2] and has since been extended to many other
physical systems. Indeed, an attractive feature of the Cahn–Hilliard framework is that the dynamical equa-
tions are derived from an energy functional valid for the whole material and consequently different energy den-
sities may be added easily depending upon the required physics.

In Cahn–Hilliard-based models, sharp interfaces are replaced by narrow transition layers (diffuse inter-
faces) that result from a competition between the different terms in the energy density. The Cahn–Hilliard
equation has been used to develop diffuse interface models for elastic phase transformations in binary alloys,
e.g., [3–6]; for surface diffusion of adatoms in stressed epitaxial thin films, e.g., [7–9]; multiphase fluid flow,
e.g., [10–12]; stress and electromagnetic driven void migration, e.g., [13–15]; solid tumor growth e.g., [16];
and vesicle dynamics, e.g., [17], just to name a few. See the review articles [18,19] for additional references.

In crystalline solids, the energy of interfaces in certain orientations may be so large that they do not com-
monly appear in the microstructure. In the sharp interface case, when the surface energy density is a smooth
function of the interface normal and the anisotropy is sufficiently strong, it is known that there are missing
orientations in the Wulff shape, i.e, the shape that minimizes the total surface energy for a given volume.
In 2D missing orientations appear when there is a sign change in the surface ‘‘stiffness’’ c(h) + c00(h), where
c is the energy density and h is the interface orientation angle. (The criterion is much more complicated in
the 3D case [20].) Correspondingly, the sharp interface geometric evolution equations, i.e., motion by surface
diffusion and motion by mean curvature, become ill-posed when there are missing orientations because the
surface energy is non-convex [21]. The ill-posedness and loss of smoothness have apparently been avoided
by adding a higher-order derivative regularization, i.e., the curvature squared (bending energy)1 to the surface
energy [22–24,21]. In the important context of surface diffusion, this regularization results in sixth-order sys-
tems for the interface evolution. Recently, Spencer [25] performed asymptotics for the curvature-regularized
sharp interface problem in 2D and demonstrated convergence to the Wulff shape as the regularization param-
eter tends to zero. Numerical methods for curvature-regularized, strongly anisotropic motion in several 2D
and 3D physical problems have been developed using sharp interface (parameterized surface) [26–29], level-
set [21], and graph [30] frameworks.

The anisotropic Cahn–Hilliard equation, which may be used as a diffuse interface model of motion by sur-
face diffusion [9], becomes ill-posed when the gradient energy is non-convex. In 2D, this is equivalent with the
surface ‘‘stiffness’’ having a sign change (see the Appendix). In the more general diffuse interface context,
Taylor and Cahn [31] have suggested that one convexify the gradient energy to keep the equations well-posed.
But while convexifying does remove the ill-posedness, there may still be sharp corners appearing on the evolv-
ing level sets of the order parameter, what Taylor and Cahn [31] liken to shocks, as well as corners in the equi-
librium diffuse interfaces. Naturally, discontinuities of the derivative of the order parameter pose significant
computational challenges. Eggleston et al. [32] implemented a convexification scheme for the strongly aniso-
tropic Cahn–Hilliard equation in 2D and used one-sided differencing to deal with the shocks in the evolving
order parameter. Their work produced equilibrium solutions whose level curves were remarkably close to the
sharp interface Wulff shapes. However, the method in [32] is not mass-conserving and is discretized in time
using an explicit method resulting in severe time step restrictions. It has also been pointed out [27] that con-
vexification, whether in the sharp or diffuse interface context, prevents a description of the nucleation of facets
in the model.

As in the sharp interface case, it is conjectured that the addition of a bending-energy-type term to the aniso-
tropic Cahn–Hilliard equation will regularize against the formation of sharp corners in the level sets of the
order parameter. Du et al. [33–35] developed numerical methods and theory for a diffuse interface analogue
of the bending energy in studies of elastic vesicles. Very recently, Rätz et al. [9] proposed using this energy in
the development of a regularized diffuse interface model for anisotropic surface diffusion in thin, elastic films.
The resulting Cahn–Hilliard-type equation is sixth-order in space. However, they did not propose a numerical
scheme or exhibit simulation results for the regularized problem. Using a different high-order regularization
(the square of the Laplacian of the order parameter), Wise et al. [8] developed a sixth-order diffuse interface
1 We note that it is not known theoretically whether this type of regularization is sufficient to always prevent singularity formation.
Numerically, it is found that this regularization rounds corners and edges.
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model for strongly anisotropic surface diffusion and simulated the development of spatially patterned quan-
tum dots in an epitaxial thin film. Wheeler [36] very recently performed an asymptotic analysis for this regu-
larization in the context of a phase-field model of solidification and determined the profile of rounded corners
in 2D and the limiting form of the excess corner energy.

In this paper, we focus on the Laplacian-squared regularization and develop efficient, second-order accu-
rate and adaptive finite-difference methods to solve strongly anisotropic Cahn–Hilliard equation in 2D and
3D. Here, we flesh out the details of the algorithm used in [8] and also present substantial improvements.
One of the keys to the success of the method is the treatment of the anisotropic term. This term is discretized
in conservation form in space and is fully implicit in time. Non-conservative treatments of the anisotropic term
lead to numerical instability while explicit time discretizations of this term lead to strong time step constraints.
The implicit discretization of the anisotropic term is found to remove the stiffness arising from anisotropy and
allows us to use similar time steps as in the isotropic case.

Other key components of the algorithm are the use of dynamic, block-structured Cartesian mesh refinement
(e.g., [37,38]) and the use of an adaptive nonlinear multigrid method to solve the equations at the implicit time
level. Neither of these algorithms were used in [8]. Locally refined block-structured Cartesian meshes strike a
balance between grid structure and efficiency and are very natural to use together with multilevel multigrid
methods. We note that other multilevel multigrid algorithms have been developed as part of the CHOMBO
[39,40] and the BEARCLAW [41] software packages. Here, we follow the Full Approximation Scheme (FAS)
multigrid methodology presented in Kim et al. [12] for the isotropic Cahn–Hilliard equation, and introduce
modifications so as to fit within the framework of the block-structured multilevel adaptive technique (MLAT)
developed by Brandt [42]. See Trottenberg et al. [43, Chapter 9].

There have been several previously developed adaptive mesh refinement schemes for the Cahn–Hilliard
equation in the finite element framework. See [9] (mentioned above) for the cases of weak surface energy
anisotropy and strong kinetic anisotropy and the works of Garcke et al. [4] and Kay and Welford [44] for iso-
tropic surface energies. On the other hand, very few (if any) finite-difference based adaptive methods for the
Cahn–Hilliard exist. Furthermore, to our knowledge, [8] briefly describes the only numerical method that has
been reported for the regularized, strongly anisotropic Cahn–Hilliard equation.

Our algorithm extends naturally to the case of the diffuse interface version of the bending energy regular-
ization proposed in [9]. Comparisons of the evolution and steady-states for strong surface energy anisotropies
using the different regularizations will be presented in a forthcoming work. Here, we demonstrate numerically
the second-order convergence of the adaptive scheme and show some relevant computational examples involv-
ing strong anisotropy in 2D and 3D. Using simulations of bulk spinodal decomposition followed by domain
coarsening, we demonstrate the enormous savings possible when dynamic mesh refinement is performed solely
around interfacial regions. In 2D and 3D, we investigate the evolution of closed shapes toward their diffuse
interface equilibria and compare against the sharp interface Wulff shapes. We simulate the decomposition
of level curves in 2D and level surfaces in 3D into near-facets and subsequent coarsening, where motion is
by anisotropic surface diffusion. In particular, we study large-scale coarsening of a pyramidal surface (in
3D) showing the emergence of long-range order during coarsening and an interesting mechanism of ordered
coarsening that was observed using a different model of anisotropic surface diffusion [45].

The paper is organized as follows. In Section 2 we derive the regularized, strongly anisotropic Cahn–Hil-
liard equation. In Section 3 the fully discrete, nonlinear FAS multigrid scheme for the regularized equation is
given and in Section 4 we discuss the corresponding block-structured, adaptive MLAT implementation. In
Section 5, numerical results are presented. We give some concluding remarks in Section 6. In the Appendix,
we discuss the link between the ill-posedness of the sharp and diffuse interface problems.

2. Diffuse interface anisotropy

2.1. Variational derivative and natural boundary conditions

Consider a bounded domain X � Rd . Let c : X! R be an order parameter; denote the gradient of c by
p :¼ $c and the corresponding normal by n :¼ � p/jpj, provided jpj 6¼ 0. Following the approach initiated
by Kobayashi [46], we consider a free energy functional of the form
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E½c� :¼
Z

X
F ðcÞ þ �

2

2
jcðnÞpj2

� �
dx; ð1Þ
where F(c) :¼ c2(1 � c)2/4, for example; � is a constant; and c is the interfacial energy anisotropy function,
which can be taken to be that from the sharp interface model. For definiteness, we assume the following form
of c for the derivation of equations:
cðnÞ :¼ 1þ aCðnÞ; ð2Þ

where a is the anisotropy parameter and C is a smooth function of the normal vector. For cases where c is non-
smooth see [31,47]. We assume that a is constrained so that c > 0. If a = 0 the energy defined in Eq. (1) is iso-
tropic. In two dimensions c is typically given as a function of h, the angle of orientation of the interface relative
to the x1 axis, which satisfies the relation tan(h) = n2/n1 = p2/p1.

We define the anisotropy gradient to be
m :¼ c2p� acjpjPrnC; ð3Þ
where rnC ¼
Pd

i¼1ðoC=oniÞei, and P is the tangential projection matrix
P :¼ I� n� n: ð4Þ
It follows that the variational derivative of E with respect to c is
dE
dc
¼ F 0ðcÞ � �2r �m ð5Þ
and the natural boundary condition is
m � f ¼ 0 on oX; ð6Þ

where f is the outward-pointing unit normal on the boundary oX. Note that the normal vector is not defined
on the set N :¼ fx 2 X jj pðxÞ j ¼ 0g, but the anisotropy gradient may be continuously defined by setting
m(x) = 0 for x 2N.

