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Abstract. The Ginzburg-Landau free energy functional with two order parameters has been widely used
to describe surfactant adsorption phenomena at the interface between two immiscible fluids such as oil
and water. To model surfactant adsorption, additional surfactant related terms are added to the original
free energy functional which models an immiscible binary mixture. In this paper, we present a detailed
comparison of phase-field models for an immiscible binary mixture with surfactant. In particular, we inves-
tigate the effects of mathematical model parameters on equilibrium surfactant profile across the interface
between the immiscible binary mixture. Most previous models have severe time-step constraints due to
the nonlinear coupling of order parameters. To solve these stability problems, we propose a special case of
these models which allows the use of a much larger time-step size. We also apply a type of unconditionally
gradient stable scheme and a fast multigrid method to solve the proposed model efficiently and accurately.

1 Introduction

Interfacial tension between two immiscible fluids arises
from an imbalance of their respective cohesive forces at
the interface and is sensitive to the presence of surfac-
tants. Surfactants are amphophilic compounds which con-
tain both hydrophobic and hydrophilic groups (see Fig. 1).

Surfactant molecules modify the properties of the
water/oil interface. Because of these properties, surfac-
tants have been widely used in industrial fields for var-
ious purposes. Examples are improving oil recovery [1],
food processing [2,3], and forming a variety of different
structures [4,5]. Recently, there has been interest in two-
phase flows in microchannels [6–9].

Up to now, a number of theoretical or numerical
studies have been reported to identify the mecha-
nisms of droplet deformation [10–13], breakup and
coalescence [14–16] in the presence of surfactants. In
general, an immiscible binary mixture is described by
the Ginzburg-Landau free energy functional, which in-
duces the Cahn-Hilliard type equation [17] governing the
time dependent behavior of fluids. To capture surfac-
tant effects, various forms of additional functionals [18–25]
such as Teramoto and Yonezawa’s [22], Theissen and
Gompper’s [23], Sman and Graaf’s [24], and Teng et
al.’s [25] are proposed.

In this paper, we perform a comparison study of phase-
field models for an immiscible binary mixture with surfac-
tant and consider a special case of various models. Most
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Fig. 1. Schematic illustration of the two immiscible fluids and
surfactant system.

previous models have severe time-step constraints due to
the nonlinear coupling of order parameters. However, our
proposed model allows the use of a much larger time-step
size. The governing equations are solved by an efficient
and accurate nonlinear multigrid method at the implicit
time step.

The rest of this paper is organized as follows: in Sec-
tion 2, we briefly review four different phase-field models
for an immiscible binary mixture with surfactant and con-
sider a special case of these models which allows the use
of a much larger time-step size. Numerical experiments
such as the effects of mathematical model parameters are
presented in Section 3. Finally, conclusions are given in
Section 4.
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Fig. 2. A double well potential, (φ2 − 1)2/4.

2 Governing equations

The thermodynamics of a fluid mixture system is deter-
mined by its free energy functional. The Ginzburg-Landau
free energy functional has been commonly used to describe
a binary mixture

F(φ) =
∫
Ω

F (φ)dx,

F (φ) =
1
4
(φ2 − 1)2 +

εφ
2
|∇φ|2,

where an order parameter φ represents two immiscible
fluid phases corresponding to φ = 1 and φ = −1. And
the interface is defined by φ = 0. The double-well poten-
tial (φ2 − 1)2/4 is the Helmholtz free energy as shown in
Figure 2. The small positive constant εφ is the gradient
energy coefficient related to the interfacial energy and Ω
is a domain.

By adding a surfactant related additional term G(φ, ψ)
to F (φ), phase-field models for an immiscible binary mix-
ture with surfactant are given as the following free energy
functional:

E(φ, ψ) =
∫
Ω

[F (φ) +G(φ, ψ)]dx, (1)

where ψ is the surfactant concentration. In this section,
we briefly review the additional function G(φ, ψ) in four
different free energy functionals such as Teramoto and
Yonezawa’s [22], Theissen and Gompper’s [23], Sman and
Graaf’s [24], and Teng et al.’s [25]. Furthermore we will
introduce our proposed model which is a special case of
previous models.

