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Abstract

Two-dimensional simulations of the spinodal decomposition of self-stressed, binary thin films using a Cahn–Hilliard model are presented.

Two different sets of mechanical boundary conditions are considered, and compositional strains for a cubic–anisotropic system under plane

strain are treated. A composition-dependent interaction energy is assumed at the free surface. Numerical solution of the coupled Cahn–

Hilliard and elastic equilibrium equations are obtained using an efficient nonlinear multigrid method. Results of simulations show that, for

large enough compositional strain, surface-directed decomposition occurs at the traction-free surface, even when there is negligible surface

interaction energy initially attracting one of the components. This decomposition is controlled by elasticity, and results in a local alignment of

phases perpendicular to the free surface, in contrast to the parallel alignment produced by surface energy in stress-free systems.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The process of spinodal decomposition in a bulk, binary

alloy is well understood [1,2]. When an initially homoge-

neous mixture is rapidly quenched into a region of

thermodynamic instability in the temperature–composition

plane, phase decomposition occurs by long-range diffusion.

The process is one of nucleation and growth, when the

mixture is quenched to inside the metastable region of the

phase diagram. When the mixture is quenched to inside the

spinodal region, however, the alloy is unstable with respect

to infinitesimal composition fluctuations above a certain

wavelength and decomposition proceeds without a nuclea-

tion barrier. In bulk alloys for which interfacial and elastic

energies can be neglected, the composition fluctuations

grow, resulting in a random, isotropic microstructure,

comprised of separated A- and B-rich phase regions.
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The kinetics of spinodal decomposition and the

resulting microstructure can be significantly modified in

the presence of an interface or free surface [3–8]. One

simple way to account for the effect of a surface on

decomposition is to introduce a composition-dependent,

short-range interaction between the mixture and the

surface into the free energy functional for the system

energy [9,3,5,7]. (Surface biasing effects have also been

modelled as due to large surface temperature gradients

[3] and long-range interaction energies [4].) One pre-

diction of such models is a preferential segregation of

one component over the other to the surface in the initial

stages of decomposition. This segregation sets up a

fluctuation in the composition field, perpendicular to the

free surface, which grows so as to form alternating A-rich

and B-rich layers parallel to the surface. If the chemical

interaction of a component with the surface is sufficiently

strong, the evolved microstructure can become aligned

with the geometry of the surface, even far into the

interior regions. This phenomenon is known as surface-

directed spinodal decomposition, and has been observed
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experimentally in polymer films [10–12] and solid-state

decomposition [13].

FromCahn’s seminal treatment of spinodal decomposition

[2], it has been clear that coherency stresses arising from a

variety of sources, including compositional strains and an

applied stress, strongly influence the development of micro-

structure. More recent work has demonstrated that coherency

stresses, like the surface interaction energy, can also have a

strong effect on the characteristics of near-surface decom-

position [14–16]. Cahn and Kobyashi [14] investigated the

competing effects of surface interaction and stress on

spinodal decomposition in one-dimensional, bending thin

plates. More recently, Seol et al. [15,16] explored the three-

dimensional spinodal decomposition of a self-stressed,

binary alloy near a traction-free surface. In particular, in

Refs. [15,16] it was shown that spinodal decomposition may

be surface-directed, evenwithout a surface interaction energy.

Such an effect, which was noted in Ref. [17] for two-

dimensional thin films, results because the coherency strains

that accompany phase separation are relaxed much more

readily at the free surface than in the interior of the crystal.

The purpose of this work is to explore the combined

effects of self-stress and surface interaction on spinodal

decomposition in initially homogeneous, two-dimensional

thin films. The model presented here differs in several ways

from the one employed by [15,16]: (i) we use a degenerate

mobility and a logarithmic regular solution model, which

pose significant numerical challenges, (ii) we include a

surface interaction energy in the free energy functional, and

(iii) we solve directly the Cauchy–Navier equations for

elasticity. On the last point, by contrast, Seol et al. [15,16]

solve the elasticity problem using Khachaturyan’s approx-

imation method [18], albeit in three dimensions.

In Section 2, we present a two-dimensional, Cahn–

Hilliard model which describes spinodal decomposition in a

binary, cubic, thin-film system with two parallel surfaces.

Stresses arise from the compositional dependence of the

lattice parameter and there is a short-range chemical

interaction at the surfaces. Two sets of mechanical boundary

conditions are considered, edge-supported and bottom-

supported. The results of the numerical simulations are

reported and discussed in Section 3. In Section 4 we

summarize the investigation. Finally, in Appendix A we

describe briefly the nonlinear multigrid method that is used

to solve the system of equations.
2. Governing equations

In this section, we present the governing equations and

boundary conditions used to simulate the spinodal

decomposition of two self-stressed, binary, thin-film

systems. Governing equations are presented in dimension-

less form. Briefly, we employ a characteristic length,

L ¼ jv=qokTð Þ1=2, where jv is the Cahn–Hilliard gradient

energy coefficient, qo is the density of lattice sites, k is
Boltzmann’s constant, and T is the absolute temperature.

The characteristic time is defined as T ¼ L2=MqokT ,

where M is the mobility of atoms in the phase

decomposing film. Energy densities, the stress tensor,

and the elastic constants are scaled by qo. Further details

of the non-dimensionalization are available in Ref. [17].

2.1. Free energy

We begin by formulating the free energy for an isothermal,

two-dimensional, binary material, occupying the general

region D, and bounded by the curve B. The (possibly

disconnected) curve B1 is that portion of B on which an

external traction tY is specified. On the remaining portion of

the boundary the material is clamped; i.e., the displacement

on the surface is specified. Plane strain conditions are

assumed in calculating the elastic fields for the two-dimen-

sional structure and the [010] crystal axis of the cubic film is

perpendicular to the surface plane as shown in Fig. 1.