We say that the derivatives of C are component-wise homogeneous of (at least) degree 1 if
oC
oni
¼ niP iðnÞ; i ¼ 1; . . . ; d; ð7Þ
where ni is the ith component of the normal vector, Pi is a smooth function of the components of the normal
that is bounded on compact sets (e.g., a polynomial), and d is the spatial dimension. For instance, this con-
dition is satisfied for the fourfold anisotropy function, where
CðnÞ ¼ 4
Xd

i¼1

n4
i � 3 and P iðnÞ ¼ 16n2

i ; ð8Þ
as well as for the eightfold anisotropy function. If the derivatives of C satisfy (7), then the variational deriv-
ative may be written as
dE
dc
¼ F 0ðcÞ � �2r � ðpþAðnÞpÞ; ð9Þ
where AðnÞ is a diagonal matrix whose entries are
Ai;iðnÞ ¼ acðnÞ P iðnÞ �
Xd

k¼1

n2
kP kðnÞ

" #
þ c2ðnÞ � 1: ð10Þ
To see this, let di,j denote the Krönecker delta. Since the derivatives of C are homogeneous of degree 1, the ith
component of the anisotropic gradient, mi, simplifies to
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mi ¼ �acjpj
Xd

j¼1

njP jðdi;j � ninjÞ
" #

þ c2pi ¼ �acjpjni P i �
Xd

j¼1

n2
j P j

" #
þ c2pi

¼ pi þ ac P i �
Xd

j¼1

n2
j P j

" #
þ c2 � 1

( )
pi: ð11Þ
We say that X is a canonical rectangular domain provided it is a d-dimensional rectangular box with its face
normals in the canonical directions ei. The form of the anisotropy gradient in (11) allows for the use of simpler
boundary conditions than (6) in the case that X is a domain of this special type. Indeed, consider the value of
m Æ f on the two faces whose normals are f = �ek and f = ek, respectively:
m � f ¼ �mk ¼ � ac P k �
Xd

j¼1

n2
j P j

" #
þ c2

( )
pk: ð12Þ
If p Æ f = ±pk = 0 is assumed on these faces, then m Æ f = 0. In other words p Æ f = 0 implies m Æ f = 0 for this
special case. The converse is not generally true, and, thus, p Æ f = 0 on oX is not the natural boundary condi-
tion, as the condition m Æ f = 0 is still more general. But, clearly, the former is simpler to implement (numer-
ically) than the latter and still yields the correct variational derivative for canonical rectangular domains X.

2.2. Anisotropic Cahn–Hilliard equation

We assume that the order parameter c is conserved, and we define the mass flux of c to be
J :¼ �Mðc; pÞr dE
dc
; ð13Þ
where M P 0 is a diffusional mobility. The mass conservation equation oc=ot ¼ �r �J yields the anisotropic
Cahn–Hilliard equation
oc
ot
¼ r � ðMðc; pÞrlÞ; ð14Þ

l :¼ dE
dc
¼ F 0ðcÞ � �2r �m: ð15Þ
We use the natural and no-flux boundary conditions for the evolution of a mass-conserving system:
m � f ¼ ol
of
¼ 0 on oX; ð16Þ
where f is the outward-pointing unit normal on oX and of/of :¼ f Æ $f. If the derivatives of C are homogeneous
as in (7), then the anisotropic Cahn–Hilliard equation is
oc
ot
¼ r � ðMðc; pÞrlÞ; ð17Þ

l ¼ F 0ðcÞ � �2Dc� �2r � ðAðnÞrÞ: ð18Þ
If X is a canonical rectangular domain then we use the simpler boundary conditions
oc
of
¼ ol

of
¼ 0 on oX: ð19Þ
If c is a sufficiently regular solution to either (14)–(16) or (17)–(19) then the free energy is non-increasing in
time. Thus the energy (1) is a Lyapunov functional for either system of equations.

For M = 1 above we have bulk diffusion; using M = c(1 � c) or M = c2(1 � c)2 we can model motion by
surface diffusion in the isotropic case (a = 0) (e.g., see [48,9]). For an appropriately chosen mobility M(c,p)
and weak anisotropy, it may be shown that the Cahn–Hilliard equation above converges asymptotically to
motion by (weakly) anisotropic surface diffusion using the techniques in [9].
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The difficulty with either system—(14)–(16) or (17)–(19)—is that they may be ill-posed for strong enough
anisotropy (i.e, large enough a). Writing G(p) = c(n)jpj, if G2(p) is not convex then the term $ Æ m may be back-
wards diffusive for some initial data. See the Appendix for further discussion. In particular, in 2D when
c = c(h) and with some reasonable assumptions on c, $ Æ m is backwards diffusive precisely when
c(h) + c00(h) < 0. Taylor and Cahn [31] have suggested that one convexify G2(p) to keep the equations well-
posed. Eggleston et al. [32] did essentially that by modifying c so that c(h) + c00(h) P 0 for all h. But while con-
vexifying G2 does remove the ill-posedness, there may still be sharp corners appearing on the evolving level sets
of the order parameter, what Taylor and Cahn [31] liken to shocks, as well as corners on the corresponding
Wulff shape. Naturally, discontinuities of the derivative of the order parameter pose significant computational
challenges. But more importantly, as Hausser and Voigt [28] suggest, convexifying G2 as done in [32] results in
a model that cannot properly describe the nucleation of facets. In this paper we obtain well-posedness through
regularization by the addition of high-order derivative terms in the energy. This has the effect of smoothing
the corners that would otherwise appear in the evolving and equilibrium level sets, and the model retains
the ability to nucleate ‘‘facets’’.

2.3. Regularized anisotropic free energy

Consider a regularized free energy functional of the form
E½c� :¼
Z

X
F ðcÞ þ �

2

2
jcðnÞpj2 þ d2

2
Dc� a

�2
F 0ðcÞ

� �2
� �

dx; ð20Þ
where d is the corner energy regularization parameter; and a is a non-negative constant. When a = 1 the
fourth-order term is the diffuse Willmore regularization [34,9]. When a = 0 this gives the simpler regularization
considered in [8,36]. Although we will focus in this paper on the a = 0 case, we present the equations for arbi-
trary a.

Henceforth, we assume that the derivatives of C satisfy the homogeneity condition (7), that X is a canonical
rectangular domain, and p Æ f = oc/of = 0 on the boundary faces of X. Accordingly, the variational derivative
may be calculated as
dE
dc
¼ F 0ðcÞ � �2Dc� �2r � ðAðnÞpÞ þ d2

�2
Dm� m

a
�2

F 00ðcÞ
� �

; ð21Þ

m :¼ �2Dc� aF 0ðcÞ; ð22Þ
where we have assumed that the following higher-order natural boundary condition holds:
om
of
¼ 0 on oX: ð23Þ
Note that addition of the higher-order regularization in the energy does not change the calculations that we
performed in the previous sections as they are retained setting d = 0. Defining the mass flux as previously (see
Eq. (13)), the regularized, anisotropic Cahn–Hilliard equation becomes
oc
ot
¼ r � ðMðc; pÞrlÞ; ð24Þ

l :¼ dE
dc
¼ ð1� aÞF 0ðcÞ � m� �2r � ðAðnÞpÞ þ d2

�2
Dm� m

a
�2

F 00ðcÞ
� �

; ð25Þ

m :¼ �2Dc� aF 0ðcÞ: ð26Þ
The complete set boundary conditions are expressed as
oc
of
¼ ol

of
¼ om

of
¼ 0 on oX: ð27Þ
Observe that this is a highly nonlinear, sixth-order equation for c. A calculation shows that the regularized
energy is non-increasing in time, i.e., dE=dt 6 0 along solution paths. We point out that, to the authors’
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knowledge, there are currently no rigorous or asymptotic convergence results for the Cahn–Hilliard equation
above for either of the cases a = 0 or a = 1. Hereafter, we focus on the case a = 0, although our methods ex-
tend straightforwardly to the a 6¼ 0 case, and we assume that M = M(c).
3. Discretization

Before we present the finite-difference discretization of the system (24)–(26) on the adaptive, multilevel
mesh, we first consider the discretization on a uniform grid. This enables the description of the nonlinear oper-
ator, the source term and the smoothing operations in a simple way. Since the block-structured Cartesian
adaptive mesh that we utilize is essentially the union of uniform grids, it is natural to start from this
perspective.

We consider the 2D case for simplicity, the extension to 3D is straightforward. In particular, suppose that
the equations hold on the rectangular domain X = (0, L1) · (0, L2), such that X may be overlain with a regular,
uniform N1 · N2 grid with grid spacing h. Thus Ld = hNd for d = 1,2. We use the cell-centered discretizations
of the dependent variables defining them at the center of each cell in the grid. The cell centers have the coor-
dinates (xi,yj) = ((i � 1/2)h, (j � 1/2)h), for i ¼ 1; . . . ;N 1 and j ¼ 1; . . . ;N 2, and we make the identification
fi,j :¼ f(xi,yj), where f is one of the dependent variables. The east–west cell edges have the coordinates (xi+1/2,yj)
= (ih, (j � 1/2)h), for i ¼ 0; . . . ;N 1 and j ¼ 1; . . . ;N 2; the north–south cell edges have the coordinates
(xi,yj+1/2) = ((i � 1/2)h, jh), for i ¼ 1; . . . ;N 1 and j ¼ 0; . . . ;N 2. The appropriate east–west cell edge identifica-
tion is fi+1/2,j :¼ f(xi+1/2,yj), and similarly for the north–south cell edge.

The edge-difference operators, which act on cell-centered functions, are defined on the cell edges via
D1;ewfiþ1=2;j ¼
fiþ1;j � fi;j

h
; ð28Þ

D2;ewfiþ1=2;j ¼
fiþ1;jþ1 � fiþ1;j�1 þ fi;jþ1 � fi;j�1

4h
; ð29Þ

D1;nsfi;jþ1=2 ¼
fiþ1;jþ1 � fi�1;j�1 þ fiþ1;j � fi�1;j

4h
; ð30Þ

D2;nsfi;jþ1=2 ¼
fi;jþ1 � fi;j

h
: ð31Þ
The subscripts ew and ns indicate whether the functions are defined on the east–west or north–south edges.
The center-difference operators, which act on edge-centered functions, are defined on the cell center points via
d1fi;j ¼
fiþ1=2;j � fi�1=2;j

h
; d2fi;j ¼

fi;jþ1=2 � fi;j�1=2

h
: ð32Þ
The edge-average operators, which act on cell-centered functions, are defined on the cell edges via
A1;ewfiþ1=2;j ¼
fiþ1;j þ fi;j

2
; A2;nsfi;jþ1=2 ¼

fi;jþ1 þ fi;j

2
; ð33Þ
and the center-average operators, which act on edge-centered functions, are defined on the cell center points
a1fi;j ¼
fiþ1=2;j þ fi�1=2;j

2
; a2fi;j ¼

fi;jþ1 þ fi;j

2
: ð34Þ
The edge operators Dk,ew fi+1/2,j, k = 1,2, and A1,ew fi+1/2,j are defined for 0 6 i 6 N1 and 1 6 j 6 N2; and
Dk,ns fi,j+1/2, k = 1, 2, and A2,ns fi,j+1/2 are defined for 1 6 i 6 N1 and 0 6 j 6 N2. The center operators d1 fi,j,
a1 fi,j, d2 fi,j and a2 fi,j are defined for 1 6 i 6 N1 and 1 6 j 6 N2.