2.1 Teramoto and Yonezawa’s energy functional

In [22], Teramoto and Yonezawa proposed the two order
parameter Ginzburg-Landau free energy functional with
an additional term

G(φ, ψ) = −sψ
2
|∇φ|2 +

εψ
2
|∇ψ|2 +

w

2
(ψ − ψave)φ2

+
λ

2
(ψ − ψave)2, (2)

where s, εψ, w, λ are positive phenomenological parame-
ters and ψave is the averaged value of ψ. In the function
G(φ, ψ), the term −0.5sψ|∇φ|2 prefers a relatively high
value of ψ at water-oil interfaces. 0.5εψ|∇ψ|2 is the dif-
fusion for surfactant. The term 0.5w(ψ − ψave)φ2 favors
smaller value of ψ than the average surfactant concentra-
tion. Since the total surfactant concentration should be
conserved, ψ tends to have higher values around interfa-
cial region (φ2 � 1) and lower values in the bulk phases
(φ2 ≈ 1). The term λ(ψ−ψave)2 prevents the surfactants
from forming clusters. The chemical potentials δE/δφ and
δE/δψ are obtained via the variational derivatives of the
energy functional (1) with respect to φ and ψ, respectively.
Then, the time evolution equations of φ(x, t) and ψ(x, t)
are given as

∂φ

∂t
= MφΔ

δE
δφ
, (3)

∂ψ

∂t
= MψΔ

δE
δψ
, (4)

δE
δφ

= φ3 − φ− εφΔφ+ s∇ · (ψ∇φ) + w(ψ − ψave)φ,

(5)
δE
δψ

= −εψΔψ − s

2
|∇φ|2 +

w

2
φ2 + λ(ψ − ψave), (6)

where Mφ and Mψ are the mobilities of φ and ψ,
respectively.

2.2 Theissen and Gompper’s energy functional

Theissen and Gompper [23] chose a slightly different form
of free energy function to study the dynamics of sponta-
neous emulsification:

G(φ, ψ) = −sψ
2
|∇φ|2 +

εψ
2
|∇ψ|2 +

w

2
ψφ2 +

λ

2
ψ2

+
vψ

2
(Δφ)2,

where v is a positive parameter and the term vψ(Δφ)2
prefers relatively low values of ψ at the interface. The
other terms have the similar effects as in Teramoto and
Yonezawa’s model, which we have described. Then δE/δφ
and δE/δψ are given as

δE
δφ

= φ3 − φ− εφΔφ+ s∇ · (ψ∇φ) + wψφ

+ vΔ(ψΔφ), (7)
δE
δψ

= −εψΔψ − s

2
|∇φ|2 +

w

2
φ2 + λψ +

v

2
(Δφ)2. (8)

2.3 Sman and Graaf’s energy functional

In [24], Sman and Graaf proposed the following energy
function

G(φ, ψ) = −sψ
2
|∇φ|2 +

w

2
ψφ2

+ λ [ψ lnψ + (1 − ψ) ln (1 − ψ)] . (9)
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Here λ[ψ lnψ+(1−ψ) ln (1 − ψ)] is the entropy term and
restricts the value of ψ to be in the range [0, 1] and models
the surfactant system by inducing a Fickian type equa-
tion [26] for ψ in fluids. Then we have

δE
δφ

= φ3 − φ− εφΔφ+ s∇ · (ψ∇φ) + wφψ, (10)

δE
δψ

= −s
2
|∇φ|2 +

w

2
φ2 + λ[lnψ − ln(1 − ψ)]. (11)

2.4 Teng et al.’s energy functional

In [25], Teng et al. set the additional energy term as
follows:

G(φ, ψ) =
s

2
(ψ − |∇φ|)2 + λ [ψ lnψ + (1 − ψ) ln (1 − ψ)].

