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Abstract

We have studied numerically the dynamics of the microphase separation of a water–oil–surfactant system. We developed an efficient and
accurate numerical method for solving the two-dimensional time-dependent Ginzburg–Landau model with two order parameters. The numerical
method is based on a conservative, second-order accurate, and implicit finite-difference scheme. The nonlinear discrete equations were solved by
using a nonlinear multigrid method. There is, at most, a first-order time step constraint for stability. We demonstrated numerically the convergence
of our scheme and presented simulations of phase separation to show the efficiency and accuracy of the new algorithm.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In a water–oil–surfactant system, monolayers of surfactant
molecules form microemulsions as a random phase [1]. Mi-
croemulsions show two types of morphology as follows. In
the symmetric case of even compositions of water and oil, the
system shows a cocontinuous network pattern (Fig. 1a). The
droplet pattern (Fig. 1b) is found in the asymmetric case of un-
even compositions of water and oil.

The dynamics of microphase separation in a water–oil–
surfactant system has been investigated numerically by using
the time-dependent Ginzburg–Landau (TDGL) model [2]. In
[2,3], the cell dynamical system approach is used. A Monte
Carlo simulation is used in [4]. In [5], a hybrid model is used,
which is a phenomenological semi-microscopic model, where
the binary mixture and the surfactant are treated as a continu-
ous field and with discrete molecules, respectively.

In this paper, we present a finite-difference method for the
solution of the TDGL model. The Crank–Nicolson method
is applied to the temporal discretization. The resulting finite-
difference equations are conservative, second-order accurate in
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space and time, and solved by an efficient and accurate non-
linear multigrid method. An advantage of using a nonlinear
multigrid method is that the scheme is much more efficient than
traditional iterative solvers in solving the nonlinear equations
at the implicit time step. It is straightforward to extend a two-
dimensional code to a three-dimensional one and to parallelize
the serial code. It is also natural to incorporate hydrodynamic
effects such as surface tension force, gravity, and shear flow in
this model [6].

The contents of this paper are as follows: in Section 2, we
briefly review the governing equations. In Section 3, we con-
sider a fully discrete semi-implicit finite-difference scheme and
describe a nonlinear multigrid V-cycle algorithm for the TDGL
system. Numerical experiments such as a second-order conver-
gence test and tests of the effects of parameters on the phase
separation of the system are performed in Section 4. In Sec-
tion 5, conclusions are given. In addition, we present a future
direction for this current algorithm. The future plan is to incor-
porate hydrodynamic effects.

2. Governing equations

The dynamics of microphase separation in microemulsion
systems can be modeled by the following TDGL model with
two order parameters, Ψ (x, t) and Φ(x, t). These parameters
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Fig. 1. Snapshot pictures of the system obtained by the computer simulations for (a) cocontinuous network and (b) droplet/matrix pattern.
describe the difference in the local densities of water and oil
and the local concentration of surfactant at site x and time t ,
respectively [3]:

E(Ψ,Φ) =
∫
Ω

[
F(Ψ,Φ) + DΨ (1 − sΦ)|∇Ψ |2

(1)+ DΦ |∇Φ|2]dx,

(2)F(Ψ,Φ) = gΨ 4 − [
β − ν(Φ − Φave)

]
Ψ 2 + λ(Φ − Φave)

2,

where s, g, β , ν, λ, and DΨ,Φ are positive phenomenological
parameters and Ω is the system domain. In E(Ψ,Φ), the term
−sDΨ Φ|∇Ψ |2 energetically prefers a relatively high value of
Φ at the interface. In F(Ψ,Φ), the term λ(Φ − Φave)

2 prevents
surfactants from forming clusters. The term ν(Φ − Φave)Ψ

2

means the local coupling interactions. Notations Ψave and Φave
correspond to the Ψ and Φ field values averaged in space, re-
spectively. The TDGL equations in the conserved system are
written explicitly as

(3)
∂Ψ

∂t
= MΨ 	

δE
δΨ

,

(4)
∂Φ

∂t
= MΦ	

δE
δΦ

,

(5)
δE
δΨ

= ∂F (Ψ,Φ)