By Dk,ew f, k = 1, 2 and A1,ew f, we denote the (N1 + 1) · N2 arrays whose elements are given by (28), (29),
and (33a), respectively; and Dk,ns f, k = 1, 2 and A2,nsf are the N1 · (N2 + 1) arrays whose elements are given
by (30), (31), and (33b), respectively. By d1 f, a1f, a2 f and a2 f we denote the N1 · N2 arrays whose elements are
given in (32a), (34a), (32b) and (34b), respectively.
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Using the difference formulae above we may define the discrete Laplacian operators as
Ddc ¼ d1ðD1;ewcÞ þ d2ðD2;nscÞ; ð35Þ

and
rd � ðMðcÞrdlÞ ¼ d1ðMðA1;ewcÞD1;ewlÞ þ d2ðMðA2;nscÞD2;nslÞ: ð36Þ

The normal vector is required at the cell edges in this scheme, and its components are defined as
ðnk;ewÞiþ1=2;j ¼
Dk;ewciþ1=2;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1;ewciþ1=2;j

� �2 þ ðD2;ewciþ1=2;jÞ2
q

þ r
; k ¼ 1; 2; ð37Þ

ðnk;nsÞi;jþ1=2 ¼
Dk;nsci;jþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD1;nsci;jþ1=2Þ2 þ ðD2;nsci;jþ1=2Þ2
q

þ r
; k ¼ 1; 2; ð38Þ
where 0 < r� 1. With the normal defined on the cell edges we may define
rd � ðAðnÞrdcÞ ¼ d1ðA1;1ðnewÞD1;ewcÞ þ d2ðA2;2ðnnsÞD2;nscÞ; ð39Þ

where new is the 2 · (N1 + 1) · N2 array whose elements are given by (37), and nns, the 2 · N1 · (N2 + 1) array
whose elements are given by (38).

A discretization of the continuous energy (20), with a = 0, is given by
Ed ¼
XN1

i¼1

XN2

j¼1

F ðci;jÞ þ
�2

2
ða1ðg1;ewÞi;j þ a2ðg2;nsÞi;jÞ þ

d2

2
ðDdci;jÞ2

� �
; ð40Þ
where g1,ew and g2,ns are edge-centered gradient functions
ðg1;ewÞiþ1=2;j ¼ ðcððnewÞiþ1=2;jÞD1;ewciþ1=2;jÞ2; ð41Þ
ðg2;nsÞi;jþ1=2 ¼ ðcððnnsÞi;jþ1=2ÞD2;nsci;jþ1=2Þ2: ð42Þ
We use a Crank–Nicholson-type discretization in time to approximate Eqs. (24)–(26) as
cnþ1
i;j � cn

i;j

s
¼ 1

2
½rd � ðMðcnþ1

i;j Þrdl
nþ1
i;j Þ þ rd � ðMðcn

i;jÞrdl
n
i;jÞ�; ð43Þ

lnþ1
i;j ¼ f ðcnþ1

i;j Þ � mnþ1
i;j � �2rd � ðAðnnþ1

i;j Þrdcnþ1
i;j Þ þ

d2

�2
Ddm

nþ1
i;j ; ð44Þ

mnþ1
i;j ¼ �2Ddcnþ1

i;j ; ð45Þ
defined for 1 6 i 6 N1 and 1 6 j 6 N2, where f(c) = F 0(c), and s is the time step size. Note that the stencil at
(i, j) is compact, sampling data only at (i, j) and its eight nearest neighbors. The stencil remains compact in the
extension of the method to 3D, where the stencil size is 27.

One of the key features in our method is that the discretization maintains the conservative form of the equa-
tions, as can be seen above; and indeed one may show discrete mass conservation using summation by parts.
This is in contrast to the scheme developed by Eggleston et al. [32]. We expect that the scheme will have a
solvability restriction on the order of s 6 Ch2, as demonstrated for similar schemes in [49,50]. However in
practice, we find that C can be quite large, so that it is possible to take s 	 h in many applications. Discrete
energy decrease is difficult to show rigorously, owing to the complicated structure of Eqs. (43)–(45). In our
testing we have observed that the discrete energy is non-increasing for time steps for which the nonlinear mul-
tigrid iteration converges. The theoretical stability conditions for the method are still being sought. In partic-
ular, it is not known whether the solvability condition or the stability condition is more restrictive for the
proposed method. We plan to resolve these questions in future work. In particular, we plan to develop a con-
vex splitting of the energy to achieve an unconditionally stable and solvable numerical method (e.g., see [49]).
The work in this paper is viewed as a first step in this direction.

To solve the nonlinear system (43)–(45) on the uniform grid we use the Full Approximation Scheme (FAS)
Multigrid method. The FAS method has the useful property that the difference between its application on the
adaptive mesh (MLAT) and its application on a uniform fixed grid is slight. The first step in the FAS method
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is to split the nonlinear equations into operator (N) and source (S) terms. First, for notational simplicity, we
define
/
i;j ¼ ðc
i;j; l
i;j; m
i;jÞ; ð46Þ
where * is the place-holder for any superscripted indices. To denote the array of cell-centered values we drop
the subscripts. Thus, /n = (cn,ln,mn) is the 3 · N1 · N2 solution array at time step n. The components of the
nonlinear operator are defined as
N ð1Þi;j ð/nþ1Þ ¼ cnþ1
i;j �

s
2
rd � ðMðcnþ1

i;j Þrdl
nþ1
i;j Þ; ð47Þ

N ð2Þi;j ð/nþ1Þ ¼ lnþ1
i;j � f ðcnþ1

i;j Þ þ mnþ1
i;j �

d2

�2
Ddm

nþ1
i;j ; ð48Þ

N ð3Þi;j ð/nþ1Þ ¼ mnþ1
i;j � �2Ddcnþ1

i;j ; ð49Þ
and the components of the source term are defined as
Sð1Þi;j ð/nþ1;/nÞ ¼ cn
i;j þ

s
2
rd � ðMðcn

i;jÞrdl
n
i;jÞ; ð50Þ

Sð2Þi;j ð/nþ1;/nÞ ¼ ��2rd � ðAðnnþ1
i;j Þrdcnþ1

i;j Þ; ð51Þ

Sð3Þi;j ð/nþ1;/nÞ ¼ 0: ð52Þ
Writing, N = (N(1),N(2),N(3)) and S = (S(1),S(2),S(3)), we must solve the 3 · N1 · N2 nonlinear system
Nð/nþ1Þ ¼ Sð/nþ1;/nÞ ð53Þ

for each time iteration n. (Here we have neglected the boundary equations for simplicity.) Ideally, the source
term would contain only data at the nth time step. One would then ‘‘invert’’ N to solve for /n+1. It is equally
valid to include data at the n + 1st time step in the source term, but then a fixed point method is required to
solve (53).

This grouping into source and operator terms reflects a natural splitting of Dcþr � ðAðnÞrcÞ into convex
(Dc) and non-convex ðr � ðAðnÞrcÞÞ pieces. It may be possible to split the terms into purely convex and
concave pieces, and such a splitting would be expected to yield a more robust algorithm (e.g., see [49] for
an algorithm where this is done with f(c)). We plan to explore this in a future work. Another option is to
lag the non-convex piece in the time iteration, i.e., to replace Eqs. (44) and (51) with
lnþ1
i;j ¼ f ðcnþ1

i;j Þ � mnþ1
i;j � �2rd � ðAðnn

i;jÞrdcn
i;jÞ þ

d2

�2
Ddm

nþ1
i;j ; ð54Þ

Sð2Þi;j ð/nÞ ¼ ��2rd � ðAðnn
i;jÞrdcn

i;jÞ: ð55Þ
This results in a relatively stable algorithm; however, it spoils the second-order accuracy of the method.
Our FAS implementation is composed of two pieces, (i) the recursive V-cycle iteration, and (ii) the nonlin-

ear smoother [12,43]. The V-cycle is the outermost iteration, and we consider it first. For practical purposes,
one may think of a single V-cycle iteration as a way to obtain an approximate inverse of N. Since there are
data at the n + 1st time step in the source term, we lag the term in the V-cycle iteration, and we look for
the iterated fixed point solution of
Nð/nþ1;mþ1Þ ¼ Sð/nþ1;m;/nÞ; ð56Þ
where m is the index of the V-cycle iteration. Of course the fixed point of (56) is a solution of (53). Provided it
converges, we may consider the V-cycle iteration process as simply a method to produce successively better
approximations to the fixed point, namely the solution /n+1, of the system (56). In particular, the outer V-
cycle iteration process produces the sequence f/nþ1;1; . . . ;/nþ1;m; . . .g, starting from /n+1,0 = /n, and stopping
at some value /nþ1;m0 when an error criterion is met. We then set /nþ1 ¼ /nþ1;m0 . Note that here we have abused
notation, since /n+1 is only an approximate solution of N = S at the n + 1st time step.
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A single iteration of the FAS V-cycle may be represented in operator form as
/nþ1;mþ1 ¼ FASVcycleðk ¼ kmax;/
nþ1;m;Sð/nþ1;m;/nÞÞ; ð57Þ
which in words is equivalent to the following: find an approximate solution /nþ1;mþ1 � /̂ to
Nð/̂Þ ¼ Sð/nþ1;m;/nÞ using one V-cycle iteration of the nonlinear FAS multigrid method with initial approxima-
tion given by /n+1,m. The index k is the multigrid level, and kmax corresponds to the finest level. The operator
FASVcycle is recursive, first called on the finest level. We explore the recursive aspect in detail for the adaptive
version of this operator in the next section. The complete V-cycle iteration loop can be summarized as

initialize /n=0

for n = 0, nmax � 1

set /n+1,m=0 = /n

FAS V-cycle loop: for m = 0, mmax � 1
calculate S(/n+1,m,/n)
/n+1,m+1 = FASVcycle(k = kmax, /n+1,m, S(/n+1,m,/n))
if kSð/nþ1;m;/nÞ �Nð/nþ1;mþ1Þkl2;H

< tol then
set /n+1 = /n+1,m+1 and exit FAS V-cycle loop
end for FAS V-cycle loop

end for

The norm in the algorithm is defined as
krkls;H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3N 1N 2

X3

v¼1

XN1

i¼1

XN2

j¼1

ðrðvÞi;j Þ
2

vuut ; ð58Þ
where v denotes the component of r. Now that we have defined the V-cycle component of the FAS method, the
next piece required is the choice of the nonlinear smoother. The precise details of the role of the smoothing
operation in the FAS V-cycle can be found in [43, Section 5.3.4]. A single application of the smoothing
iteration can be expressed in operator form as
�/k ¼ Smoothkð/k;Nk;SkÞ; ð59Þ
where k is the current multigrid level index, k is number of smoothing passes, /k is the kth level approximate
solution used to start the smoothing cycle, and Nk and Sk are the kth level nonlinear operator and source term.
For example, to get the kth level operator, we replace each instance of h in (47)–(49) with hk, the grid spacing
on level k. As is the usual case in multigrid, we need only describe the smoothing for the finest level of the
mesh, k = kmax; the smoothing operation on the coarser level is analogous.