We express the total dimensionless free energy of the

system, F , as a functional of the form [1]

F ¼
Z
D

fch cð Þ þ fel ui;Bxjui; c
� �

þ 1

2
jrcj2

� �
d2xY

þl
B

fs cð Þd‘�
Z
B1

tYuYd‘; ð1Þ

where c is the composition and uY is the vector of material

displacements. fch is the chemical energy density of a stress-

free homogeneous system of the indicated composition, fel
is the elastic energy density, and 1/2jjcj2 is the gradient

energy density. fs gives the interaction energy density

between the film and surface and is assumed to be a

function of the film composition at the surface. The second

surface integral gives the mechanical work done by the

external traction, tY, acting on B1. Taking the material to be

isolated, the following mass constraint is added:Z
D

c xY; tð Þ � coð Þd2xY ¼ 0; ð2Þ

where co is the average value of c in D.

The chemical energy density, fch, follows a regular

solution model:

fch cð Þ ¼ cln cð Þ þ 1� cð Þln 1� cð Þ þ 2c 1� cð Þ=h; ð3Þ

where h is the scaled temperature. If hb1, the chemical

energy density displays a miscibility gap.

In full, three-dimensional form, the elastic energy density

is given by

fel ¼
X3
i; j¼1

Tij Eij � e cð Þdij
� �

=2: ð4Þ

Tij and Eij=(Bxj
ui+Bxi

uj)/2 are the Cauchy stress and

linearized strain tensors, respectively; e is the eigenstrain

and is here taken to follow Vegard’s law: e(c)=g(c�co),

where g is a dimensionless parameter which gives the



Fig. 1. Schematic illustrations of the (a) edge-supported and (b) bottom-supported thin-film systems. The systems are two-dimensional, i.e., c=c(x1, x2), and

plane-strain conditions are assumed.

S.M. Wise et al. / Thin Solid Films 473 (2005) 151–163 153
composition dependence of the lattice parameter. The stress

and strain tensors are related by

Tij ¼
X3
k;l¼1

Cijkl Ekl � e cð Þdkl½ 	; i; j ¼ 1; 2; 3; ð5Þ

where Cijkl is the elastic stiffness tensor. We assume that

the material is cubic–anisotropic and homogeneous, for

which

Cijkl ¼ C12dijdkl þ C44 dikdjl þ dildjk
� �

þ C11 � C12 � 2C44ð Þdijkl; ð6Þ

with dijkl=1 only if i=j=k=l and dijkl=0 otherwise. C11; C12
and C44 are the cubic elastic constants. As mentioned, the

conditions for plain strain, which are expressed mathemati-

cally by u1=u1(x1, x2), u2=u2(x1, x2), and u3=0, are

assumed. It then follows that E13, E23 and E33 all vanish

in the thin film.

We assume fs to act over a very short range, to be

independent of the state of deformation, and to depend

linearly on composition. A suitable form for fs is [9]

fs cð Þ ¼ s0 þ s1c; ð7Þ

where s0 and s1 are constants. This first-order relation is

compatible with nearest-neighbor bond-counting approxi-

mations. We will assume that fs acts only on B1, the

boundary on which the traction is specified.

2.2. Dynamical equations

The evolution of the composition field in the film is

determined by the mass conservation equation,

Bc

Bt
¼ �rd J

Y
; ð8Þ
where J
Y ¼ J1; J2ð ÞT is the compositional flux. We assume

that the flux is given as

J
Y ¼ � c 1� cð Þrl; ð9Þ

where c(1�c) is the degenerate mobility and l is a

generalized chemical potential, defined as

l ¼ yF
yc

¼ dfch

dc
þ Bfel

Bc
�r2c: ð10Þ

The result is the Cahn–Hilliard (CH) equation

Bc

Bt
¼ rd c 1� cð Þr dfch

dc
þ Bfel

Bc
�r2c

	 
� �
: ð11Þ

Since in crystalline materials elastic relaxation occurs on

a much faster time scale than that of diffusion, we may

assume that elastic equilibrium always obtains. Thus the

quasi-steady Cauchy–Navier equations hold for all time:

B
2u2

Bx1Bx2
þ a1

B
2u1

Bx21
þ a2

B
2u1

Bx22
¼ a3

Be

Bx1
; ð12Þ

B
2u1

Bx1Bx2
þ a2

B
2u2

Bx21
þ a1

B
2u2

Bx22
¼ a3

Be

Bx2
; ð13Þ

where

a1 ¼
C11

C44 þ C12
; a2 ¼

C44
C44 þ C12

and a3 ¼
2C12 þ C11
C44 þ C12

:

ð14Þ

2.3. Boundary conditions

Two types of thin-film systems are considered in this

work. The first is the edge-supported thin film, Fig. 1a, and

the second is the bottom-supported thin film, Fig. 1b. The



Fig. 2. The chemical energy density of the film, fch(c), is plotted as a

function of composition at scaled temperature h=0.8. The stress-free phase
equilibria and chemical spinodal boundaries of the film are given by

ceq
� = 0.1448, ceq

+ = 0.8552 and csp
� = 0.2764, csp

+ = 0.7236, respectively.
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supports (substrate) to which the films are bonded are

considered rigid and inert with respect to mass exchange

and chemical interaction with the film. The air-film

interfaces are assumed free of external tractions, i.e.,

tY ¼ 0
Y
, on B1. Calculations are restricted to the two-

dimensional computational cell, a subregion of D defined

by 0Vx1VL1 and 0Vx2VL2, referring to the coordinate

systems in Fig. 1.