∂Ψ
− 2DΨ ∇ · [(1 − sΦ)∇Ψ

]
,

(6)
δE
δΦ

= ∂F (Ψ,Φ)

∂Φ
− 2DΦ	Φ − DΨ s|∇Ψ |2,

where MΨ,Φ are the positive diffusional mobilities. The bound-
ary conditions for the TDGL system are the zero Neumann
boundary conditions

n · ∇Ψ = n · ∇Φ = n · ∇ δE
δΨ

(7)= n · ∇ δE
δΦ

= 0 on ∂Ω × (0, T ),

where n is the normal vector to ∂Ω . Using these boundary con-
ditions, we can derive the following equation [7]:

(8)
dE(Ψ,Φ)

dt
= −

∫
Ω

(
MΨ

∣∣∣∣∇ δE
δΨ

∣∣∣∣
2

+ MΦ

∣∣∣∣∇ δE
δΦ

∣∣∣∣
2
)

dx,
which means the total energy of the system decreases with re-
spect to time.

3. Numerical solution

We first discretize the TDGL system (3)–(6) in space Ω =
[a, b] × [c, d]. Let [a, b] and [c, d] be partitioned by

a = x1/2 < x3/2 < · · · < xNx+1/2 = b and

c = y1/2 < y3/2 < · · · < yNy+1/2 = d.

For simplicity, we assume the above partitions are uniform in
both directions, that is,

xi+1/2 − xi−1/2 = yj+1/2 − yj−1/2 = h = b − a

Nx

for 1 � i � Nx, 1 � j � Ny.

Therefore, xi+1/2 and yj+1/2 can be represented as xi+1/2 =
a + ih and yj+1/2 = c + jh.

We denote by Ωh = {(xi, yj ): 1 � i � Nx, 1 � j � Ny}
the set of cell centered points (xi, yj ) = ((xi−1/2 + xi+1/2)/2,

(yj−1/2 + yj+1/2)/2).
For Neumann boundary value problems, it is natural to com-

pute numerical solutions at cell centers. Let Ψij be approxima-
tions of Ψ (xi, yj ). We implement the zero Neumann boundary
conditions (7) by requiring that, for example,

Ψ0,j = Ψ1,j , ΨNx+1,j = ΨNx,j , Ψi,0 = Ψi,1,

Ψi,Ny+1 = Ψi,Ny for all i, j.

We then define the discrete Laplacian by the standard five-point
stencil

	hΨij = (Ψi−1,j + Ψi+1,j − 4Ψij + Ψi,j−1 + Ψi,j+1)/h2

and the discrete l2-norm by ‖Ψ ‖ = h

√∑Nx

i=1

∑Ny

j=1 Ψ 2
ij . The

TDGL equations (3)–(6) are integrated with respect to time us-
ing the Crank–Nicolson method:

(9)
Ψ n+1

ij − Ψ n
ij

	t
= MΨ 	h

(
δE
δΨ

)n+1/2

,

ij
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(10)
Φn+1

ij − Φn
ij

	t
= MΦ	h

(
δE
δΦ

)n+1/2

ij

,

(
δE
δΨ

)n+1/2

ij

= ∂F (Ψ n+1
ij ,Φn+1

ij )

2∂Ψ

− DΨ ∇h · [(1 − sΦn+1
ij

)∇e
hΨ

n+1
ij

]
+ ∂F (Ψ n

ij ,Φ
n
ij )

2∂Ψ

(11)− DΨ ∇h · [(1 − sΦn
ij

)∇e
hΨ

n
ij

]
,(

δE
δΦ

)n+1/2

ij

= ∂F (Ψ n+1
ij ,Φn+1

ij )

2∂Φ
+ ∂F (Ψ n

ij ,Φ
n
ij )

2∂Φ

− DΦ	h

(
Φn+1

ij + Φn
ij

)
(12)− DΨ s

2

(∣∣∇c
hΨ

n+1
ij

∣∣2 + ∣∣∇c
hΨ

n
ij

∣∣2)
,

where ∇e
h and ∇c

h are cell-edge and cell-center based discrete
gradients, respectively, and are described in Eqs. (16) and (17).