We use the Red–Black Gauss–Seidel-type iteration as the smoother, denoted as GS-RB. However, since the
lexicographic Gauss–Seidel-type iteration, denoted as GS-LEX, is algorithmically similar, but much easier to
describe, we give the details of the GS-LEX iteration instead. Detailed information on the GS-RB smoother,
including typical performance gains over GS-LEX, can be found in [43]. In GS-LEX one proceeds lexico-
graphically through the indices (i, j) from (1, 1) to (N1,N2). A complete traversal through all the indices of
the grid constitutes a single smoothing iteration. We index the smoothing iterations by l. For example,
l = 2 indicates the second smoothing pass, or iteration. The algorithm stops when l = k complete passes have
been made through the indices. Once the field variables at (i, j) are updated in the relaxation scheme they are
stored in /nþ1;lþ1

i;j and are immediately used to update the field variables at nearest neighbor grid sites.
We set
Ml
1 ¼ Mððcnþ1;l

i;j þ cnþ1;l
iþ1;j Þ=2Þ; Ml

2 ¼ Mððcnþ1;lþ1
i�1;j þ cnþ1;l

i;j Þ=2Þ; ð60Þ
Ml

3 ¼ Mððcnþ1;l
i;j þ cnþ1;l

i;jþ1 Þ=2Þ; Ml
4 ¼ Mððcnþ1;lþ1

i;j�1 þ cnþ1;l
i;j Þ=2Þ; ð61Þ

Ml ¼
X4

e¼1

Ml
e; ð62Þ
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where the Ml
e are treated as known quantities in the smoothing. We linearize the nonlinear energy term f

locally in the GS-LEX iteration via
Fig. 1a
(botto
f ðcnþ1;lþ1
i;j Þ � f ðcnþ1;l

i;j Þ þ f 0ðcnþ1;l
i;j Þðcnþ1;lþ1

i;j � cnþ1;l
i;j Þ: ð63Þ
The GS-LEX relaxation is the solution /nþ1;lþ1
i;j , for fixed (i, j), of the following three equations:
cnþ1;lþ1
i;j þ s �Ml

2h2
lnþ1;lþ1

i;j ¼ Sð1Þi;j þ s
Ml

1l
nþ1;l
iþ1;j þMl

2l
nþ1;lþ1
i�1;j

2h2
þ s

Ml
3l

nþ1;l
i;jþ1 þMl

4l
nþ1;lþ1
i;j�1

2h2
; ð64Þ

�f 0ðcnþ1;l
i;j Þcnþ1;lþ1

i;j þ lnþ1;lþ1
i;j þ 1þ 4d2

�2h2

� �
mnþ1;lþ1

i;j ¼ Sð2Þi;j þ f ðcnþ1;l
i;j Þ � f 0ðcnþ1;l

i;j Þcnþ1;l
i;j

þ d2

�2h2
ðmnþ1;l

iþ1;j þ mnþ1;lþ1
i�1;j þ mnþ1;l

i;jþ1 þ mnþ1;lþ1
i;j�1 Þ; ð65Þ

4�2

h2
cnþ1;lþ1

i;j þ mnþ1;lþ1
i;j ¼ Sð3Þi;j þ

�2

h2
ðcnþ1;l

iþ1;j þ cnþ1;lþ1
i�1;j þ cnþ1;l

i;jþ1 þ cnþ1;lþ1
i;j�1 Þ: ð66Þ
4. Mesh refinement and the adaptive multigrid algorithm

The adaptive process that we use is comprised of two basic steps: starting with a multilevel, block-struc-
tured mesh on which we have a computed solution, we (i) construct a new multilevel, block-structured mesh,
and (ii) solve the problem on the new mesh using the adaptive version of the FAS multigrid method, called
MLAT. The mesh construction is described in Section 4.1 and the MLAT algorithm is given in Section 4.2.

4.1. Construction of the multilevel mesh

Consider a rectangular computational domain X = (0, L1) · (0,L2) and a patch-structured composite mesh
(as in Fig. 1a (bottom)) consisting of a hierarchy of levels, indexed by k ¼ kmin; . . . ;�1; 0; 1; . . . ; kmax, that cov-
ers X. The composite mesh can be decomposed into level-k meshes (as in Fig. 1a (middle)). Each level-k mesh
consists of a collection of nk uniform, rectangular grids Gi,k of sizes N ði;kÞ1 � N ði;kÞ2 , each with grid spacing hk.
The grids are non-overlapping except possibly along their edges. We use the cell-centered approximation of
R1,2

R2,2

Ω2 Ω1 Ω0 Ω-1 Ω-2

G1,2

G2,2

. An illustration showing the level-k domains, Xk, (top), the level-k meshes (middle), for k ¼ �2; . . . ; 2, and the composite mesh
m).
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the field variables on each grid Gi,k. Corresponding to each grid of the level-k mesh is the rectangular patch,
denoted Ri,k, that the grid covers. Specifically, we define Ri,k as the interior of the convex hull of Gi,k:
Ri;k ¼ ððGi;kÞc:h:Þ


: ð67Þ
The level-k mesh covers a corresponding level-k domain, denoted Xk ˝ X (as in Fig. 1a (top)), where
Xk ¼
[nk

i¼1

Ri;k

 !

; Ri;k \ Rj;k ¼ ;; i 6¼ j; ð68Þ
and again nk is the number of patches (or grids) comprising level k. At each of the levels k ¼ kmin; . . . ; 0 the
level-k mesh consists of a single grid covering the entire computational domain, i.e., nk = 1 and R1,k = Xk = X.
The grid at level 0 is called the root grid, and level k = 0 is called the root level.

The mesh must be nested, meaning the level-k domains satisfy
Xk � Xk�1; k ¼ kmin þ 1; . . . ; kmax: ð69Þ

Note that this is more general and less restrictive than the ‘‘proper’’ nesting requirement for a mesh generated
in CHOMBO [39]. The grid spacing on level k is related to that of the level below via
2hk ¼ hk�1: ð70Þ

Moreover, each level-k grid Gi,k completely covers, as in Fig. 1a, some sub-grid bGi;k in the k � 1 level mesh of

grid spacing hk�1 and of size bN ði;kÞ1 � bN ði;kÞ2 , where N ði;kÞd ¼ 2bN ði;kÞd ; d ¼ 1; 2.
For the root-level grid we write N ð0Þd :¼ N ð1;0Þd ; d ¼ 1; 2. The minimum grid spacing on the composite mesh

is denoted by h, and of course h :¼ hkmax . The global uniform grid, denoted by Gh, is a uniform grid that has grid
spacing equal to h, has grid sizes N d :¼ 2kmax N ð0Þd ; d ¼ 1; 2, and covers the entire computational domain X. By
construction, the level-kmax grids, Gi;kmax , are sub-grids of Gh. Here, for simplicity, the time step size is the same
on every level though this may generalized through time-subcycling [38].

Construction of the multilevel mesh begins at the root-level grid. Finer resolution grids are added at level 1
to cover those grid points on the root grid where refinement is flagged. This process continues at level 1—finer
resolution grids are added to level 2 to cover flagged cells in the grids of level 1—and ends when the predefined
finest level, that corresponding to kmax, is reached. It is straightforward to produce a mesh that is nested since
refinement at level k can only be triggered at cells in level k � 1.

We may tag, or mark, grid cells where refinement is desired by a number of different a priori or a posteriori

criteria. For this work we have used two different tests. The first, the undivided gradient test, is very simple and
works for most cases in which we are interested. Since it is typically true that much more refinement is needed
in the diffuse interface region, where c exhibits a sharp transition, this test marks grid cells where the finite
differences of the order parameter are large. In particular, the set of cell-centered points where this test is
passed is
P k ¼ xi;j 2 Xk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðciþ1;j � ci�1;jÞ2 þ ðci;jþ1 � ci;j�1Þ2

q
> Ck

	 

; ð71Þ
where Ck is the critical value for level k and where xi,j are cell center coordinates defined with respect to the
level-k grids Gi,k. The second test is called the relative truncation error test. In this scheme the relative trunca-
tion error between Nk and Nk�1 is used as a means for populating Pk. In other words, cell center points where
the truncation error is greater than Ck are added to the list Pk. More information on this can be found in [43,
Sections 5.3.7 and 9.4.1]. In our tests, qualitatively similar meshes were constructed by both schemes; specif-
ically, compare the results in Figs. 3b and 5b.

After Pk is constructed, by either of the two tests above, it may be expanded by buffering. This process,
described in [39], increases the list of cells slated for refinement by adding b 2 f0; 1; 2; . . .g layers of cell-cen-
tered points around each point of Pk. This results in the buffered set Bk ˚ Pk. We say a cell in Gi,k is tagged for
refinement if the coordinates of its cell center are in Bk. Tagged cells are required to be covered by the next
finer level domain, i.e., the discrete set Bk satisfies
Bk � Xkþ1: ð72Þ
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The tagged cells are grouped into rectangular patches using the clustering algorithm given in Berger and
Rigoutsos [51].

After new grids have been constructed at level k + 1 that cover the tagged points Bk, they must be popu-
lated with data from the old mesh. This process is illustrated in Fig. 1b. For simplicity in Fig. 1b we assume
that two level-1 grids, one old and one new, live simultaneously, where the field variables are to be transfered
from old to new. Both level-1 grids share the same parent grid, the root grid (level 0). Data from the old root-
level grid are copied into the new root-level grid; note that the root-level grid never changes in size. Cell-cen-
tered data contained in the overlap of the old and new level-1 grids are simply copied. The level-1 data in the
old grid that are not in the overlap are averaged and copied to the new root grid. The data in the new level-1
grid located where there is no overlap with an old level-1 grid must be generated by interpolation from the cell-
centered data in the root grid. The four different symbols in the interpolation stencil are employed to suggest
that bilinear interpolation should be used, though piecewise constant interpolation may also be used. The sit-
uation gets only slightly more complicated as we continue up in levels.

In order to employ the standard smoothing operation on a generic level-k grid, we must construct a single
layer of ghost cells that surrounds the grid. This allows us to use the usual nearest neighbor stencils in the
definitions of the discrete derivatives without any modification. Our method is to first fill the ghost-layer values
by interpolation (Fig. 1c), then to exchange grid values among neighbor grids that are in direct contact
(Fig. 1d). There are several interpolation options available to us for this. We illustrate the K and the P inter-
polation methods in Fig. 1c. The grid-to-ghost-layer exchange process is illustrated in Fig. 1d. Although nei-
ther the K method nor the P method, which is based on the method in [39], is conservative, we find that mass is
maintained to a high degree of accuracy in our scheme. We refer the reader to [52] for a different ghost cell
interpolation method.

4.2. Adaptive multigrid V-cycle algorithm

The multilevel adaptive technique (MLAT) proposed by [42] is the basis of our adaptive multigrid scheme.
MLAT is in essence just a generalization of the FAS method [43], in the sense that the full problem is recon-
structed at each of the coarser levels, rather than an equivalent defect problem as in the linear multigrid
approach. The MLAT method automatically handles both linear and nonlinear problems, where the nonlin-
earity is usually handled in the smoothing step. The algorithm described here updates the solution at every
level for each time step. The case of time-subcycling—wherein the solution on level Xk is updated two times
before the solution on Xk�1 is updated—can also be done, but at the expense of some added algorithmic
complexity [38].