The boundary conditions for the edge-supported film

assume mechanical and thermodynamic equilibrium at all

surfaces. They are summarized as

T12 x1; 0ð Þ ¼ T22 x1; 0ð Þ ¼ 0;

T12 x1; L2ð Þ ¼ T22 x1; L2ð Þ ¼ 0;

uY 0; x2ð Þ ¼ uY L1; x2ð Þ; Bx1u
Y 0; x2ð Þ ¼ Bx1u

Y L1; x2ð Þ;

Bx2c x1; 0ð Þ ¼ s1; Bx2c x1; L2ð Þ ¼ � s1;

c 0; x2ð Þ ¼ c L1; x2ð Þ; Bx1c 0; x2ð Þ ¼ Bx1c L1; x2ð Þ;

J2 x1; 0ð Þ ¼ J2 x1; L2ð Þ ¼ 0;

J1 0; x2ð Þ ¼ J1 L1; x2ð Þ;Bx1J1 0; x2ð Þ ¼ Bx1J1 L1; x2ð Þ ð15Þ

The flux conditions are chosen so that there is no mass

flow perpendicular to the free surfaces. The composition

field is assumed periodic in the x1 direction. The boundary

conditions for the bottom-supported film are the same as

those for the edge-supported film except that the conditions

at x2=0 are replaced by uY x1; 0ð Þ ¼ 0
Y
; Bx2c(x1,0)=0, and

J2(x1,0)=0.
3. Simulation results

3.1. Parameters

The chemical energy density of the film is defined using

the scaled temperature h=0.8. As this is below the critical

temperature hc=1, the chemical energy, plotted in Fig. 2,

displays a miscibility gap. The stress-free phase equilibria

and chemical spinodal boundaries of the film are given by

ceq
�= 0.1448, ceq

+ =0.8552 and csp
� = 0.2764, csp

+ = 0.7236,

respectively. In the simulations the average composition of

the film is taken to be either the critical composition co = 0.5

or co=0.4, both of which are inside the chemical spinodal.

Initially, the composition field is nearly homogeneous, with

random fluctuations of maximum magnitude 10�4 about the

average film composition.

We consider surface free energy coefficients with

magnitudes js1j=0.0, 0.001, 0.01 or 0.1. The sign of s1
determines whether A or B atoms are energetically preferred

at the surface; if positive, A atoms are preferred, if negative
B atoms are preferred. The scaled cubic elastic constants are

C11=500, C12=190 and C44=240, chosen to correspond to

the elastic anisotropy of silicon. Compositional strains, g, of
1, 2, and 3% are considered.

The width of the computational cell is taken as L1=90;

the height is taken as either L2=45 or 90. Simulations are

performed using the spatial step size h=45/64 and the

temporal step size s=0.05.

3.2. Discussion

Figs. 3–15 display gray-scale contour plots of the

composition field at the indicated non-dimensional times.

The A-rich and B-rich phases are represented by black and

white, respectively; compositions lying between those

which define the A-rich and B-rich phases are represented

on the gray scale. Figs. 3–9 display simulation results for

edge-supported thin films; Figs. 10–15 display simulation

results for bottom-supported thin films.

3.2.1. Edge-supported thin films

Fig. 3 depicts the microstructural evolution of two,

stress-free (g=0), edge-supported thin films. Both have an

average composition of co=0.5, and non-dimensional thick-

ness of L2=45. In Fig. 3a the surface energy parameter is

s1=0.001, and in Fig. 3b s1=0.01. In both cases the surface

energy is lowered by the presence of A-rich phase at the

surface.

In the initial stages of decomposition, A atoms segregate

to the free surfaces at the top and bottom of the cells (t=60).

This segregation sets up a fluctuation in the composition

perpendicular to the free surface, which grows, forming

alternating A-rich (black) and B-rich (white) layers parallel

to the surface (t=120). In Fig. 3b, the interaction term is

sufficiently large that the entire microstructure becomes

aligned horizontally. The surface interaction term used in

Fig. 3a is weaker than that used in Fig. 3b, and it does not



Fig. 4. The microstructural evolutions of two differently stressed, edge-

supported films of composition co=0.5 are depicted for L2=45 and s1=0.

The compositional strains are (a) g=0.01 and (b) g=0.02. There is no

surface directed decomposition in (a). In (b), surface-directed spinodal

decomposition occurs with the phases oriented perpendicular to the surface

in order to relieve some of the compositional strains.

Fig. 3. The microstructural evolutions of two stress-free, edge-supported

films of composition co=0.5 are depicted up to scaled time t=500. (L2=45

and g=0). The surface interaction parameters are (a) s1=0.001 and (b)

s1=0.01. Alignment of the phases parallel to the surface occurs in both

cases due to the interaction of the film and surface. In (a), the kinetics of the

surface-directed decomposition are not fast enough for the layered structure

to spread through the film before random fluctuations in the interior of the

film have a chance to grow.
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lead to sufficiently rapid kinetics perpendicular to the

surface to overcome the growth of random fluctuations in

the interior of the film. In this case, only a partial horizontal

alignment of the phases emerges. As the magnitude of the

surface interaction term is further reduced, progressively

less alignment is observed.

This type of decomposition, known as surface-directed

spinodal decomposition, has been modelled previously [3–

7]. The characteristic feature of surface-directed spinodal

decomposition in stress-free systems is the formation of

alternating A- and B-rich layers parallel to the planar

surface. With the addition of elasticity to the dynamical

model, this feature can be qualitatively modified, as shown

in the following figures.

Fig. 4 depicts the microstructural evolution of two

stressed, edge-supported films of composition co=0.5. The

non-dimensional film thickness is the same as in Fig. 3:

L2=45. Unlike Fig. 3, however, there is no chemical

interaction between the film and the surface (s1=0), and

elastic fields arise owing to compositional inhomogeneity.

In Fig. 4a g=0.01, and in Fig. 4b g=0.02.
The microstructural evolution depicted in Fig. 4a is not

noticeably different from what is seen in the stress-free case

(g=0): Random composition fluctuations grow forming an

isotropic, interconnected microstructure. In Fig. 4b the

situation is different. Decomposition occurs initially on the

free surfaces, with the formation of regularly spaced,

alternating A-rich (black) and B-rich (white) (t=180)

regions. Lamellar structures then grow perpendicular to

the top and bottom surfaces (t=260 and t=340), establishing
a vertical alignment of the microstructure. The two lamellar

structures ultimately link up in the middle of the film

(t=500).