3.1. A nonlinear multigrid V-cycle algorithm

In this section, we develop a nonlinear full approximation
storage (FAS) multigrid method to solve the nonlinear discrete
system at the implicit time level. The nonlinearity is treated
using one step of Newton’s iteration and a pointwise Gauss–
Seidel relaxation scheme is used as the smoother in the multi-
grid method. See Ref. [8] for additional details and the follow-
ing notations.

Let us rewrite Eqs. (9)–(12) as follows:

N

(
Ψ n+1,Φn+1,

(
δE
δΨ

)n+1/2

,

(
δE
δΦ

)n+1/2
)

(13)= (
sn

1 , sn
2 , sn

3 , sn
4

)
,

where the nonlinear system operator (N ), the left-hand side of
Eq. (13), is defined as(

Ψ n+1
ij

	t
− MΨ 	h

(
δE
δΨ

)n+1/2

ij

,
Φn+1

ij

	t
− MΦ	h

(
δE
δΦ

)n+1/2

ij

,

(
δE
δΨ

)n+1/2

ij

− ∂F (Ψ n+1
ij ,Φn+1

ij )

2∂Ψ

+ DΨ ∇h · [(1 − sΦn+1
ij

)∇e
hΨ

n+1
ij

]
,(

δE
δΦ

)n+1/2

ij

− ∂F (Ψ n+1
ij ,Φn+1

ij )

2∂Φ

+ DΦ	hΦ
n+1
ij + DΨ s

2

∣∣∇c
hΨ

n+1
ij

∣∣2

)
,

and the source term, the right-hand side of Eq. (13), is(
Ψ n

ij

	t
,
Φn

ij

	t
,
∂F (Ψ n

ij ,Φ
n
ij )

2∂Ψ
− DΨ ∇h · [(1 − sΦn

ij

)∇e
hΨ

n
ij

]
,

∂F (Ψ n
ij ,Φ

n
ij )

2∂Φ
− DΦ	hΦ

n
ij − DΨ s

2

∣∣∇c
hΨ

n
ij

∣∣2
)

.

In the following description of one FAS cycle, we assume
that a sequence of grids Ωk (Ωk−1 is coarser than Ωk by fac-
tor 2). Given the number η of pre- and postsmoothing relaxation
sweeps, an iteration step for the nonlinear multigrid method us-
ing the V-cycle is formally written as follows:

FAS multigrid cycle(
Ψ m+1

k ,Φm+1
k ,

(
δE
δΨ

)m+1/2

k

,

(
δE
δΦ

)m+1/2

k

)

= FAScycle

(
k,Ψ m

k ,Φm
k ,

(
δE
δΨ

)m−1/2

k

,

(
δE
δΦ

)m−1/2

k

,

Nk, s
n
1 k, s

n
2 k, s

n
3 k

, sn
4 k, η

)
.

That is, {Ψ m
k ,Φm

k , ( δE
δΨ

)
m−1/2
k , ( δE

δΦ
)
m−1/2
k } and {Ψ m+1

k ,Φm+1
k ,

( δE
δΨ

)
m+1/2
k , ( δE

δΦ
)
m+1/2
k } are the approximations of {Ψ n+1

k ,

Φn+1
k , ( δE

δΨ
)
n+1/2
k , ( δE

δΦ
)
n+1/2
k } before and after an FAScycle.

We now define the FAScycle.