We assume that the level-k operators Nk and the level-k source terms Sk are given for k ¼ kmin; . . . ;
�1; 0; 1; . . . ; kmax. These can be defined as in Section 3 since the mesh on each level consists of the union of
rectangular grids. Likewise, the smoothing operation defined in Section 3 translates to the adaptive mesh,
Fig. 1b. Illustration of populating a new level-1 grid with the data from an old level-1 grid and the root-level grid.



Fig. 1c. The K (top) and the P (bottom) quadratic interpolation methods for filling points in the ghost layer surrounding a grid. The K
method requires half the computation of the P method, and is generally more accurate; but it has eight rule-exception ghost cells per grid.
The P method has only four rule-exception cells and extends more easily for refinement ratio greater than 2, which is assumed here.
Neither is conservative, generally.

Fig. 1d. Illustration of the exchange of data from a grid to the ghost layer of its neighbor. After the entire ghost layer is filled via
interpolation, more accurate values are copied into the locations where the ghost layer overlaps with a neighboring grid. The light grey
cells are those located in the ghost layer of the grid on the left. The dark grey cells belong the ghost layer of the grid on the right.
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because smoothing on a level reduces to smoothing on a finite number of rectangular grids. Recall that the
mesh at level k = 0 consists of a single grid covering the whole computational domain. Below level 0, the root
level, the method reduces to the ordinary FAS multigrid scheme. We denote the restriction operator by Ik�1

k ,
and the prolongation operator by Ik

k�1, for k ¼ kmin þ 1; . . . ; 0; . . . ; kmax [43]. We use averaging for the restric-
tion operator, and either piecewise constant or (mass-corrected) bilinear interpolation for the prolongation
operator. (See Trottenberg et al. [43, Section 2.8.4] for more details.) We assume that the pre- and post-
smoothing cycles are the same in number, k, though this can be generalized. We employ the V-cycle algorithm
for moving from level to level; thus we begin the associated iteration at the finest level, k = kmax. We seed the
V-cycle iteration by using the previous time iterate at the starting point: /

nþ1;m¼0
k ¼ /n

k , for all levels k. The
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calculation of a new kth-level iterate /
nþ1;mþ1
k from approximations at both the fine level, /

nþ1;m
k , and coarse

level, /
nþ1;m
k�1 , proceeds as follows:

Recursive MLAT V-cycle operator

nþ1;mþ1 nþ1;m nþ1;m� �

/k ¼MLATVcycle k;/k ;/k�1 ;Nk;Sk; k ð73Þ
(1) Pre-smoothing:

� Compute a smoothed approximation �/k on Xk:

�/k ¼ Smoothkð/nþ1;m
k ;Nk;SkÞ: ð74Þ
(2) Coarse-grid correction:

� Compute coarse-level initial iterate:

�/k�1 ¼
Ik�1

k
�/k on Xk�1 \ Xk;

/
nþ1;m
k�1 on Xk�1 � Xk:

(
ð75Þ

� Update the ghost cells in the level-k � 1 grids using quadratic interpolation and data exchange from
neighbors for the data �/k�1.

� Compute the coarse-level right-hand side:

Sk�1 ¼
Ik�1

k ðSk �Nkð�/kÞÞ þNk�1ðIk�1
k

�/kÞ on Xk�1 \ Xk;

Sk�1 on Xk�1 � Xk:

(
ð76Þ

� Compute an approximate solution ŵk�1 of the following coarse-grid equation on defined on Xk�1:

Nk�1ðwk�1Þ ¼ Sk�1: ð77Þ
– If k = kmin + 1 employ k smoothing steps:

ŵkmin
¼ Smoothk �/kmin

;Nkmin
;Skmin

� �
: ð78Þ

– If k > kmin + 1 get an approximate solution to Eq. (77) using �/k�1 as initial guess:

ŵk�1 ¼MLATVcycle k � 1; �/k�1;/
nþ1;m
k�2 ;Nk�1;Sk�1; k

� �
: ð79Þ
� Compute the coarse-grid correction on X \ X :
k�1 k

ûk�1 ¼ ŵk�1 � �/k�1: ð80Þ
� Set the solution on Xk�1 � Xk:

/
nþ1;mþ1
k�1 ¼ ŵk�1: ð81Þ

� Compute the coarse-grid-corrected approximation at level k on Xk:

/CGC
k ¼ Ik

k�1ûk�1 þ �/k: ð82Þ
� Update the ghost cells in the level-k grids using quadratic interpolation and data exchange from

neighbors for the data /CGC
k .
(3) Post-smoothing:

� Compute /

nþ1;mþ1
k by applying k smoothing steps on Xk:

/
nþ1;mþ1
k ¼ Smoothkð/CGC

k ;Nk;SkÞ: ð83Þ
� Update the ghost cells in the level-k grids using quadratic interpolation and data exchange from

neighbors for the data /
nþ1;mþ1
k .
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The complete MLAT V-cycle iteration loop is analogous to the FAS version given in Section 3 and is given
in the following:

initialize /n¼0
k ; k ¼ kmin; . . . ; kmax

for n = 0,nmax � 1
set /
nþ1;m¼0
k ¼ /n

k , k ¼ kmin; . . . ; kmax

MLAT V-cycle loop: for m = 0, mmax � 1

calculate Skð/nþ1;m
k ;/n

kÞ; k ¼ kmin; . . . ; kmax

/
nþ1;mþ1
kmax

¼MLATVcycleðk ¼ kmax;/
nþ1;m
kmax

;/nþ1;m
kmax�1;Nkmax ;Skmax ; kÞ

if kSkmaxð/nþ1;m
kmax

;/n
kmax
Þ �Nkmaxð/nþ1;mþ1

kmax
Þkl2;I

< tol then
set /nþ1
k ¼ /

nþ1;mþ1
k ; k ¼ kmin; . . . ; kmax, and exit MLAT V-cycle loop

end for MLAT V-cycle loop
end for

The norm in the algorithm is defined as
krkmaxkl2;I
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

kmax

3jXkmax j
Xnkmax

g¼1

X3

v¼1

XN ðg;kmaxÞ
1

i¼1

XN ðg;kmaxÞ
2

j¼1

ðrðv;gÞi;j Þ
2

vuuut ; ð84Þ
where v is the variable index and g is the grid number index.

5. Numerical results

In this section we demonstrate the second-order accuracy of the adaptive method. We then present exam-
ples to the show the power of the adaptive method in computing the evolution of interfaces with complex mor-
phologies. In all of the following simulations the mesh is adapted at each time step, whereas the time step size s

remains fixed in time. Except for the simulation of Figs. 5a and 5b where the relative truncation error test [43,
Sections 5.3.7 and 9.4.1] is used, the undivided gradient test in (71) is used to tag cells for refinement. We use
the mass-corrected bilinear interpolation as the prolongation operator Ik

k�1 in all simulations except that of
Fig. 2, where we use piecewise constant interpolation. We use the fourfold anisotropy function
c(n) = 1 + aC(n), where CðnÞ ¼ 4

Pd
i¼1n4

i � 3, for d = 2,3. In 2D this is equivalent to c(h) = 1 + acos (4h),
where tan(h) = n2/n1. We have also used our method with eightfold anisotropy in 2D and 3D, but do not show
results for this case. In the isotropic case (a = 0) we consider bulk spinodal decomposition, where a complex
microstructure coarsens, and in the anisotropic case we consider strongly anisotropic systems, where corners
and near-facets develop during the evolution and regularization is required for well-posedness. We also
provide a calculation of the efficiency of our adaptive algorithm.
5.1. Convergence of the adaptive multigrid solver

A convenient way to compare solutions on two different composite meshes is to populate and compare their
corresponding global uniform grids. Recall that the global uniform grid, Gh, is a uniform grid that has grid
spacing equal to h :¼ hkmax , with grid sizes Nd :¼ 2kmax N ð0Þd ; d ¼ 1; 2. For example, if the root grid has sizes
N ð0Þd ¼ 64; d ¼ 1; 2, and there are kmax = 2 levels of refinement, then the global uniform grid Gh has sizes
Nd = 256, d = 1,2, and grid spacing h = h2. The solution on a composite mesh with kmax = 2 is interpolated
to the cell centers of the global uniform grid Gh using the prolongation operator Ik

k�1 as follows:
cðhÞðx1; x2Þ ¼
cðx1; x2Þ on X2;

I2
1cðx1; x2Þ on X1 � X2;

I2
1I1

0cðx1; x2Þ on X0 � X1:

8><>: ð85Þ



Fig. 2. Evolution of the mesh and the c(x, t) = 0.5 iso-contours under spinodal decomposition and subsequent coarsening. The average
concentrations are (a) cm = 0.3 and (b) cm = 0.5. There are two levels of refinement and the effective fine grid resolution is 256 · 256.
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To estimate the convergence rate simulations are performed using the three different grid spacings 2h0, h0, and
h0/2 in the finest grids of the composite mesh. Therefore, three solutions cð2h0Þ, cðh0Þ, and cðh0=2Þ are defined at
time tfinal on the global uniform grids G2h0

, Gh0
, and Gh0=2, respectively. Since cðh0Þ is defined at the cell centers

we define the ‘‘error’’ between cðh0Þ and cðh0=2Þ to be
eh0:h0=2
i;j :¼ cðh0Þ

i;j �
1

4
cðh0=2Þ

2i;2j þ cðh0=2Þ
2i�1;2j þ cðh0=2Þ

2i;2j�1 þ cðh0=2Þ
2i�1;2j�1

� �
; ð86Þ
and correspondingly for e2h0:h0 . The rate of convergence is defined as
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log2

ke2h0:h0kl2

keh0:h0=2kl2

 !
: ð87Þ
Here we examine the convergence of our algorithm in the presence of strong anisotropy. The initial condition
is the unit circle described by
cðx1; x2Þ ¼
1

2
1� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 1:6Þ2 þ ðx2 � 1:6Þ2

q
� 1

2
ffiffiffi
2
p

�

0@ 1A24 35: ð88Þ
The domain is X = (0,3.2) · (0,3.2) and the solution is evolved to time tfinal = 1.0. Here, the anisotropy param-
eter is a = 0.2, � = 1.8 · 10�2 and d = 1.0 · 10�3. The mobility is M = 1. We use the fourfold anisotropy func-
tion with anisotropy parameter a = 0.2. Since a = 0.2 > 1/15, there are energetically unfavorable orientations,
and the Wulff shape corresponding to the (non-regularized) sharp interface model has sharp corners. We use
the condition (71) to tag for refinement with Ck = 0.01, k = 0,1. The maximum number of levels of refinement

is kmax = 2, and the root-level grid sizes are N ð0Þd ¼ 16, 32, 64, 128, d = 1,2. The time step sizes are s = 0.05 h,
where, recall, h :¼ hkmax ¼ h2. We use a single pre-smoothing and a single post-smoothing relaxation pass, i.e.,
k = 1. The algorithm terminates at a given time iterate, n, when the scaled l2 norm (84) of the residual on the
finest level mesh is less than tol = 1.0 · 10�8. The errors and rates of convergence are shown in Table 1. The
results suggest that our algorithm is second-order accurate even in the presence of strong anisotropy and miss-
ing orientations. The evolution of a circle toward the Wulff shape with missing orientations is studied in more
detail in Section 5.3. The energy evolution and equilibrium shapes corresponding to the parameters of the test
are presented in Figs. 3c and 3d.