This type of decomposition is dramatically different

from the process depicted in Fig. 3. Both may be

characterized as surface-directed spinodal decomposition,

since decomposition is strongly influenced by the surface.

However, whereas the phase alignment produced exclu-

sively by a surface interaction energy was parallel to the

free surface, the phase alignment produced by the composi-

tional strains, at least in this instance, is perpendicular to the

surface. To help understand why this alignment is elastically

preferred, it is useful to analyze the role of elasticity in

spinodal decomposition.

Consider a bulk, initially homogeneous mixture of

critical composition, co=0.5, and suppose that the symmetric

free energy density shown in Fig. 2 applies. At the initial

state, if there are no composition fluctuations, the eigen-

strain and the displacements both vanish. Hence, the elastic

energy vanishes. If there are composition fluctuations, the

chemical energy of the system is reduced by their growth.



Fig. 6. The microstructural evolutions of two stressed, edge-supported films

of composition co=0.5 are depicted to t=500 for film thickness L2=45 and

compositional strain g=0.02. In (a) (s1=0.001), a thin A-rich (dark gray)

surface layer forms in the early stages of decomposition, due to the surface

interaction. The elastic energy destabilizes this layer leading to a vertical

realign of the microstructure. In (b) (s1=0.01), the surface interaction is

stronger and the kinetics are sufficiently fast to allow a horizontal alignment

through the thickness of the film. At longer times, the strain destabilizes the

horizontal layers and a vertical alignment of the phases develops. (The

evolution at long times resembles that appearing in Fig. 11).

Fig. 5. The long-time evolutions of two self-stressed, edge-supported films

of composition co=0.5 are depicted to t=5000. As in Fig. 4b, L2=45 and

s1=0. In (a) (g=0.02) the further evolution of the film from Fig. 4b is

shown. The system evolves to an arrangement of alternating, vertical layers

of A-rich (black) and B-rich (white) phases. In (b) (g=0.03) the elastic

energy partially suppresses separation in the interior of the film, yet the

system still aligns vertically. Such arrangements of phases in (a) and (b)

require no overall displacement in the horizontal direction.

S.M. Wise et al. / Thin Solid Films 473 (2005) 151–163156
But the fluctuations grow only if the driving force of the

chemical energy can overcome the interfacial and elastic

energies, both of which are minimized with a uniform

mixture. In other words, the elasticity acts to suppress the

growth of fluctuations, and succeeds if it is strong enough

relative to sum of the other contributions [2].

Every point in space is essentially the same for a bulk

system, as it pertains to the growth of a composition

fluctuation. When a surface is present, however, the

situation is different. The growth of a composition fluctua-

tion in the vicinity of the traction-free surface would be

expected to grow more readily than in the bulk (interior

regions), because the compositional stresses are relaxed near

a surface. For this reason, spinodal decomposition initiates

at the unconstrained surfaces (top and bottom) in Fig. 4b.

The vertical alignment produced during the initial stages

of decomposition is due to another aspect of the elasticity,

namely the periodic displacement boundary conditions at

the side edges of the film. Because of these conditions, no

net expansion or contraction of the film occurs in the

horizontal direction. (The same is true for clamped side

boundary conditions.) Since the chemical free energy

density (Fig. 2) is symmetric, the A-rich (black) and B-

rich (white) phases have the same magnitude of eigenstrain

(e=g(c�co)), but with different signs. Thus alternating
vertical layers of equal width give no net horizontal (x1)

displacement. In fact, this arrangement is elastically

preferred over one with layers parallel to the surface. This

explains the vertical alignment of the growing phases in

Fig. 4b.

Fig. 5a shows the subsequent evolution, to t=5000, of the

film in Fig. 4b. After much coarsening, the number of layers

is reduced, which eliminates some interfacial energy. But

the vertical alignment of the microstructure is maintained,

suggesting that it is elastically preferred. Fig 5b depicts the

long-time evolution of a film with eigenstrain g=0.03 (all

other parameters are as in Figs. 4b and 5a). The elastic

energy has a more pronounced effect on microstructural

evolution in Fig. 5b than in 5a: It delays the onset of surface

decomposition (with respect to (a)), it allows for very little

random decomposition in the interior of the film, and it

partially suppress phase separation in the interior of the film.

As in Fig. 5a, the system undergoes a coarsening process



Fig. 8. The initial stages of microstructural evolution of two stressed, edge-

supported films of composition co=0.4 are depicted for L2=45 and g=0.02.
In (a) (s1=0.01), A-rich phase (dark gray) segregates to the surface, while in

(b) (s1=�0.01), B-rich phase (light gray) segregates to the surface due to

the surface interactions. In (b), the B-rich layer quickly destabilizes forming

alternating A- and B-rich phases perpendicular to the surface. In (a), the

surface layer eventually becomes morphologically unstable at longer times.

Fig. 9. The microstructure of two stressed, edge-supported films with

thicknesses (a) L2=45, and (b) L2=90 are compared at time t=500 for

g=0.02, s1=0, and co=0.5. In both films random fluctuations in the interior

of the film grow and prevent the coherent link-up of the surface lamella.

Coherency quickly establishes in the thinner film (a), as is seen in Fig. 5a.

In the thicker film (b) this is not the case; the phases will become aligned in

both elastically soft directions, before aligning vertically at a much later

time.

Fig. 7. The long-time microstructural evolution of a stressed, edge-

supported film of composition co=0.4 is depicted with L2=45, g=0.02,
and s1=0. As in Fig. 4b, regularly spaced, alternating regions of A-rich

(black) and B-rich (white) phases form at the free surfaces. However, the B-

rich surface particles remain spatially isolated and do not continue to grow

vertically into the interior. Considerable coarsening of the B-rich surface

particles occurs, until those at the top and bottom link-up. Subsequently, a

single vertical strip of B-rich phase emerges at very long times.
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that reduces the number of layers, but respects the vertical

alignment of phases. The evolutions depicted in Figs. 4 and

5 depend not only on the magnitude of the compositional

strain, but also on the initial composition, and on the

imposed mechanical boundary conditions.