(1) Presmoothing(
Ψ̄ m

k , Φ̄m
k ,

(
δE
δΨ

)m−1/2

k

,

(
δE
δΦ

)m−1/2

k

)

= SMOOTHη

(
Ψ m

k ,Φm
k ,

(
δE
δΨ

)m−1/2

k

,

(
δE
δΦ

)m−1/2

k

,

Nk, s
n
1 k, s

n
2 k, s

n
3 k

, sn
4 k

)
,

which means performing η smoothing steps with the initial
approximations and source terms to get the approximations

{Ψ̄ m
k , Φ̄m

k , ( δE
δΨ

)
m−1/2
k , ( δE

δΦ
)
m−1/2
k }. One SMOOTH relaxation

operator step consists of solving the system (14)–(17) given be-
low by 4 × 4 matrix inversion for each ij :

Ψ̄ m
ij

	t
+ 4MΨ

h2

(
δE
δΨ

)m−1/2

ij

= sn
1 ij + MΨ

h2

[(
δE
δΨ

)m−1/2

i−1,j

+
(

δE
δΨ

)m−1/2

i+1,j

(14)+
(

δE
δΨ

)m−1/2

i,j−1
+

(
δE
δΨ

)m−1/2

i,j+1

]
,

Φ̄m
ij

	t
+ 4MΦ

h2

(
δE
δΦ

)m−1/2

ij

= sn
2 ij + MΦ

h2

[(
δE
δΦ

)m−1/2

i−1,j

+
(

δE
δΦ

)m−1/2

i+1,j

(15)+
(

δE
δΦ

)m−1/2

+
(

δE
δΦ

)m−1/2
]
,

i,j−1 i,j+1
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−
[

∂2F(Ψ m
ij ,Φm

ij )

2∂Ψ 2
+ DΨ

h2

(
4 − s

2

(
Φ̄m

i−1,j

+ Φm
i+1,j + 4Φm

ij + Φ̄m
i,j−1 + Φm

i,j+1

))]
Ψ̄ m

ij

− ∂2F(Ψ m
ij ,Φm

ij )

2∂Φ∂Ψ
Φ̄m

ij +
(

δE
δΨ

)m−1/2

ij

= sn
3 ij

+ ∂F (Ψ m
ij ,Φm

ij )

2∂Ψ
− ∂2F(Ψ m

ij ,Φm
ij )

2∂Ψ 2
Ψ m

ij

− ∂2F(Ψ m
ij ,Φm

ij )

2∂Φ∂Ψ
Φm

ij

− DΨ

h2

[(
1 − s

Φm
ij + Φm

i+1,j

2

)
Ψ m

i+1,j

+
(

1 − s
Φ̄m

i−1,j + Φm
ij

2

)
Ψ̄ m

i−1,j

+
(

1 − s
Φm

ij + Φm
i,j+1

2

)
Ψ m

i,j+1

(16)+
(

1 − s
Φ̄m

i,j−1 + Φm
ij

2

)
Ψ̄ m

i,j−1

]
,

−∂2F(Ψ m
ij ,Φm

ij )

2∂Ψ ∂Φ
Ψ̄ m

ij −
(

4DΦ

h2
+ ∂2F(Ψ m

ij ,Φm
ij )

2∂Φ2

)
Φ̄m

ij

+
(

δE
δΦ

)m−1/2

ij

= sn
4 ij + ∂F (Ψ m

ij ,Φm
ij )

2∂Φ
− ∂2F(Ψ m

ij ,Φm
ij )

2∂Ψ ∂Φ
Ψ m

ij

− ∂2F(Ψ m
ij ,Φm

ij )

2∂Φ2
Φm

ij

− DΦ

h2

(
Φm

i+1,j + Φ̄m
i−1,j + Φm

i,j+1 + Φ̄m
i,j−1

)
(17)− DΨ s

8h2

((
Ψ m

i+1,j − Ψ̄ m
i−1,j

)2 + (
Ψ m

i,j+1 − Ψ̄ m
i,j−1

)2)
.

(2) Compute the defect(
defm

1 k,defm
2 k,defm3 k

,defm
4 k

) = (
sn

1 k, s
n
2 k, s

n
3 k

, sn
4 k

)

− Nk

(
Ψ̄ m

k , Φ̄m
k ,

(
δE
δΨ

)m−1/2

k

,

(
δE
δΦ

)m−1/2

k

)
.