5.2. Isotropic, bulk spinodal decomposition

To show the robustness of the algorithm, we present simulations of spinodal decomposition under isotropic
conditions (a = d = 0) in a periodic domain using our adaptive algorithm. In these simulations we consider the
evolution of an initially nearly uniform composition field. In particular, c(x, 0) = cm + n(x), where n is random
and jn(x)j < 10�3 and cm is in the so-called spinodal region, i.e., F00(cm) < 0. Here, we consider two cases,
cm = 0.3 (off-critical) and cm = 0.5 (critical). We show that using the adaptive mesh algorithm results in enor-
mous computational savings compared to uniform mesh algorithms.

In both simulations, the computational domain is the unit square X = (0,1) · (0, 1) and periodic boundary
conditions are used. The mobility is M = 1. We take � = 2.5 · 10�3, a = 0, and d = 0. The root-level grid size is
N ð0Þd ¼ 64, the number of levels of refinement is kmax = 2, and the time step size is s = 0.1 h, where h = h2 =
1/256. The global grid has size Nd = 256, d = 1,2. At the finest level, there are approximately 5–7 grid points
across the interface. Refinement is effected through Eq. (71) with Ck = 0.03, k = 0,1.

The results for the off-critical composition cm = 0.3 are shown in Fig. 2a while those for the critical com-
position cm = 0.5 are shown in Fig. 2b. Initially, both systems are unstable and distinct phase regions form
where c � 0 and c � 1, e.g, see [1]. At early times, large spatial gradients form at small scales (i.e., 	�) through-
out both systems. At later times as the systems coarsen to reduce the total surface energy, the number of sec-
ond-phase regions decreases and the overall length-scale between regions increases. In the off-critical case,
isolated particles rapidly form and coarsen. The mesh adapts around the particle interfaces; away from inter-
faces the gradients of c are small. The evolution tends to a single circular domain. In the critical case cm = 0.5,
a serpentine structure emerges at early times. The mesh adapts around the interfaces as they straighten to
1
and convergence rates for a circle relaxing to the Wulff shape

evel grid sizes 322–642 Rate 642–1282 Rate 1282–2562

1.229 · 10�2 2.064 2.939 · 10�3 1.995 7.369 · 10�4

eters are given in the text and the initial data are from Eq. (88).
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reduce the isotropic surface energy. The evolution tends to a single rectangular second-phase domain bounded
by interfaces parallel to the y axis.

For both cases, the number of cells, defined as the number of cells visible in the composite mesh, rapidly
decreases by half by time t = 10 from 65,536 (2562) initially as the systems phase separates. At later times, the
decrease in the number of cells is not as rapid but is still significant. At the final time, there are approximately
1.5 · 104 cells in the cm = 0.3 case and 1.1 · 104 cells in the cm = 0.5 case. This corresponds to roughly a sixfold
decrease in the number of computational cells compared to the initial configuration. Although it not shown,
the energy (40) is monotonically decreasing for both simulations. Further, mass is conserved to within 0.2%
for cm = 0.3 and to within 4 · 10�4% for cm = 0.5.

5.3. Anisotropic surface energy

Herein we consider the evolution of shapes toward equilibrium under strong fourfold anisotropy and as a
function of the high-order regularization parameter d. By shapes we mean the c = 0.5 level curves (2D) and
level surfaces (3D) that divide phase regions where c � 1 and c � 0. We present snapshots of the evolving
c = 0.5 level sets, and in one case the evolution of the total system energy. In the case of closed shapes, we
compare the near-equilibrium c = 0.5 level sets with the classical sharp interface equilibrium (Wulff) shape,
as was done in [32]. We also provide a calculation of the efficiency of our adaptive algorithm using data from
the simulation of Figs. 5a and 5b.

For the 2D simulations in Figs. 3a–3d the initial condition is given in Eq. (88), which describes an initially
circular shape. The homogeneous Neumann boundary conditions of (27) are used. The anisotropy parameter
is a = 0.2; the mobility is M = 1; the domain size is X = (0, 3.2)2; the root grid size is N ð0Þd ¼ 32, d = 1,2; and
there are kmax = 3 levels of refinement. The global uniform grid has size Nd = 256, d = 1,2. The time step is
s = 0.08h, where h = h3 = 3.2/256, and � = 1.8 · 10�2. There are approximately 8–10 mesh points across the
evolving diffuse interface.

Snapshots from the evolution of the initially circular shape with the regularization parameter
d = 6.0 · 10�4, are shown in Fig. 3a. Very early, two hills and one valley form at the compass points of the
circle. This structure emerges because the (1,0) and surrounding orientations are high energy, and there is
a large driving force for them to be removed. A single hill structure emerges at long times. A snapshot of
0 0 .8 1. 6 2. 4 3 .2
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Fig. 3a. Evolution of the c = 0.5 level curves by the strongly anisotropic Cahn–Hilliard equation with higher-order regularization. The
parameters are given in the text, and the initial shape is circular (Eq. (88)). The simulation was performed with a four-level composite
mesh, kmax = 3, with a root-level grid of 32 · 32, as shown in Fig. 3b at time t = 1.0.
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Fig. 3b. Mesh snapshot and five level curves of the order parameter c at t = 1 for the simulation shown in Fig. 3a. The contours c = 0.1,
0.3, 0.5, 0.7, 0.9 are on the spectrum from cyan (c = 0.1) to magenta (c = 0.9). The root-level grid has size 32 · 32 and there are three levels
of refinement. The same effective resolution is given by a uniform grid of size 256 · 256. Cell refinement is flagged based on (71). (For
interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3c. Energy profiles for the linearly regularized strongly anisotropic Cahn–Hilliard equation using three values of d. The initial data
are circular and given in Eq. (88). The parameters are given in the text. The near-equilibrium c = 0.5 level curves are shown in Fig. 3d. The
energy plots suggest that the systems are very close to equilibrium by time t = 10.
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Fig. 3d. Near-equilibrium c = 0.5 level curve solutions to the regularized strongly anisotropic Cahn–Hilliard equation. Solutions are
plotted at time t = 10. The parameters are given in the text. The corresponding energy data in Fig. 3c suggest that the shapes would be very
nearly equilibrated by time t = 8. The window shows a magnification of approximately 7·.
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the adaptive mesh at time t = 1 is shown in Fig. 3b. The composite mesh has three levels of refinement,
kmax = 3, and 23,104 cells. This should be compared to 65,536, the number of cells in a uniform 256 · 256 grid
(i.e., the global uniform grid) with equal resolution. In this simulation mass is conserved to within
2.0 · 10�2%.

In Fig. 3c the energy is plotted for the simulation of Figs. 3a and 3b together with the results from two
additional values for d, 8.0 · 10�4 and 1.0 · 10�3. The large localized decrease in the energy at t � 2.5 for
d = 6.0 · 10�4 coincides with the coarsening of the two-hill-one-valley structure to a single hill structure at
the four compass points of the evolving shape. For the other two cases, d = 8.0 · 10�4, 1.0 · 10�3, the evolving
shapes (not shown) initially form a single hill structure at their compass points, and no coarsening events
occur. Since there are no coarsening events, there are no large, localized decreases in the respective energies
(apart from t = 0). In all cases, it is seen that the energy is non-increasing. In the simulations for the cases
d = 8.0 · 10�4 and 1.0 · 10�3 mass is conserved to within 1.2 · 10�2% and 6.5 · 10�3%, respectively.
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The energy plots of Fig. 3c suggest that the respective systems are very nearly equilibrated by time t = 10.
As was done in [32], we may compare the near-equilibrium c = 0.5 level curves with the sharp interface (non-
regularized) Wulff shape. Here we are particularly interested in the effect of decreasing d. Recall that the Wulff
shape can be found in 2D in parametric form [53] via:
Fig. 4.
to a =
monot
x1ðhÞ ¼ AðcðhÞ cosðhÞ � c0ðhÞ sinðhÞÞ; ð89Þ
x2ðhÞ ¼ AðcðhÞ sinðhÞ þ c0ðhÞ cosðhÞÞ; ð90Þ
where A is a constant. As discussed earlier, when c(h) + c00(h) < 0, certain orientations have very high energy
and hence are missing from the (sharp interface, non-regularized) Wulff shape. For fourfold symmetric anisot-
ropy, missing orientations occur when a > 1/15. In this regime, the shapes described by Eqs. (89) and (90) de-
velop ‘‘ears’’ that include metastable and unstable orientations. Mullins [54] proved that in 2D the Wulff shape
is given by the convex shape, with sharp corners, that results after removal of the ‘‘ears’’. The Wulff shape for
a = 0.2, together with the ears, is shown as the dotted curves in Fig. 3d.

The near-equilibrium shapes for the simulations whose energy curves are depicted in Fig. 3c are shown in
Fig. 3d. We have added also the near-equilibrium c = 0.5 level curve for d = 4.0 · 10�4, though the evolution
of the level curves and energy are not shown for this case. In particular, the c = 0.5 level curves for four values
of d are plotted at t = 10 along with the (non-regularized) Wulff shape (dashed) corresponding to the anisot-
ropy strength a = 0.2. Note that the areas inscribed by the Wulff shape, neglecting the ears, and the solution
curves are not necessarily equal. In fact, the areas enclosed by the c = 0.5 solution curves are not assumed to
be equal for different values of d. As can be seen in the figure, there is rounding of the tip and deviation from
the Wulff shape in the near tip region. However, all the curves appear to be reasonably and qualitatively close
to the Wulff shape. More importantly, as d is decreased, the solution curves tend towards the Wulff shape.
Eggleston et al. [32] found that the c = 0.5 level curve of the equilibrium diffuse interface solution in the case
of finite � and d = 0 apparently coincides with the sharp interface (non-regularized) Wulff shape. Note that we
are not claiming convergence of the near-equilibrium diffuse interface shape to the Wulff shape. Such a con-
vergence would require both d! 0 and �! 0.
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Near-equilibrium 1D solutions of the Cahn–Hilliard equation with high-order regularization. Here the anisotropy parameter is set
0, and � = 1.8 · 10�2. The effective mesh size is 256. The solution for d = 0.0 is near to ð1� tanhððx� 1:6Þ=ð2�
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p
ÞÞÞ=2 and is

onic. The solutions for d > 0 are not monotonic; extrema appear on the edges of the interfacial regions.
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In addition to rounding corners, the Laplacian-squared regularization changes the local hyperbolic tangent
profile of the interface (i.e., profile of interface when d = 0). This phenomenon can be seen in Fig. 4 where a
purely 1D problem is considered, i.e., n = n0 is fixed. The 1D problem is always well-posed even if d = 0; see
Proposition 7.6. Observe that for d > 0 the interface profile is no longer locally monotonic, and does not
remain bounded between 1 and 0. Our simulations, as well as theory, indicate that this holds for any
a P 0. Notice that as suggested by Wheeler [36], d behaves like a regular perturbation and 1D solutions
converge to the d = 0 profile (which is nearly a hyperbolic tangent) as d tends to zero.