In general, there is a competition between the chemical

driving force, the surface interaction, and the elastic energy

in determining the kinetics of the phase decomposition. This

interaction is illustrated in Fig. 6, where the effects of

elasticity and surface energy interaction are combined. The

two films in Fig. 6 are the same as those appearing in Figs.

4b and 5a; (L2=45, co=0.5, g=0.02), except that the surface
interaction is now set to s1=0.001 in Fig. 6a, and to s1=0.01

in Fig. 6b. In both cases, the surface energy is lowered by

the segregation of A atoms to the surface.

In Fig. 6a, a thin A-rich (dark grey) layer forms in the

early stages of decomposition at each surface due to the

surface interaction term(t=100), and a faint horizontal

alignment of the microstructure begins to develop (t=100

and 180). The compositional strain soon destabilizes the

homogeneous surface layers, and a vertical realignment of

the microstructure begins at the surfaces (t=180 and 260).

Lamellar structures grow perpendicularly from the top and

bottom surfaces (t=340) but are met in the middle of the

film by two horizontally aligned layers (t=500), remnants of

the early surface interaction effect. In Fig. 6b, the surface

interaction dominates the early stage kinetics, and the entire

microstructure becomes horizontally aligned (t=260 and

340). This arrangement exists at high cost to the elastic

energy, which is reduced by a microstructure with a vertical

alignment of the phases. Much later, by about t=2000, the



Fig. 12. The initial stages of phase decomposition for a stressed, bottom-

supported film of composition cf =0.4 is depicted. (L2=45, g=0.02, and s1=0).
Due to elasticity, regularly spaced, alternating regions of A-rich (black) and

B-rich (white) phases form at the surface (top). As in Fig. 7, theB-rich regions

become isolated from each other and do not initially grow into the interior.

Fig. 10. The microstructural evolution of a stressed, bottom-supported film

of composition cf =0.5 is depicted to t=5000. (L2=45, g=0.02, and s1=0).

As in the edge-supported films, vertically aligned lamella grow from the

unconstrained (top) surface. Near the bottom clamped boundary, however,

the phases align parallel to the surface and, eventually, a comb-like structure

emerges at longer times.

Fig. 11. The microstructural evolution of a stressed, bottom-supported film

of composition cf =0.5 is depicted to t=5000 for L2=45, g=0.02, and

s1=0.01. Due to the surface interaction, A-rich (black) phase segregates to

the free surface (top), and a horizontal alignment of the phases develops.

Later (tN1800), the elasticity begins to realign the phases vertically near the

top, unconstrained surface.
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elasticity succeeds at destabilizing the surface layers, and

some vertical alignment near the surface follows. This effect

can be seen in Fig. 11.
Fig. 13. The early stages of phase decomposition for two stressed, bottom-

supported films of composition cf =0.4 are depicted for L2=45 and g=0.02.
The surface energy parameters are (a) s1=0.01 and (b) s1=�0.01. In (a), an

A-rich (black) layer forms on the top free surface while in (b), a B-rich

(light gray) layer forms at the free surface. As in Fig. 8b, the B-rich layer

quickly destabilizes forming alternating A- and B-rich phases perpendicular

to the surface. The surface interaction prevents any vertical alignment

before t=500 in (a).



Fig. 15. The microstructural evolution of a stressed, bottom-supported film

of composition cf =0.5 is depicted for L2=90, g=0.02, and s1=0.01. Initially

phase alignment is parallel to the free surface; but this microstructure is

eventually destabilized owing to compositional strain effects.

Fig. 14. The microstructural evolution of a stressed, bottom-supported film

of composition cf =0.5 is depicted for L2=90, g=0.02, and s1=0. As in Fig.

10, lamella grow perpendicular from the surface (top). Random fluctuations

in the film center have time to grow, forming a microstructure with phases

oriented in both elastically soft directions. In the later stages of

decomposition, a vertical alignment emerges in the top half of the film.
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Fig. 6 illustrates the competition between the surface

interaction, which tends to produce an alignment of phases

parallel with the surface, and the compositional strain,

which, under certain specific conditions, tends to produce an

alignment perpendicular to the surface. This has interesting

implications for the theory of wetting transitions in solid

materials. In his work on wetting, Cahn [9] considered

critical fluid mixtures with the surface interaction energy

used here. The results from Fig. 6 suggest that the elastic

effect should also be included in solid mixtures in order to

characterize correctly phase equilibria near a surface.

The long-time microstructural evolution of a stressed,

edge-supported film of composition co=0.4 is depicted in

Fig. 7. Except for the average composition, the other

parameters are the same as those used for the films depicted

in Figs. 4b and 5a: L2=45, g=0.02, and s1=0. As in Fig. 4b,

regularly spaced, alternating vertical regions of A-rich

(black) and B-rich (white) phases form on the surface, due

to the effect of elasticity. However, unlike in Fig. 4b, the B-
rich (white) particles become isolated and do not continue to

grow vertically into the interior (t=5000). Considerable

coarsening of the B-rich surface particles occurs, until those

at the top and bottom link-up. Subsequently, a single vertical

strip of B-rich phase emerges. For the simple model of

misfit used here (Vegard’s law), such an arrangement

produces no net misfit (as for co=0.5), and therefore requires

no net displacement in the horizontal direction. Though the

elastic driving force achieves vertical alignment of phases in

both the edge-supported films of Fig. 5a (co=0.5) and Fig. 7

(co=0.4) at long times, the routes taken are quite different.

For off-critical mixtures, the sign of the surface energy

parameter is important because the equilibrium composi-

tions are no longer symmetric about the average composi-

tion. Fig. 8 depicts the evolution of two stressed, edge-

supported films of composition co=0.4. The films are the

same as those depicted in Fig. 7, except that there is now a

surface interaction energy. The simulation parameters used

are L2=45 and g=0.02, with s1=0.01 in Fig. 8a and

s1=�0.01 in Fig. 8b.
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The surface energy is lowered by the presence of the A-

rich phase at the surface in Fig. 8a (s1N0). In the initial

stages of decomposition, A atoms segregate to the free

surfaces, forming thin A-rich (dark grey) surface layers.