(3) Restrict the defect and {Ψ̄ m
k , Φ̄m

k , ( δE
δΨ

)
m−1/2
k , ( δE

δΦ
)
m−1/2
k }(

defm
1 k−1,defm

2 k−1,defm
3 k−1,defm

4 k−1

)
= I k−1

k

(
defm

1 k,defm
2 k,defm

3 k
,defm

4 k

)
,(

Ψ̄ m
k−1, Φ̄

m
k−1,

(
δE
δΨ

)m−1/2

k−1
,

(
δE
δΦ

)m−1/2

k−1

)

= I k−1
k

(
Ψ̄ m

k , Φ̄m
k ,

(
δE
δΨ

)m−1/2

k

,

(
δE
δΦ

)m−1/2

k

)
.

The restriction operator I k−1
k maps k-level functions to the (k−

1)-level functions.

dk−1(xi, yj ) = I k−1
k dk(xi, yj )

= 1

4

[
dk(xi−1/2, yj−1/2) + dk(xi−1/2, yj+1/2)

+ dk(xi+1/2, yj−1/2) + dk(xi+1/2, yj+1/2)
]
.

Coarse grid values are obtained by averaging the four nearby
fine grid values.

(4) Compute the right-hand side(
sn

1 k−1, s
n
2 k−1, s

n
3 k−1, s

n
4 k−1

)
= (

defm
1 k−1,defm

2 k−1,defm
3 k−1,defm

4 k−1

)
+ Nk−1

(
Ψ̄ m

k−1, Φ̄
m
k−1,

(
δE
δΨ

)m−1/2

k−1
,

(
δE
δΦ

)m−1/2

k−1

)
.

(5) Compute an approximate solution {Ψ̂ m
k−1, Φ̂

m
k−1,

(
ˆδE

δΨ
)
m−1/2
k−1 , (

ˆδE
δΦ

)
m−1/2
k−1 } of the coarse grid equation on Ωk−1,

i.e.,

Nk−1

(
Ψ m

k−1,Φ
m
k−1,

(
δE
δΨ

)m−1/2

k−1
,

(
δE
δΦ

)m−1/2

k−1

)

(18)= (
sn

1 k−1, s
n
2 k−1, s

n
3 k−1, s

n
4 k−1

)
.

If k = 1, we explicitly invert a 4 × 4 matrix to obtain the so-
lution. If k > 1, we solve Eq. (18) by performing a FAS k-grid

cycle using {Ψ̄ m
k−1, Φ̄

m
k−1, (

δE
δΨ

)
m−1/2
k−1 , ( δE

δΦ
)
m−1/2
k−1 } as an initial

approximation:(
Ψ̂ m+1

k−1 , Φ̂m+1
k−1 ,

ˆ(
δE
δΨ

)m+1/2

k−1
,

ˆ(
δE
δΦ

)m+1/2

k−1

)

= FAScycle

(
k − 1, Ψ̄ m

k−1, Φ̄
m
k−1,

(
δE
δΨ

)m−1/2

k−1
,

(
δE
δΦ

)m−1/2

k−1
,Nk−1, s

n
1 k−1, s

n
2 k−1, s

n
3 k−1, s

n
4 k−1, η

)
.

(6) Compute the coarse grid correction (CGC)

v̂m
1k−1 = Ψ̂ m

k−1 − Ψ̄ m
k−1,

v̂
m−1/2
3k−1 =

ˆ(
δE
δΨ

)m−1/2

k−1
−

(
δE
δΨ

)m−1/2

k−1
,

v̂m
2k−1 = Φ̂m

k−1 − Φ̄m
k−1,

v̂
m−1/2
4k−1 =

ˆ(
δE
δΦ

)m−1/2

k−1
−

(
δE
δΦ

)m−1/2

k−1
.

(7) Interpolate the correction(
v̂m

1k, v̂
m
2k, v̂

m
3k, v̂

m
4k

) = I k
k−1

(
v̂

m−1/2
1k−1 , v̂

m−1/2
2k−1 , v̂

m−1/2
3k−1 , v̂

m−1/2
4k−1

)
.