In Fig. 5a we show the decomposition of an initially rough curve into near-facets and kinks (corners) and
subsequent coarsening due to strong interfacial anisotropy. (For more background on this problem see
[55,56,27,30].) The mobility of the Cahn–Hilliard equation models surface diffusion and has the form
M = c(1 � c) + r, where 0 < r� 1. The anisotropy is fourfold and the anisotropy parameter is a = 0.5.
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Fig. 5a. Decomposition of a rough surface into near-facets and kinks, followed by coarsening. Shown are the c = 0.5 level curves of the
computed solution at nine different times. Decomposition occurs on a very fast time scale, whereas coarsening may occur on a very slow
one. Note that although the c = 0.5 level curve is initially the graph of a function, it does not remain so. (For interpretation of the
references in colour, the reader is referred to the web version of this article.)
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The regularization parameter is d = 1.0 · 10�3, and � = 1.8 · 10�2. Plotted in Fig. 5a are the c = 0.5 level
curves at nine times on the computational domain X = [0, 6.4] · [0, 3.2]. The initial data are
Fig. 5b
adapti
with th
cyan (
version
cðx1; x2Þ ¼
1

2
1:0� tanh

x2 � r px1

3:2

� �
2
ffiffiffi
2
p

�
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; ð91Þ
where
rðzÞ ¼ 1:6þ 0:8 sinðzÞ þ 0:2 sinð5zÞ þ 0:1 sinð11zÞ þ 0:03 cosð31zÞ: ð92Þ

Thus the initial c = 0.5 contour is the graph of the function r(px1/3.2).

For the simulation of Figs. 5a and 5b the domain is periodic in the x1 direction. The root-level grid has size
32 · 16, and four levels of refinement are used, i.e., kmax = 4. The finest grid spacing is h = h4 = 3.2/256, and
equivalent resolution may be obtained using the global uniform grid, which has size 256 · 512. On the time
interval [0,10] the time step size s = 1.0 · 10�4 was used. This was increased to s = 5.0 · 10�3 for
t 2 [10, 1010]. Refinement tagging for this problem is based on the relative truncation error test [43], with a
critical error of Ck = 1.0 · 10�7. The mesh at t = 35 is shown in Fig. 5b.

On a very fast time scale, the interface profile normal to the contour c = 0.5 quickly reaches a local equi-
librium and is similar to that shown in Fig. 4. In particular, the profile is non-monotonic. Its precise thickness
and shape depend on the interface orientation angle h, as well as on � and d. Almost on the same fast time scale
near-facets and kinks appear on the solution contours. Observe from the results in Fig. 5a that the solution
contours do not necessarily remain the graphs of functions. The corners, which appear because certain ranges
of orientations carry very high energy, coarsen away at various time scales. By time t = 1010 a one peak and
one valley structure has emerged, and coarsening can no longer proceed due to periodicity. Note that the
shape at t = 1010 is still evolving, as the peek rises and the valley sinks. Coarsening ends at a rather ‘‘early’’
time because the 1-mode is clearly dominant in the initial surface profile, as seen in Eq. (92). We have observed
that this is not the case in general, where coarsening of facets may occur on a very slow time scale, perhaps
exponentially slow. Note no strict comparison is here made with the extant sharp interface theories, as the
precise asymptotic convergence of the diffuse interface model considered here has not been carried out. See
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. A snapshot at t = 35.0 of the adaptive mesh and five contours of the computed solution from the simulation in Fig. 5a. The
ve mesh has four levels of refinement with a root-level grid of size 32 · 16. The mesh shown has 37,058 cells, where a uniform mesh
e same resolution of the interface would have 131,072 cells. The contours c = 0.1, 0.3, 0.5, 0.7, 0.9 are colored on the spectrum from

c = 0.1) to magenta (c = 0.9). (For interpretation of the references in color in this figure legend, the reader is referred to the web
of this article.)
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Wheeler [36] for some very resent asymptotic results for a related strongly anisotropic phase-field model of
solidification.

In Fig. 5b a mesh snapshot and five level curves of the order parameter c are shown for the time t = 35. The
adaptive mesh at t = 35 has 37,058 cells, 28.2% of the size of a uniform mesh with equal resolution of the dif-
fuse interface. In Table 2 we report on the efficiency achieved using the adaptive mesh versus a uniform mesh
during the first 100 time steps of the simulation reported in Figs. 5a and 5b. The uniform version of the present
algorithm is obtained by starting with a root-level grid of size 256 · 512 and allowing no refinement, and is
equivalent to the usual FAS multigrid [43]. I/O was turned off during the tests, which were performed on a
Dell Optiplex GX270 with an Intel Pentium 4 cpu running at 3.2 GHz and 1 GB of RAM. Four runs (of
100 time steps) were conducted with both the uniform and adaptive mesh, and an average of the run times
was used as the total cpu time, Tcpu. As a reasonable way to compare the cost of calculating on the two
meshes, we compare the basic cell time, i.e., the cpu time spent calculating on each cell for each V-cycle iter-
ation, Tcpu=M as defined in Table 2. The cost is lower for the uniform mesh. This is generally expected,
because no time is spend on ghost cell interpolations or remeshing, for example. The efficiency, the ratio of
the basic cell time of the uniform mesh algorithm to that of the adaptive mesh algorithm, is calculated for this
example to be 0.965. An efficiency close to unity means that any reduction in mesh size with respect to the
uniform mesh translates to the same reduction in real cpu time.

In Fig. 6 we show the 3D evolution of an initially three-bulbed surface according to the regularized strongly
anisotropic Cahn–Hilliard equation together with the evolution of the mesh. Specifically, the initial c = 0.5
isosurface (time t = 0) shown in Fig. 6 is the outer envelope of three intersecting spheres. The homogeneous
Neumann boundary conditions (27) are assumed. The root-level grid is 323 and there are two levels of refine-
ment. The finest resolution is h = h2 = 3.2/128, and the time step size s = 0.16 h. We take � = 1.8 · 10�2,
a = 0.2, d = 5.0 · 10�4, and the mobility is M = 1. There are approximately five mesh points across the inter-
face during the simulation. On a very fast time scale the shape forms smoothed corners as high energy orien-
tations on the surface are removed, and a complex form results. At long times, after the coarsening of some
surface features, the shape is evolving to an equilibrium structure resembling a smoothed, double-sided pyr-
amid. In particular, the near-equilibrium c = 0.5 level surface at t = 32 compares qualitatively with the 3D
Wulff shape [20, Fig. 2]. Mass is conserved to within 1 · 10�3% in this simulation.

In Fig. 7a we simulate the coarsening of a surface in 3D. Here we model surface diffusion using the mobility
M = 4c(1 � c) + r, where as before 0 < r� 1. The computational domain is (0,6.4) · (0,6.4) · (0,3.2), the
root-level grid is 64 · 64 · 32, and there are two levels of refinement (kmax = 2). This degree of resolution puts
approximately five mesh points across the interface during the simulation. The time step size is s = 0.16 h,
where h = h2 = 3.2/128. We take � = 1.8 · 10�2, a = 0.2 and d = 4.0 · 10�4. Periodic boundary conditions
are used for c, l and m in the x1 and x2-directions, while homogeneous Neumann boundary conditions are used
in the x3-direction. The initial c = 0.5 isosurface (not shown) is randomly perturbed about x3 = 1.6. At early
times, small-scale pyramid structures form as the high energy orientations are removed. Even at early times,
the system is attempting to achieve long-range structure. In Fig. 7a, t = 0.8, one can see rows and columns
forming. At later times, as the system undergoes significant coarsening, the hills (valleys) organize into distinct
rows and columns.

At later times there remain partial rows of pyramids; the initial pyramid in one such partial row is indicated
by the white arrow in Figs. 7a and 7b. The two surrounding neighbor rows of pyramids are coarsening at the
Table 2
A performance comparison of the adaptive mesh with the uniform mesh having equal resolution of the diffuse interface for the simulation
of Figs. 5a and 5b P100

i¼1
Gi
100

P100
i¼1

Vi
100 M ¼

P100
i¼1GiVi Tcpu (s)

Tcpu

M
(s)

Uniform grid 131,072 18.1 237,240,320 380.505 1.6039 · 10�6

Adaptive grid 52,392 18.56 97,211,653 161.510 1.6614 · 10�6

The data are collected over the time interval t 2 [0,0.01]; the time step size is s = 1 · 10�4 and there are 100 time steps. Gi is the number of
mesh cells and Vi is the number of V-cycle iterations, both at time step i. Tcpu is the total cpu time to execute 100 iterations. The efficiency
of the adaptive mesh for this problem, the quotient of the last two column entries, is 1.6039/1.6614 = 0.965, or 96.5%.



Fig. 6. Snapshots of the 3D evolution of a three-bulbed c = 0.5 isosurface by the strongly anisotropic Cahn–Hilliard equation with high-
order regularization. Parameters for the simulation are given in the text. The bounding boxes of the k = 1 (blue) and k = 2 (red) level
patches Ri,k are shown. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this
article.)
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expense of the partial row of pyramids in the middle, as is shown in Fig. 7b. It is observed that overall coars-
ening in the surface is strongly mediated by the presence and evolution of these partial rows, which are akin to
edge dislocations in a crystalline lattice. Moldovan and Golubovic [45] have reported this phenomenon pre-



Fig. 7a. Coarsening of a corrugated surface in 3D. The parameters of the simulation are in given in the text, and the initial c = 0.5
isosurface coincides with r(x1,x2) = 1.6 + n(x1,x2), where n is a random perturbation of maximum magnitude 0.1. The simulation uses the
high-order regularization, and surface diffusion is assumed. The magnification windows show that significant coarsening has occurred by
t = 40.0. Moreover, long-range order is being established. The white arrow indicates the beginning of an incomplete row of pyramids,
indicated by the white dots. The primary mechanism for coarsening is the removal of partial rows as described in the text and Fig. 7b.
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viously using a height-function model to describe surface diffusion and deposition in square symmetry (001)
surfaces. Characterizing the motion of the partial pyramid rows as dislocation climb, they note that once the
average distance between dislocations becomes nearly equal to the size of the periodic domain coarsening
essentially stops. In short, the removal of dislocation rows, significantly speeds up coarsening, relative a sys-
tem in which there are no partial rows of pyramids.2 This type of behavior has been observed in our simula-
tions and may be quantified in a future work. We remark that a alternative way to visualize the evolution of
these surfaces is via the edge network of the pyramids viewed looking in the negative x3-direction. See for
example [45, Figs. 8 and 13]. See [45,57] for results on the coarsening of non-fourfold symmetry surfaces.
For works modeling the coarsening of faceted surface using 2 + 1 dimensional approaches see [58–60,45,
61,57].