The first term 0.5s(ψ − |∇φ|)2 makes the surfactant con-
centration profile be similar to the fluid interface profile.
Then we have

δE
δφ

= φ3 − φ− (εφ + s)Δφ + s∇ ·
(
ψ

∇φ
|∇φ|

)
, (12)

δE
δψ

= s(ψ − |∇φ|) + λ[lnψ − ln(1 − ψ)]. (13)

2.5 Proposed energy functional

As a special case from previous models, we propose a sim-
ple and numerically robust model. The term −sψ|∇φ|2
favors the surfactants to sit at water-oil interfaces and
εψ|∇ψ|2 is the diffusion for surfactant. Thus depending
on the magnitude of parameters s and εψ in the two func-
tions, surfactants can sharply or smoothly accumulate in
the interface. To prevent surfactants from forming clus-
ters, we consider the term ψ lnψ + (1 − ψ) ln (1 − ψ). For
the stability of numerical computation, we replace ψ lnψ+
(1−ψ) ln (1 − ψ) by −4 ln(2)ψ(1−ψ) (see Fig. 3). Finally,
we propose the following additional energy function

G(φ, ψ) = −sψ
2
|∇φ|2 +

εψ
2
|∇ψ|2 − λψ(1 − ψ). (14)

Then we have the following chemical potentials of φ and ψ:

δE
δφ

= φ3 − φ− εφΔφ+ s∇ · (ψ∇φ), (15)

δE
δψ

= −s
2
|∇φ|2 − εψΔψ + λ(2ψ − 1). (16)

For simplicity, the boundary conditions are imposed as the
zero Neumann boundary conditions on the domain Ω:

n · ∇φ = n · ∇ψ = n · ∇δE
δφ

= n · ∇ δE
δψ

= 0, (17)

where n is a unit normal vector to ∂Ω.
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Fig. 3. Plots of ψ lnψ+(1−ψ) ln (1 − ψ) and −4 ln(2)ψ(1−ψ).

Table 1. Parameter values for five models. Here × means that
the corresponding term is not used.

Parameter s εψ w λ v
Teramoto and Yonezawa 0.5 0.5 0.1 0.1 ×
Theissen and Gompper 0.25 0.4 0.1 0.1 0.05
Sman and Graaf 0.1 × 0.1 0.02 ×
Teng et al. 0.1 × × 0.01 ×
Proposed 0.48 0.4 × 0.05 ×

3 Numerical experiments

Numerical solution is described in Appendix. In numerical
experiments, we consider that numerical solutions are at
steady state when the difference between the consecutive
solutions ψn+1 and ψn becomes less than a given toler-
ance, tol = 10−6. We perform numerical experiments on
the computational domain Ω = (0, 128) with a 512 grid.
Initial conditions for φ(x) and ψ(x) are

φ(x) = tanh
(
(x− 64)/(

√
2εφ)

)
and ψ(x) = 0.1.

And we take parameters as Mφ = Mψ = 1, Δt = 0.01,
and εφ = 1.442.

3.1 Effects of parameters

In this section we will test the effect of parameters from
the five phase-field models. Unless otherwise specified, we
use the following parameters which are summarized in Ta-
ble 1. The steady surfactant shapes are shown in Figure 4.

3.1.1 Teramoto and Yonezawa’s energy functional

In this subsection, we present several numerical experi-
ments to show the effect of each term in the Teramoto
and Yonezawa’s energy functional with various εψ, s, w,
and λ values.

In Figure 5a, three different values of s = 0.75, 0.5, 0.25
are used for comparison. The grey region represents the
transition layer of phase-field, i.e., φ ∈ (−0.95, 0.95). We
observe that larger s makes more surfactants gather at
the interface between two immiscible fluids as expected
from the term −0.5sψ|∇φ|2. We use three different values
of εψ = 1, 0.5, 0.25 in Figure 5b. From the results, we
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Fig. 4. Plots for numerical results with the parameters in Ta-
ble 1.
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Fig. 5. (a), (b), (c), and (d) show the effect of s, εψ, w, and λ
in Teramoto and Yonezawa’s model, respectively.

can observe that when the parameter εψ decreases, the
interface of surfactants becomes sharper due to the diffu-
sion term 0.5εψ|∇ψ|2. The coupling term 0.5w(ψ−ψave)φ2

guarantees small local surfactant concentration in the bulk
phases [24]. Figure 5c shows the effect of this local cou-
pling term with three different values of w = 0.2, 0.1, and
0.05. For parameter λ, as we can see from Figure 5d, larger
λ causes the interface of surfactants smooth as we expect
from the term 0.5λ(ψ−ψave)2. Here three different values
λ = 0.2, 0.1, 0.05 are used.