The interpolation operator I k
k−1 maps the (k − 1)-level func-

tions to the k-level functions. Here, the coarse values are
simply transferred to the four nearby fine grid points, i.e.,
vk(xi, yj ) = I k vk−1(xi, yj ) = vk−1(xi+1/2, yj+1/2) for i and
k−1
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j odd-numbered integers. The values at the other node points
are given by

vk(xi+1, yj ) = vk(xi, yj+1) = vk(xi+1, yj+1)

= vk−1(xi+1/2, yj+1/2),

where i and j are odd-numbered integers.
(8) Compute the corrected approximation on Ωk

Ψ
m, after CGC
k = Ψ̄ m

k + v̂m
1k,(

δE
δΨ

)m−1/2, after CGC

k

=
(

δE
δΨ

)m−1/2

k

+ v̂
m−1/2
3k .

Φ
m, after CGC
k = Φ̄m

k + v̂m
2k,(

δE
δΦ

)m−1/2, after CGC

k

=
(

δE
δΦ

)m−1/2

k

+ v̂
m−1/2
4k .

(9) Postsmoothing(
Ψ m+1

k ,Φm+1
k ,

(
δE
δΨ

)m+1/2

k

,

(
δE
δΦ

)m+1/2

k

)

= SMOOTHη

(
Ψ

m, after CGC
k ,Φ

m, after CGC
k ,

(
δE
δΨ

)m−1/2, after CGC

k

,

(
δE
δΦ

)m−1/2, after CGC

k

,

Nk, s
n
1 k, s

n
2 k, s

n
3 k

, sn
4 k

)
.

This completes the description of a nonlinear FAS cycle.

4. Numerical experiments

In this section, we describe how we performed a conver-
gence test of the proposed scheme and present several simula-
tions of phase separation. Above all, we investigate the effects
of s and λ on the phase separation. We also describe the surfac-
tant dynamics diffusing into a droplet interfacial region from
the outside.

4.1. Convergence test of the proposed scheme

To obtain an estimate of the convergence rate, we performed
a number of simulations for a sample problem on a set of in-
creasingly finer grids. The initial condition is given by

Ψ (x, y) = 0.1 cos(3x) + 0.4 cos(y),

(19)Φ(x,y) = 0.1

on a domain Ω = [0,2π]×[0,2π]. The numerical solutions are
computed on the uniform grids, h = π/2n for n = 4, 5, 6, and 7.
The uniform time steps, 	t = 0.1h, g = 1, β = 2, ν = 0.1,
λ = 0.25, s = 0.1, DΨ,Φ = 0.0225, and MΨ,Φ = 1 are used to
establish the convergence rates. For each case, the calculations
are run to time T = 0.1. In our formulation of the method for
the TDGL system, since a cell-centered grid is used, we define
the error to be the discrete l2-norm of the difference between
Table 1
l2-Norm of the errors and convergence rates

Case 32–64 Rate 64–128 Rate 128–256

Ψ 1.0759E−1 2.6481 1.7165E−2 2.0792 4.0618E−3
Φ 2.6155E−3 2.1298 5.9762E−4 1.9966 1.4975E−4

Fig. 2. The time-dependent total energy E(Ψ,Φ) of the numerical solutions
with the initial data (19).

that grid and the average of the next finer grid cells covering it:

e
h/ h

2 ij

def= Ψhij − (
Ψh

2 2i,2j
+ Ψh

2 2i−1,2j
+ Ψh

2 2i,2j−1

+ Ψh
2 2i−1,2j−1

)/
4.

The rate of convergence is defined as the ratio of successive
errors:

log2
(||e

h/ h
2
||/||e h

2 / h
4
||).

The errors and rates of convergence are given in Table 1. The
results suggest that the scheme is indeed second-order accurate.

In Fig. 2, the time evolution of the energy E(Ψ,Φ) with same
initial data (19) is shown. As expected from Eq. (8), the total
energy is nonincreasing and tends to a constant value.