Subsequently, the microstructure becomes horizontally

aligned. The compositional strain attempts to destabilize

the horizontal layers nearest to the surface in order to form a

vertical alignment of phases, though by t=500 this has not

been accomplished. Since the surface interaction parameter

is negative in Fig. 8b, a B-rich (light gray) layer forms

initially at the surface. This B-rich layer quickly becomes

unstable, due to elasticity, and alternating A-rich (black) and

B-rich (white) phase regions establish at the surface. As in

Fig. 7, the B-rich regions are spatially isolated, and do not

grow into the interior. At t=500 the horizontal layers in the

center of the film are remnants of the early effect of the

surface interaction energy. Fig. 8 demonstrates that, for off-

critical mixtures, the sign of the surface energy parameter is

important for determining the interaction between the

surface and elastic effect and, therefore, the kinetics of

decomposition and the microstructure that forms.

Fig. 9 shows the influence of film thickness on the

elastically induced phase alignment. The microstructures of

two stressed films of composition co=0.5 are displayed at

non-dimensional time t=500. The thickness of the film in

Fig. 9a is L2=45, and that of the film in Fig. 9b is L2=90.

The compositional strain is g=0.02 and there is no surface

interaction (s1=0). The film in Fig. 9a is taken from Fig. 4b

at non-dimensional time t=500.

In both films random fluctuations in the interior of the

film grow and prevent the coherent link-up of the surface

lamella. Coherency quickly establishes in the thinner film

(a), as is seen in Fig. 5a. In the thicker film (b) this is not the

case. Initially, the phases become aligned in both elastically

soft directions, except near the surface where the alignment

is vertical. However, at a much later time (tc7500, not

shown), a regular, vertical alignment of phases attains.

Thus, one effect of increasing the film thickness is to delay,

not necessarily prevent, the elastically preferred alignment

of phases by introducing more randomness into phase

decomposition.

3.2.2. Bottom-supported thin films

This section is concerned with spinodal decomposition in

bottom-supported thin films (Fig. 1b). While the boundary

conditions for the bottom-supported film are different from

those for the edge-supported film (2.3), there are some

similarities between the systems. First, there is a free surface

in the boundary-supported film. This, as has been seen, is a

preferential site for the growth of composition fluctuations

from an elastic energy point of view. Second, the periodic

boundary conditions at the left and right side edges of the

bottom-supported film provide the same constraint on

deformation as that in the edge-supported film. Namely,

no net horizontal expansion or contraction can occur. Thus

the elasticity effects seen at the free surfaces in the edge-
supported films should translate, to some extent, to the

single free surface of the bottom-supported films.

In Fig. 10, the long-time microstructural evolution of a

stressed, bottom-supported film of composition co=0.5 is

depicted. The non-dimensional thickness of the film is

L2=45; the compositional strain is g=0.02; and there is no

surface interaction (s1=0). As in the edge-supported film

(Figs. 4b and 5), surface-directed decomposition occurs, and

a lamellar structure grows vertically from the free surface

into the interior of the film. However, in marked contrast

from the edge-supported systems, the film decomposes last

at the bottom surface, where the film is clamped and phase

separation requires the most elastic energy. Near the bottom,

the microstructure becomes aligned in the horizontal

direction, and by t=5000 a comb-like structure emerges.

Fig. 11 shows the effect of a surface interaction in

bottom-supported thin films. The film in Fig. 11 has

composition co=0.5; the non-dimensional thickness is

L2=45; the compositional strain is g=0.02; and the surface

energy parameter is s1=0.01. The early-time evolution seen

in Fig. 11 compares well with that seen in Fig. 6b for an

edge-supported film. Due to the surface interaction, an A-

rich (black) layer forms at the free surface (top), and a

horizontal alignment emerges. By t=1800 the compositional

strains destabilize the surface layers and begin to realign the

microstructure vertically. By t=5000 a structure similar to

that seen in Fig. 10 emerges.

If the surface interaction parameter, s1, is large, the

compositional strains may not be strong enough to

destabilize the surface layers at all. For the case that

s1=0.1 with all other parameters as in Fig. 6b (edge-

supported) or Fig. 11 (bottom-supported), which is not

shown, the surface layers are not destabilized and the phases

remain aligned parallel to the free surface up to t=5000.

As for the edge-supported films, moving to an off-critical

composition dramatically changes the effects due to

compositional strains. In Figs. 12 and 13, the micro-

structural evolutions of three stressed, bottom-supported

films of composition co=0.4 are depicted. The non-dimen-

sional thickness of the films is L2=45; and the compositional

strain is g=0.02. In Fig. 12 there is no surface interaction

(s1=0); in Fig. 13a, the surface energy parameter is s1=0.01;

and in Fig. 13b the surface parameter is s1=�0.01.

The evolutions seen in Figs. 12 and 13 are similar to

those depicted in Figs. 7 and 8. With no surface interaction

(Fig. 12), alternating A-rich (black) and B-rich (white) phase

regions form on the free surface. The B-rich regions become

isolated from one another and do not grow into the interior

of the film. When s1=0.01 (Fig. 13a), an A-rich (dark grey)

layer forms on the free surface in the initial stages of

decomposition, and a horizontal alignment of the micro-

structure establishes. The elastic energy works to destabilize

the surface layers. However, by t=500 it is not able to

accomplish this. When s1=�0.01 (Fig. 13b), a B-rich (light

gray) layer forms on the free surface in the initial stages of

decomposition. Due to elasticity, the layer quickly desta-



Fig. 16. Plots of the surface, elastic, gradient, chemical, and total energies,

as functions of (dimensionless) time, for the simulation shown in Fig. 15.