3.1.2 Theissen and Gompper’s energy functional

In Figures 6a–6e, we show the effect of model parameters
εψ, s, w, λ, and v. εψ, s, w, and λ have similar effects
as Teramoto and Yonezawa’s energy functional. In Fig-
ure 6a, three different values of s = 0.5, 0.25, 0.1 are used
to show the effect of −0.5sψ|∇φ|2. To show the effect of
the term 0.5εψ|∇ψ|2, we use parameters εψ = 1, 0.4, 0.1
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Fig. 6. (a), (b), (c), (d), and (e) show the effect of s, εψ, w,
λ, and v in Theissen and Gompper’s model, respectively.

in Figure 6b. Figure 6c shows the effect of 0.5wψφ2 by
using three different values of w = 0.2, 0.1, 0.05. Fig-
ure 6d shows the effect of the term 0.5λψ2. Here three
different values of λ = 0.2, 0.1, 0.05 are used. Figure 6e
shows the effect of this term with three different values
v = 0.2, 0.05, 0.01.

3.1.3 Sman and Graaf’s energy functional

In Figure 7, we show the effect of additional term by the
parameters s, w, and λ. The term 0.5sψ|∇φ|2 means the
nonlocal coupling term and plays a role to perform the
preference of surfactant at the phase-field interface. From
the results shown in Figure 7a, we observe that larger s
makes interfacial profile sharper. Here three different val-
ues of s = 0.2, 0.1, 0.05 are used. In Figure 7b, we use
three different values of w = 0.15, 0.1, 0.05. As can be
seen that the larger w also causes ψ to grow faster, since
this term is introduced to gather the surfactant at the in-
terface. In numerical experiment for λ shown in Figure 7c,
the smaller λ also causes ψ to grow sharper. Here three
different values of λ = 0.04, 0.02, 0.01 are used.
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Fig. 7. (a), (b), and (c) show the effect of s, w, and λ in Sman
and Graaf’s model, respectively.
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Fig. 8. (a) and (b) show the effect of s and λ in Teng et al.’s
model, respectively.

3.1.4 Teng et al.’s energy functional

Teng et al. introduce the additional term s(ψ − |∇φ|)2,
which makes surfactants move to the interfaces until ψ ∼
|∇φ| [25,27]. Thus as times goes on, the surfactant con-
centration diffuses to the bulk region and accumulates
at the interfacial region. In Figure 8a, we use three dif-
ferent values of s = 0.2, 0.1, and 0.05. It can be ob-
served that the larger s is used, the more surfactants are
gathered at the interface. These results also suggest that
ψ indeed approaches |∇φ|. And the numerical result for
λ [ψ lnψ + (1 − ψ) ln (1 − ψ)] term is shown in Figure 8b
with three different values of λ = 0.02, 0.01, and 0.005.

3.1.5 Proposed energy functional

Since we already studied the effect of the terms
−0.5sψ|∇φ|2 and 0.5εψ|∇ψ|2, we focus on the term
−λψ(1 − ψ), which is a replacing term for λ[ψ lnψ +
(1 − ψ) ln(1 − ψ)]. To show the numerical stability of
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Fig. 9. (a) and (b) are results with Δt = 1 and Δt = 100.

our model, we consider a numerical test with two mod-
els. One is our proposed model and the other is with
λ[ψ lnψ+(1−ψ) ln(1−ψ)]. The parameters are chosen as
s = 0.2 and εψ = 0.2. To match two terms, −0.015ψ(1−ψ)
and 0.005[ψ lnψ + (1 − ψ) ln (1 − ψ)] are used. Figure 9a
shows the result with a small time step Δt = 1. Both
models generate similar results. Figure 9b shows the re-
sult with a large time step Δt = 100. The result sug-
gests that with a large time step the model with the term
ψ lnψ + (1 − ψ) ln (1 − ψ) shows oscillations.