6. Conclusions

In this paper, we described an adaptive multigrid/finite-difference algorithm for the strongly anisotropic
Cahn–Hilliard equation with a high-order regularization in 2D and 3D. The resulting equation is sixth-order.
One of the keys to the success of the method is the treatment of the anisotropic term. This term is discretized in
conservation form in space and is fully implicit in time. Other key components of the algorithm are the use of
dynamic, block-structured Cartesian mesh refinement and the use of an adaptive Full Approximation Storage
2 Note that this phenomenon cannot exist in the coarsening of faceted curves in the plane.



Fig. 7b. Magnified view of the simulation of Fig. 7a showing the removal of a partial row of pyramids during the coarsening of a
corrugated surface. The white arrow at t = 40 points to the same location as the arrow in Fig. 7a, time 40. The surrounding rows merge as
the intermediate partial row is eaten up.
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nonlinear multigrid method to solve the nonlinear equations at the implicit time level. The resulting algorithm
is robust, efficient and second-order accurate in space and time.

We demonstrated numerically the convergence of the adaptive scheme and showed some relevant compu-
tational examples in 2D and 3D. Using simulations of bulk, isotropic spinodal decomposition followed by
domain coarsening, we demonstrated the enormous savings possible when dynamic mesh refinement is per-
formed solely around interfacial regions. As in [32], we compared long-time diffuse interface solutions with
the sharp interface Wulff shapes in 2D and 3D assuming the presence of strong interfacial anisotropy. For
fixed interfacial parameter �, we showed evidence that the closed, near-equilibrium 2D c = 0.5 level curves
approach the Wulff shape as the regularization parameter d is decreased. We presented an example of faceting
decomposition in an initially rough curve in 2D. Analyzing the adaptive mesh characteristics for this example,
we showed the efficiency of our algorithm is very close one. We also simulated large-scale coarsening of a cor-
rugated surface (in 3D) evolving by anisotropic surface diffusion, and showed the emergence of long-range
order during coarsening whereby the surface evolved into rows and columns of pyramidal structures. Our
results were in qualitative agreement with those in [45]. In particular, we observed that coarsening of the sur-
face is strongly mediated by the presence and evolution of partial pyramid rows, what Moldovan and Golubo-
vic liken to dislocations in a crystal [45]. The dominant mechanism of system-wide coarsening involves two
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neighboring rows of pyramids growing at the expense of an intermediate partial row of pyramids. The coars-
ening rate(s) of the surface obtained by our diffuse interface method may be quantitatively compared with the
results in [45] in the future.

Our algorithm extends naturally to the case of the diffuse interface version of the bending energy regular-
ization considered in [9]. Comparisons of the evolution and steady-states for strong surface energy anisotro-
pies using the different regularizations will be presented in a forthcoming work. Initial simulations indicate
that the time scales for the two regularizations are very different with the Willmore-type regularization evolv-
ing on a significantly longer time scale.

In the future, we also plan to pursue the development of a gradient stable, unconditionally solvable method
for the strongly anisotropic, regularized Cahn–Hilliard equation. This involves posing a discrete energy and
splitting it into the sum of convex and concave pieces. One may then formulate a discrete gradient method
that is conservative, unconditionally solvable, unconditionally stable, and unconditionally discrete energy
decreasing [49]. However, deriving and splitting a consistent discrete energy for the continuous, anisotropic
energy (20) is non-trivial. This current work has been a first step towards an unconditionally stable and solv-
able method. Furthermore, we will expand the scope of the physical model to include elasticity and other phys-
ics to further study the coarsening of quantum dots in epitaxially strained thin film systems [8]. We also plan to
further examine the coarsening of surfaces evolving by strongly anisotropic surface diffusion and deposition,
and evolving by adsorption/desorption kinetics [28,29,9].
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Appendix. Convexity of the gradient energy density and Ill-posedness

Here, as in Taylor and Cahn [31], we consider a more general form of the energy functional:
E½c� ¼
Z

X
F ðcÞ þ �

2

2
G2ðrcÞ

� �
dx; ð93Þ
where X � Rd and where the assumptions on G are that it is bounded from below, i.e., there exists a constant
G0 2 R such that G(p) P G0, for all p 2 Rd ; and it is positively one-homogeneous, i.e., G(rn) = rG(n) for all
r > 0 and all unit vectors n 2 Rd . We will use the notation p = $c herein, with n = p/jpj, and will assume that
jpj 6¼ 0. As shown in [31], the variational derivative is
dE
dc
¼ F 0ðcÞ � �

2

2
HpðG2ðpÞÞ : HxðcðxÞÞ; ð94Þ
where Hp and Hx are d-dimensional Hessian operators. The Cahn–Hilliard gradient flow is
oc
ot
¼ r � Mðc; pÞr dE

dc

� �� �
; ð95Þ
where M(c,p) P 0, which is ill-posed if G2(p) is not a convex function with respect to the gradient variable p.
This does not preclude the possibility that for some function spaces the gradient flow problem will be well-
posed even if G2(p) is not convex; and, indeed, we will construct such a problem.

In the following calculations, we will focus on the planar case (d = 2), using the specific gradient energy
given by G(p) = c(h)jpj, where c is a smooth, periodic function of h, with tan(h) = p2/p1. We will show that
the criteria for ill-posedness is the same as that for the 2D sharp interface laws for anisotropic motion by mean
curvature and surface diffusion. These are ill-posed if the surface stiffness c(h) + c00(h) changes sign [23,24,21].
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Wheeler has essentially shown this in [62] by considering the characteristic equation for dE=dc ¼ 0. We will
work directly from the perspective of convexity. Note that the 3D case is expected to be much more compli-
cated [20].

Proposition 7.1. The function G(p) :¼ c(h)jpj is non-convex if for some angles c(h) + c00(h) < 0, and convex

otherwise.

Proof. We will show that the Hessian matrix is not positive semi-definite if there exist angles for which
c(h) + c00(h) < 0, and is positive semi-definite otherwise. One finds that
oh
op1

¼ � n2

jpj ;
oh
op2

¼ n1

jpj ;
oni

opj

¼ 1

jpj ðdi;j � ninjÞ; ð96Þ
where di,j is the Krönecker delta, and
oG
op1

¼ c0ðhÞð�n2Þ þ cðhÞn1;
oG
op2

¼ c0ðhÞn1 þ cðhÞn2: ð97Þ
The Hessian matrix of G is
HðGÞ ¼ c00ðhÞ þ cðhÞ
jpj

n2
2 �n1n2

�n1n2 n2
1

" #
: ð98Þ
Its eigenvalues are k1 = 0 and k2 = (c00(h) + c(h))/jpj, with the associated eigenvectors
w1 ¼ n ¼
n1

n2

� �
and w2 ¼ t ¼

�n2

n1

� �
: ð99Þ
If there exist angles for which c(h) + c00(h) < 0, then the eigenvalues are not everywhere non-negative, and the
Hessian is not always positive semi-definite. In this case G is not convex. Otherwise, the eigenvalues are every-
where non-negative and the Hessian matrix is always positive semi-definite, and G is convex. h

Proposition 7.2. Assuming that G P 0, if H(G) is at least positive semi-definite (that is, positive semi-definite or

strictly positive definite) then H(G2) is at least positive semi-definite.

Proof. The Hessian of the function G2 satisfies
1

2
HðG2Þ ¼ GHðGÞ þ rpG�rpG: ð100Þ
Let p = (p1,p2)T and q = (q1,q2)T be any non-zero (gradient) vectors, then
1

2
qTHðG2ðpÞÞq ¼ GðpÞqTHðGðpÞÞqþ ðq � rpGðpÞÞ2 P 0: � ð101Þ
Remark 7.3. The last proposition holds for any G > 0. Thus if c(h) > 0 the proposition holds for the special
form G(p) :¼ c(h)jpj. Note that if jaj < 1 then c(h) > 0 using the m-fold anisotropy function c(h) :¼ 1 +
acos (mh).

Proposition 7.4. Take G(p) :¼ c(h)jpj and assume c(h) > 0 for all angles. Then if for some interval (h1,h2)

c00(h) + c(h) < 0 for all h 2 (h1,h2)—which by Proposition 7.1 means G is not convex—and if c 0(h0) = 0 for some

h0 2 (h1,h2), then G2(p) is not convex.

Proof. We will show that H(G2) is not positive semi-definite, i.e., that there exist (gradient) vectors q and p

such that
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qTHðG2ðpÞÞq < 0: ð102Þ

We choose p such that h(p) = h0 2 (h1,h2) and then q = t = (�n2,n1)T, where t is a unit tangent vector relative
to p. Note that
t � rpGðpÞ ¼
�n2

n1

� �
�
�n2c0ðhÞ þ n1cðhÞ
n1c0ðhÞ þ n2cðhÞ

� �
¼ c0ðhÞ: ð103Þ
Thus
1

2
tTHðG2ðpÞÞt ¼ GðpÞtTHðGðpÞÞtþ ðt � rpGðpÞÞ2 ¼ GðpÞk2ðpÞ þ ðc0ðh0ÞÞ2

¼ cðh0Þðc00ðh0Þ þ cðh0ÞÞ þ ðc0ðh0ÞÞ2 < 0: � ð104Þ
Remark 7.5. If a > (m2 � 1)�1 then the conditions of the last proposition on c are satisfied by the anisotropy
function c(h) :¼ 1 + acos(mh).

Interestingly, the Cahn–Hilliard equation (95) is well-posed for 1D functions, regardless of whether G2(p) is
convex or not.

Proposition 7.6. If the initial data c(x, t = 0) are 1D, then (95) reduces to the usual 1D Cahn–Hilliard equation,

but with the interfacial parameter �2c2(h) in place of �2, and the data remain 1D.

Proof. Consider s : R2 ! R defined by s(x) = s Æ x, where s is an arbitrary unit vector. The function s gives the
signed distance from the 1D subspace s^, and $s = s. Now construct the 1D order parameter
cðxÞ ¼ C sðxÞð Þ: ð105Þ

Then p = C 0(s)s, n = s, jpj = C 0(s), and
HxðcÞ ¼ C00ðsÞs� s: ð106Þ

Note that
n � rpGðpÞ ¼
n1

n2

� �
�
�n2c0ðhÞ þ n1cðhÞ
n1c0ðhÞ þ n2cðhÞ

� �
¼ cðhÞ: ð107Þ
Hence
�2

2
Hp G2ðpÞ
� �

: HxðcÞ ¼
�2

2
C00ðsÞ Hp G2ðpÞ

� �
: s� s

� �
¼ �

2

2
C00ðsÞ sTHp G2ðpÞ

� �
s

� �
¼ �2C00ðsÞ½GðpÞnTHpðGðpÞÞnþ ðn � rpGðpÞÞ2� ¼ �2c2ðhÞC00ðsÞ: � ð108Þ
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