Notice that the surface energy initially decreases, and has a local minimum

at about t=1500. Subsequently, the surface energy increases as the elasticity

begins to destabilize the parallel alignment of phases.
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bilizes, forming alternating A-rich (black) and B-rich (white)

regions on the surface; the B-rich regions become isolated

shortly thereafter.

The long-time microstructural evolutions depicted in

Figs. 14 and 15 show the effect of film thickness on

spinodal decomposition in the bottom-supported films. The

systems in Figs. 14 and 15 have the following parameters:

c0=0.5, L2=90, and g=0.02. There is no surface interaction

in Fig. 14 (s1=0), but in Fig. 15 s1=0.01.

In Fig. 14, lamellar structures grow from the free surface

into the interior of the film due to the compositional strains,

as in Fig. 10, where L2=45. However, there is sufficient

time for random fluctuations to grow in the interior of the

film, and a structure with orientations along both elastically

soft directions emerges. This prohibits the lamella from

growing completely through the film. Near the bottom

clamped boundary, the microstructure is becoming more
horizontally aligned with increasing time, while near the

traction-free surface, the phases are aligning perpendicular

to the surface.

In Fig. 15, A atoms segregate initially to the free surface,

due to the surface interaction, and the surface region

becomes horizontally aligned. In the bottom half of the

film, random fluctuations in the composition have sufficient

time to grow, as in Fig. 14. The compositional strains then

begin to realign the region near the free surface vertically.

The elasticity accomplishes this by destabilizing one

horizontal layer at a time, moving from the free surface

into the interior. At t=5000 a comb-like structure emerges in

the top half of the film; in the bottom half a complex

microstructure is evolving.

In Fig. 16 we show the surface, elastic, gradient,

chemical, and total energies, as functions of (dimension-

less) time, for the simulation shown in Fig. 15. Note that

the difference between the maximum and minimum values

of the surface energy is much smaller than those of the

elastic, gradient, and chemical energies. This is expected

since it arises only from a surface density, and the others

from bulk densities. Yet, the surface energy has a big

impact on the microstructural evolution, as can be seen

comparing Figs. 14 and 15. The behavior of the chemical

and interfacial energies is typical of spinodal decomposi-

tion. The gradient energy experiences a sharp increase

(phase separation), and after some time begins to slowly

decrease as interfaces are eliminated during coarsening.

The chemical energy is monotone in time, experiencing a

rapid decrease (phase separation), then a more gradual

decrease (coarsening).

Initially, the surface energy rapidly decreases, as the A-

rich wetting layer establishes. At the same time, the elastic

energy is rapidly increasing in response to the developing

misfit at the surface and in the bulk. From between about

t=500 to t=1500 the decrease in surface energy slows; and

the surface energy has a minimum at tc1500. After the

elasticity begins to destabilize the parallel alignment, the

surface energy begins to rapidly rise. One can see from Fig.

15 that the first appearance of destabilization occurs at

tc1800, coinciding with the increase in surface energy. By

t=3000 the surface energy returns to approximately the level

at t=0. This is expected, since the average composition at

the interface is nearly 0.5.
4. Summary

In this paper we developed a diffuse interface model to

study the combined effects of the surface interaction,

compositional strain, and mechanical boundary conditions

on surface-directed spinodal decomposition in stressed,

binary thin films. Specifically, we used two-dimensional

simulations to demonstrate that the kinetics of spinodal

decomposition and the resulting microstructure can

depend strongly on the magnitude of compositional strain,
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the average film composition, the sign and magnitude of

the surface interaction parameter, and the thickness of the

film.

When the surface interaction term is negligible (s1c0)

and the compositional strain is small, composition

fluctuations tend to grow uniformly throughout the film.

For larger compositional strains, the composition fluctua-

tions grow preferentially at the surface owing to the

accompanying decrease in the elastic energy and, con-

sequently, a greater net driving force for phase separation.

The phases tend to align themselves perpendicular to the

free surface for both the edge-supported and bottom-

supported films.

A competition between the surface interaction, which

tends to produce an alignment of phases parallel to the

surface, and the elastic energy, which tends to produce an

alignment of phases perpendicular to the surface, is

observed in films where both effects are present. In certain

cases, the near-surface microstructure was aligned parallel to

the surface, due to the surface interaction, but then later

realigned perpendicular to the surface, due to the elastic

effect. This rearrangement of the microstructure lowers the

elastic energy of the film. If the magnitude of the surface

energy parameter is large enough, no elastic realignment is

observed during the simulation. For films of off-critical

composition, the sign of the surface energy parameter was

seen to be important. For films of composition co=0.4, if A

atoms initially segregated to the free surface, vertical phase

realignment came significantly later than if B atoms initially

segregated to the free surface.

For critical-composition films of large enough thickness,

random fluctuations in the interior of the film had

sufficient time to grow, and could prevent the uniform

growth of the lamella from the surface through the film. If

the film was small enough such randomness was not

present, and the alignment of the phases was significantly

more uniform.
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Appendix A. Nonlinear multigrid method

In this appendix, we briefly describe an efficient, fully

second-order accurate, nonlinear multigrid method for the
CH and elasticity equations. This is an extension of the

method for CH fluids developed [19]. As multigrid is

essentially a method for accelerating convergence of a

local error relaxer (smoother), e.g., Gauss–Seidel, to

condense the discussion we describe only the relaxation

step of the method. We assume a basic knowledge of

linear multigrid methods, and the Full Approximation

Storage multigrid method for nonlinear elliptic equations

[20]. We note that our method is easily extended to three

dimensions.

Let N1 and N2 be positive, even integers, and define the

spatial step sizes h1=L1/N1 and h2=L2/N2. For simplicity we

take h=h1=h2. Consider a regular N1
N2 grid over the

computational domain D. The concentration and chemical

potential are sampled at the cell centers of the grid,

((i�0.5)h,( j�0.5)h), where 1ViVN1 and 1VjVN2, and the

approximations are denoted ci,j and li,j, respectively.