3.2 The positiveness of surfactant concentration

Theoretically, the order parameter ψ for the surfactant
is in the range [0, 1]. However, numerical solutions may
suffer nonphysical ψ such as negative values during calcu-
lations. In this section, we present several numerical exam-
ples which show negative values of surfacants ψ for each
model.

3.2.1 Teramoto and Yonezawa’s energy functional

Figure 10 shows that ψ may be negative with unsuitable
parameters s, w, and λ. In Figure 10a, we use εψ = 1,
s = 2.5, w = 0.1, and λ = 0.1. It can be observed that
ψ at time t = 5 becomes negative. To show a nonphysical
phenomenon due to w, we use εψ = 1, s = 0.5, w = 0.4,
and λ = 0.1 in Figure 10b. Figure 10c shows a nonphysical
phenomenon due to small λ value. Here εψ = 1, s = 0.5,
w = 0.1, and λ = 0.02 are used. Note that although there
are nonphysical phenomena due to the unsuitable param-
eters, the Teramoto and Yonezawa’s model is stable.

3.2.2 Theissen and Gompper’s energy functional

In Figure 11a, we use εψ = 1, s = 1, w = 0.1, λ = 0.1,
and v = 0.1. εψ = 1, s = 0.5, w = 0.25, λ = 0.01, and
v = 0.1 in Figure 11b. εψ = 1, s = 0.5, w = 0.1, λ = 0.03,
and v = 0.1 are used in Figure 11c. As we can see from
Figure 11, negative values of φ are observed. However,
these simulations are stable without oscillations.
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Fig. 10. The time evolution of ψ with unsuitable value of
parameters in Teramoto and Yonezawa’s model. (a) s = 2.5,
(b) w = 0.4, and (c) λ = 0.02.
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Fig. 11. The time evolution of ψ with unsuitable value of
(a) s, (b) w, and (c) λ in Theissen and Gompper’s model,
respectively. Computational parameters: (a) εψ = 1, s = 1,
w = 0.1, λ = 0.1, and v = 0.1. (b) εψ = 1, s = 0.5, w = 0.25,
λ = 0.01, and v = 0.1. (c) εψ = 1, s = 0.5, w = 0.1, λ = 0.03,
and v = 0.1.

3.2.3 Sman and Graaf’s energy functional

For Sman and Graaf’s energy functional, due to the term
λ[lnψ − ln(1− ψ)], oscillations occurred at the zero value
of ψ as shown in Figures 12a–12c. To observe this, we use
s = 0.5, w = 0.1, λ = 0.02, and s = 0.1, w = 0.5, λ = 0.02
in Figures 12a and 12b, respectively. And s = 0.1, w =
0.1, and λ = 0.008 are used in Figure 12c. In Figure 12,
oscillations are observed.
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Fig. 12. The time evolution of ψ with unsuitable values of (a)
s = 0.5, (b) w = 0.5, and (c) λ = 0.008 in Sman and Graaf’s
model, respectively.
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Fig. 13. The time evolution of (a) ψ and (b) φ in Teng et al.’s
model.

3.2.4 Teng et al.’s energy functional

Let us consider the term 0.5s(ψ − |∇φ|)2 in Teng et al.’s
energy functional. The profile of ψ resembles that of φ.
Therefore φ cannot be stable when ψ is unstable. To con-
firm that, we set numerical experiments with s = 1 and
λ = 0.1. Figure 13 shows nonphysical phenomena. Since
ψ ∼ |∇φ|, if the oscillation for surfactant concentration
occurs, the water-oil interface also occurs.

3.2.5 Proposed energy functional

The term −0.5sψ|∇φ|2 is used to model the high value of
ψ at the interface of water and oil. Thus if we use a large
value of s, surfactants quickly absorb to the interface so
that ψ may be negative as shown in Figure 14a. Here,
we use s = 0.5, εφ = 0.02, and λ = 0.02. Also, as we
mentioned above, we proposed the term −λψ(1 − ψ) to
restrict the value of ψ in the range [0, 1]. It is possible
that with a small λ value, ψ may be negative. To see this,
we show the evolution of ψ in Figure 14b with s = 0.25,
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Fig. 14. The time evolution of ψ with unsuitable values of (a)
s = 0.5 and (b) λ = 0.01 in our proposed model, respectively.
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Fig. 15. Plots for phase-field φ profiles.