4.2. Spinodal decomposition with off-critical quench

We begin the numerical experiments with an example of
spinodal phase separation of a ternary mixture. Here, we con-
sider the effect of λ in the term λ(Φ − Φave)

2 in Eq. (2). For
the initial condition, we take randomly perturbed concentration
fields:

Ψ (x, y) = Ψave + 0.01rand(x, y),

(20)Φ(x,y) = Φave + 0.01rand(x, y),

where the random number function, rand(x, y), is in [−1,1]
and has zero mean. The (Ψave,Φave) sets are chosen as
(0.2,0.3). The computational domain using a spatial mesh of
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Fig. 3. Columns (a), (b) and columns (c), (d) show the time evolutions of spatial patterns of the Ψ and Φ fields with λ = 0.25 and λ = 0.05, respectively. Dark area
denotes the region of positive values of Ψ in (a) and higher values of Φ in (b). Times are at t = 0.4,2.0,3.9, and 7.8.
128 × 128 is Ω = [0,2π] × [0,2π]. The uniform time step,
	t = 0.1h, g = 1, β = 2, ν = 0.1, s = 0.5, DΨ,Φ = 0.0225,
and MΨ,Φ = 1 are used. In Fig. 3, columns (a), (b) and
columns (c), (d) show the time evolution of the spatial patterns
of the Ψ and Φ fields with λ = 0.25 and λ = 0.05, respec-
tively. Dark area denotes the region of positive values of Ψ

in (a) and higher values of Φ in (b). The times are at t = 0.4,
2.0, 3.9, and 7.8. A moderate value of λ (= 0.25) prevents the
surfactants from forming clusters as is shown in Fig. 3b. How-
ever, when λ (= 0.05) is too small, the surfactants cluster at
some region and change the global dynamics as is shown in
Fig. 3d.

Next, we investigate the effect of s in the term −sDΨ ×
Φ|∇Ψ |2 in Eq. (1). The initial configurations of the Ψ and Φ

fields are chosen to be randomly distributed as in Eq. (20) with
the (Ψave,Φave) = (0.4,0.3) values. All other parameters are
the same as before except λ (= 0.25). In Fig. 4, columns (a), (b)
and columns (c), (d) show the time evolution of spatial pat-
terns of the Ψ and Φ fields with s = 0.05 and s = 0.5, re-
spectively. The times are at t = 0.4, 1.2, 2.0, and 7.8. The
term −sDΨ Φ|∇Ψ |2 in Eq. (1) energetically prefers a relatively
high value of Φ at the interface. One can see this phenom-
enon from Figs. 4b and 4d. At the higher value of s (= 0.5),
more surfactant accumulates at the interface than in the case of
s (= 0.05).
4.3. Quantitative result—domain growth rate

We investigate quantitatively the coarsening manner ob-
served in numerical simulations. The growth of the ordered do-
mains is measured through the average domain size calculated
as the inverse of the first moment of the circularly averaged
structure factor [5]. Another reliable measure of the character-
istic length is the average radius of gyration of the droplets since
the droplets are found to be circular in the simulation [2,9]. We
use the weighted average radius,

R(t) =
∑n

i=1 R2
i∑n

i=1 Ri

, Ri =
√

Si

π
,

where Si is the droplet area and n is the total number of droplets
at time t .

The computational domain is Ω = [0,40π] × [0,40π] and
the mesh size is 256 × 256 with time step 	t = 0.1h. All
the other parameters are the same as in the previous cases
except (Ψave,Φave) = (0.4,0.3) and s (= 0.5). To obtain an
averaged behavior, ten simulations are run with identical con-
ditions except for the seed of the random number. In Fig. 5,
we show the characteristic domain size, 〈R(t)〉, as a func-
tion of time t . The notation 〈·〉 denotes an average over 10
different initial random conditions. On a log–log plot, the
growth appears to be slower than the Lifshitz–Slyozov growth
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Fig. 4. Columns (a), (b) and columns (c), (d) show the time evolutions of spatial patterns of the Ψ and Φ fields with s = 0.05 and s = 0.5, respectively. The
(Ψave,Φave) sets are chosen as (0.4,0.3). Times are at t = 0.4,1.2,2.0, and 7.8.
Fig. 5. Time evolution of the mean droplet size 〈R(t)〉 is shown on a log-
arithmic-scale plot. The straight line has slope 1/3 and corresponds to the
Lifshitz–Slyozov growth law. The dash–dot line has slope 1/3.5.