We define the discrete differentiation operators

D1ciþ1
2
; j ¼

ciþ1; j � ci; j

h
; D2ci; jþ1

2
¼ ci; jþ1 � ci; j

h
which are defined on the west and north cell edges, and with

these discretize the gradient operator by

rdd ci; j ¼ D1ciþ1
2
; j;D2ci; jþ1

2

 �

Correspondingly, the divergence is defined at the cell

centers using samples from the cell edges:

rdg
Y
i; j ¼

g1
iþ1

2
; j
� g1

i�1
2
; j

h
þ

g2
i; jþ1

2

� g2
i; j�1

2

h

where gYi; j ¼
�
g1
iþ1

2
; j
; g2

i; jþ1
2

�
. The discretized Laplacian is

defined as jd 2ci, j=jdd (jdci, j).

We discretize the CH Eq. (11) in time using a Crank–

Nicholson scheme:

cnþ1
i; j � cni; j

Dt
¼ rdd M cð Þnþ

1
2

i; j rdl
nþ1

2

i; j

h i
; ðA:1Þ

l
nþ1

2

i; j ¼ 1

2

dfch

dc
cnþ1
i; j

 �
þ dfch

dc
cni; j

 �	 

þ Bfel

Bc
c
nþ1

2

i; j

 �

� 1

2
Dd2 cnþ1

i; j þ cni; j

 �
; ðA:2Þ

where M(c)=c(1�c) is the mobility, which must be

interpolated to the cell edges. We take as source terms

s
1ð Þ
i; j ¼

ci; j

Dt

s
2ð Þ
i; j ¼

1

2

dfch

dc
cni; j

 �
� Dd2cni; j

	 

þ Bfel

Bc
c
nþ1

2

i; j

 �

which are known at time step n. Indeed, to get Bfel/

Bc(cn+1/2) we (i) extrapolate the concentration from times

n�1 and n, obtaining an approximation of cn+1/2, and then

(ii) solve the elasticity Eqs. (12) and (13) using a linear

multigrid method.
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Rewriting Eq. (A.1), we have

cnþ1
i;j

Dt
þ

M cð Þnþ
1
2

iþ1
2
;j
þM cð Þnþ

1
2

i�1
2
;j
þM cð Þnþ

1
2

i;jþ1
2

þM cð Þnþ
1
2

i;j�1
2

h2

0
@

1
Al

nþ1
2

i;j ¼ s
1ð Þ
i;j

þ
M cð Þnþ

1
2

iþ1
2
;j
l
nþ1

2

iþ1;j þM cð Þnþ
1
2

i�1
2
;j
l
nþ1

2

i�1;j þM cð Þnþ
1
2

i;jþ1
2

l
nþ1

2

i;jþ1 þM cð Þnþ
1
2

i;j�1
2

l
nþ1

2

i;j�1

h2

ðA:3Þ

Since dfch/dc(ci,j
n+1) is nonlinear with respect to ci,j

n+1, we

linearize at ci,j
m, i.e.,

dfch

dc
cnþ1
i;j

 �
c

dfch

dc
cmi;j

 �
þ

d2fch cmi;j

 �
dc2

cnþ1
i;j � cmi;j

 �
ðA:4Þ

After substitution of Eq. (A.4) into Eq. (A.2), we get

� 2

h2
þ 1

2

d2fch

dc2
cmi;j

 �	 

cnþ1
i;j þ l

nþ1
2

i;j

¼ s
2ð Þ
i;j þ 1

2

dfch

dc
cmi;j

 �
� 1

2

d2fch cmi;j

 �
dc2

cmi;j

� 1

2h2
cnþ1
iþ1;j þ cnþ1

i�1;j þ cnþ1
i;jþ1 þ cnþ1

i;j�1

 �
: ðA:5Þ

Finally, to obtain a Gauss–Seidel-type relaxation scheme,

we use a local linearization scheme. Namely, we replace

ck,l
n+1 and lk,l

n+1/2 in Eqs. (A.3) and (A.5) with c̄k,l
m and l̄k,l

m�1/2

if kVi and lVj, otherwise with ck,l
m and lk,l

m�1/2, where an

overbar denotes the latest iterate, and m is the iteration

number. Thus

c̄i; j
m

Dt
þ

M cð Þm�
1
2

iþ1
2
; j
þM cð Þm�

1
2

i�1
2
; j
þM cð Þm�

1
2

i; jþ1
2

þM cð Þm�
1
2

i; j�1
2

h2

0
@

1
Al̄

m�1
2

i; j ¼ s
1ð Þ
i; j

þ
M cð Þm�

1
2

iþ1
2
;j
l
m�1

2

iþ1;j þM cð Þm�
1
2

i�1
2
;j
l̄
m�1

2

i�1;j þM cð Þm�
1
2

i;jþ1
2

l
m�1

2

i;jþ1 þM cð Þm�
1
2

i;j�1
2

l̄
m�1

2

i;j�1

h2
;

ðA:6Þ
where M(c)i+1/2, j
m�1/2 =M((ci,j

m+ci+1, j
m +ci, j

n +ci+1, j
n )/4) (the other

terms are similarly defined), and

� 2

h2
þ 1

2

d2fch

dc2
cmi;j

 �	 

c̄
m
i;j þ l̄

m�1
2

i;j

¼ s
2ð Þ
i;j þ 1

2

dfch

dc
cmi;j

 �
� 1

2

d2fch

dc2
cmi;j

 �
cmi;j

� 1

2h2
cmiþ1;j þ c̄ m

i�1;j þ cmi;jþ1 þ c̄mi;j�1

 �
ðA:7Þ

We solve the two linear equations (Eqs. (A.6) and (A.7))

by 2
2 matrix inversion. To start the iteration process we

set ck,l
m=0=ck,l

n and lk,l
m�1/2=�1/2=lk,l

n�1/2; and after we have

performed ms smoothing iterations using Gauss–Seidel we

set ck,l
n+1=c̄k,l

ms and lk,l
n+1/2=l̄k,l

ms�1/2.
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