εφ = 0.02, and λ = 0.01. However, the solution is stable
and does not have oscillations.

4 Conclusions

In this paper, we presented a detailed comparison of
phase-field models such as Teramoto and Yonezawa’s,
Theissen and Gompper’s, Sman and Graaf’s, and Teng
et al.’s for a surfactant adsorption phenomena at the inter-
face between two immiscible fluids. Most previous models
had severe time-step constraints due to the nonlinear cou-
pling of order parameters. To solve these stability prob-
lems, we proposed a special case of these models which
allows the use of a much large time-step size. We also
applied a type of unconditionally gradient stable scheme
and a fast multigrid method to solve the proposed model
efficiently and accurately.

From the numerical calculation in Figure 4, we drew an
important physical modeling of surfactant systems. Since
there are coupling terms in the free energy functional from
all models, the equilibrium profiles of the phase-field φ are
modified with presence of surfactant. Figure 15 shows the
equilibrium profiles of φ. Here we used same parameters
in Figure 4. All models generated similar results showing
steeper gradient of phase-field profiles across interface re-
gion. In general, surfactant lows the interfacial tension.
However, this result indicates that surfactant presence ac-
tually increases surface energy by making sharp interface
transitions. As future research, we investigate the effect of

this side effect on surface tension modeling with hydrody-
namics.

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (No. 2011-0023794). The authors thank the reviewers
for the constructive and helpful comments on the revision of
this article.

Appendix: Numerical solution

We shall discretize the two immiscible fluids and surfac-
tant system in one-dimensional space, i.e., Ω = (a, b). Let
N be a positive even integer, h = (b− a)/N be a uniform
grid size, andΩh = {xi = (i−0.5)h, 1 ≤ i ≤ N} be the set
of cell-centers. Let us denote the numerical approximation
of the solutions by (φni , ψ

n
i ) = (φ(xi, nΔt), ψ(xi, nΔt)),

where i = 1, . . . , N and n = 0, 1, . . . , Nt. Here, Δt = T/Nt
is the time step, T is the final time, and Nt is the total
number of time steps. The zero Neumann boundary con-
dition equation (17) is applied for each n as

∇hφ
n
1
2

= ∇h

(
δE
δφ

)n
1
2

= ∇hψ
n
1
2

= ∇h

(
δE
δψ

)n
1
2

= 0,

∇hφ
n
N+ 1

2
= ∇h

(
δE
δφ

)n
N+ 1

2

= 0,

∇hψ
n
N+ 1

2
= ∇h

(
δE
δψ

)n
N+ 1

2

= 0.

Here the discrete differential operator is ∇hφ
n
i+ 1

2
=

(φni+1 − φni )/h and the other terms are similarly de-
fined. Let the discrete Laplacian operator be defined as
Δhφi = (∇hφi+ 1

2
−∇hφi− 1

2
)/h. Then we consider a fully

discrete semi-implicit finite difference scheme for the mod-
els, which we have introduced in Section 2.

A.1 Teramoto and Yonezawa’ energy functional

We discretize equations (3)–(6) as

φn+1 − φn

Δt
= MφΔhν

n+1 −MφΔhφ
n, (A.1)

νn+1 = (φn+1)3 − εφΔhφ
n+1 + s∇h · (ψn∇hφ

n)
+ w(ψn − ψave)φn, (A.2)

ψn+1 − ψn

Δt
= MψΔhμ

n+1, (A.3)

μn+1 = −εψΔhψ
n+1 − s

2

∣∣∇hφ
n+1

∣∣2

+
w

2
(φn+1)2 + λ(ψn+1 − ψave). (A.4)
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A.2 Theissen and Gompper’s energy functional

Equations (7) and (8) are discretized as

νn+1 = (φn+1)3 − εφΔhφ
n+1 + s∇h · (ψn∇hφ

n)
+wψnφn + vΔh(ψnΔhφ

n),

μn+1 = −εψΔhψ
n+1 − s

2

∣∣∇hφ
n+1

∣∣2 +
w

2
(φn+1)2

+λψn+1 +
v

2
(Δhφ

n+1)2.