law 〈R(t)〉 ∼ t1/3. We observe a slight decrease in the ex-
ponent, 〈R(t)〉 ∼ t1/3.5. This finding is consistent with previ-
ous results [10,11]. For example, previous results using a lat-
tice gas model have shown that the surfactant slows down the
growth [11].
4.4. Diffusion of surfactant into the droplet interfacial region

Finally, we discuss the diffusion of the surfactant into the
droplet interfacial region. We have an initial condition as fol-
lows:

Ψ (x, y) = tanh
1 − √

(x − π)2 + (y − π)2

0.5
√

2DΨ

,

Φ(x, y) = 0.5

(
1 + tanh

1 − √
x2 + y2

0.5
√

2DΦ

)
.

The computational domain using a spatial mesh of 128 × 128
is Ω = [0,2π] × [0,2π]. The uniform time step, 	t = 0.3h,
g = 1, β = 2, ν = 0.01, s = 0.2, λ = 5, DΨ,Φ = 0.01, and
MΨ,Φ = 1 are used. Fig. 6 shows the time evolution of the
surfactant diffusion into the droplet interfacial region. The
times are at t = 0.00,0.12,0.23,0.35,0.47,0.70,1.17, and
4.69 (from left to right and top to bottom order). Initially, there
are a droplet in the center of the domain and one quarter of
disk of surfactant at the left bottom corner. As the time goes
on, the surfactant concentration diffuses to the bulk region and
accumulates at the interfacial region of the droplet.

5. Conclusions

We have presented a numerical method for solving the
TDGL model. The numerical scheme is finite difference and is
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Fig. 6. Surfactant diffusion into the droplet interfacial region. Dotted circles are interfacial region and filled contour lines are surfactant concentration. The higher
value of concentration is, the darker color is. The times are at t = 0.00,0.12,0.23,0.35,0.47,0.70,1.17, and 4.69 (from left to right and top to bottom order).
solved by an efficient and accurate nonlinear multigrid method.
Numerical experiments showed that the scheme is second-order
in both space and time and has only a first-order time step re-
striction. We have studied the effects of parameters, λ and s,
on the dynamics of phase separation for a water–oil–surfactant
system. A moderate value of λ prevents the surfactants from
forming clusters. When λ is too small, the surfactants cluster at
some region. This clustering changes the global dynamics. At
a higher value of s, more surfactant accumulates at the inter-
face than at a lower value of s. We also described diffusion of
surfactant into the stationary droplet interfacial region.

We view the work presented here as preparatory for a study
of three component liquids such as two immiscible fluids and
one surfactant system with hydrodynamics. In a companion pa-
per [12], we will describe coupling the ternary TDGL model to
the equations of fluid flow (Navier–Stokes equations) to sim-
ulate the hydrodynamics of flows consisting of three compo-
nents. Such a system is governed by

∇ · u = 0,

ρ(Ψ )(ut + u · ∇u) = −∇p + ∇ · [η(Ψ )(∇u + ∇uT )
]

− αDΨ σ(Φ)∇ ·
( ∇Ψ

|∇Ψ |
)

|∇Ψ |∇Ψ + ρ(Ψ )g,

∂Ψ

∂t
+ u · ∇Ψ = MΨ 	

δE
δΨ

,

∂Φ

∂t
+ u · ∇Φ = MΦ	

δE
δΦ

,

δE
δΨ

= ∂F (Ψ,Φ)

∂Ψ
− 2DΨ ∇ · [(1 − sΦ)∇Ψ

]
,

δE
δΦ

= ∂F (Ψ,Φ)

∂Φ
− 2DΦ	Φ − DΨ s|∇Ψ |2,

where u is the velocity, ρ(Ψ ) is the density, η(Ψ ) is the vis-
cosity, p is the pressure, α is a constant, σ(Φ) is the sur-
face tension coefficient, and g is the gravity vector. The term
−αDΨ σ(Φ)∇ · ( ∇Ψ

|∇Ψ | )|∇Ψ |∇Ψ accounts for the interfacial
capillary force.
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