A.3 Sman and Graaf’s energy functional

We discretize equations (10) and (11) as

νn+1 = (φn+1)3 − εφΔhφ
n+1 + s∇h · (ψn∇hφ

n)
+wψnφn,

μn+1 = −s
2

∣∣∇hφ
n+1

∣∣2 +
w

2
(φn+1)2

+λ (ln (ψn) − ln (1 − ψn)) .

A.4 Teng et al.’s energy functional

Equations (12) and (13) are discretized as

νn+1 = (φn+1)3−(εφ+s)Δhφ
n+1+s∇h ·

(
ψn

∇hφ
n

|∇hφn|
)
,

μn+1 = s(ψn+1 − |∇hφ
n+1|) + λ (ln (ψn) − ln (1 − ψn)) .

Here we add a small value δ = 10−6 in the denominator
to avoid singularities and then get the following term

∇h ·
(
ψn

∇hφ
n

|∇hφn|
)

=
(ψni+1 + ψni )

2h
φni+1 − φni

|φni+1 − φni | + δ

− (ψni + ψni−1)
2h

φni − φni−1

|φni − φni−1| + δ
.

A.5 Proposed energy functional

We discretize equations (15) and (16) as

νn+1 = (φn+1)3−εφΔhφ
n+1+s∇h · (ψn∇hφ

n), (A.5)

μn+1 =−s
2
|∇hφ

n+1|2−εψΔhψ
n+1+λ(2ψn − 1). (A.6)

A.6 Numerical solution-nonlinear multigrid solver

In this section, we use a nonlinear full approximation stor-
age (FAS) multigrid method to solve the nonlinear discrete
system (Eqs. (A.1), (A.3), (A.5), and (A.6)) at the implicit
time level. The basic idea of the multigrid method is to
accelerate the solution of a fine grid problem by comput-
ing corrections on a coarse grid and then interpolating
them back to the fine grid problem. At each grid level,

the discrete equations are solved by a pointwise Gauss–
Seidel relaxation scheme. Here we only describe the relax-
ation with our proposed method and for additional details,
please refer to [28]. The algorithm of the nonlinear multi-
grid method for solving the discrete system begins with
rewriting equations (A.1) and (A.5) as follows.

N(φn+1, νn+1) = (ϕn, υn),

where N(φn+1, νn+1) = (φn+1/Δt −MφΔhν
n+1, νn+1 −

(φn+1)3 + εφΔhφ
n+1) and the source term is (ϕn, ψn) =

(φn/Δt−MφΔhφ
n, s∇h · (ψn∇hφ

n)).
• Relaxation: rewriting equations (A.1) and (A.5), we

get

φn+1
i

Δt
+

2νn+1
i

h2
= ϕni +

νn+1
i+1 + νn+1

i−1

h2
,

−2εφ
h2

φn+1
i − (φn+1

i )3 + νn+1
i = υni − εφ

h2
(φn+1
i+1 + φn+1

i−1 ).

Next, we replace φn+1
k and νn+1

k in the above equations
with φ̄

m
k and ν̄mk if k ≤ i, otherwise with φmk and νmk ,

i.e.,

φ̄mi
Δt

+
2ν̄mi
h2

= ϕni +
νmi+1 + ν̄mi−1

h2
,

−2εφ
h2

φ̄mi −(φ̄mi )3+ν̄mi = υni −
εφ
h2

(φmi+1+φ̄mi−1). (A.7)

Since (φ̄mi )3 in equation (A.7) is nonlinear with respect to
φ̄mi , we linearize (φ̄mi )3 at φmi , i.e.,

(φ̄mi )3 = (φmi )3 + 3(φmi )2(φ̄mi − φmi ).

After substituting this expression into equation (A.7), we
obtain

−
(

2εφ
h2

+ 3(φmi )2
)
φ̄mi + ν̄mi =

υni − εφ
h2

(φmi+1 + φ̄mi−1) − 2(φmi )2.

This completes the description of relaxation. Once the up-
dated order parameters φn+1 have been determined, we
can find ψn+1 from equations (A.3) and (A.6) using the
multigrid method in a similar manner.
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