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CONSERVATIVE MULTIGRID METHODS FOR TERNARY
CAHN-HILLIARD SYSTEMS∗

JUNSEOK KIM † , KYUNGKEUN KANG ‡ , AND JOHN LOWENGRUB §

Abstract. We develop a conservative, second order accurate fully implicit discretization of
ternary (three-phase) Cahn-Hilliard (CH) systems that has an associated discrete energy functional.
This is an extension of our work for two-phase systems [13]. We analyze and prove convergence of
the scheme. To efficiently solve the discrete system at the implicit time-level, we use a nonlinear
multigrid method. The resulting scheme is efficient, robust and there is at most a 1st order time
step constraint for stability. We demonstrate convergence of our scheme numerically and we present
several simulations of phase transitions in ternary systems.
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1. Introduction
Since most commercial alloys are based on at least three components, an under-

standing of ternary phase transitions is of great practical importance. The ternary
Cahn-Hilliard (CH) system is the prototypical continuum model of phase separa-
tion. This system was originally proposed by Morral and Cahn [15] to model three-
component alloys. Phase separation occurs, for example, when a single phase homo-
geneous system composed of three components, in thermal equilibrium (e.g. at a high
temperature), is rapidly cooled to a temperature T below a critical temperature Tc

where the system is unstable with respect to infinitesimal concentration fluctuations.
Spinodal decomposition then takes place and the system separates into spatial regions
rich in some components and poor in others.

In binary mixtures, there has been much algorithm development and many sim-
ulations of the CH equation (e.g. see the recent papers [5], [6], [13] for references).

In multicomponent (more than two) mixtures, there have been fewer simulations.
Numerical simulations of phase transitions in multicomponent have been performed
by Eyre [9], Blowey et al. ([1], [2], [3], [4], and [7]), and Copetti [8]. In [9], a modified
Newton method to solve the implicit finite difference system for the solution at the
new time step is used. In [7], an implicit finite element method with a non-linear
Gauss-Seidel type iteration is used. In [8], an explicit finite element method is used.

One of the main difficulties in solving the CH system is the high-order (fourth
order) time step constraints for explicit methods. Thus, implicit methods are desired.
However, the solution of the implicit equation can be costly when a Newton’s (or
Newton-like) method is coupled with a linear solver. In addition, one would like the
numerical scheme to have an associated discrete energy functional consistent with
that of the continuous level. The existence of such a functional provides an additional
measure of stability of the scheme. The schemes given in [7] had discrete energy
functionals only for restricted values of ∆t. Recently, we have developed nonlinear
multigrid methods [13] to solve binary CH systems in which the scheme has a discrete
energy functional for every value of ∆t. An advantage of using a nonlinear multigrid
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method is that the scheme is much more efficient than traditional iterative solvers in
solving the nonlinear equations at the implicit time step.

In this paper, we build upon on our results for two phase systems [13] and de-
velop a finite difference scheme that inherits mass conservation and energy dissipation
properties from the continuous level. It is highly desirable to have a discrete energy
functional because this can be used to prove that the numerical solution is uniformly
bounded with respect to the time and space step sizes. From this, it follows that the
scheme is stable. We prove convergence of the numerical scheme and demonstrate 2nd

order accuracy numerically. We then apply the scheme to simulate phase transitions
in ternary media. In one case, we show that a two-phase microstructure in binary
media can be de-stabilized by the addition of a small amount of a third component,
leading to a system in which a homogeneous mixture has the lowest energy and thus
the microstructure dissolves upon addition of enough of third component. In another
case, we consider a ternary system in which the 3rd component adsorbs to an interface.
The third component behaves like a surfactant in that the excess energy associated
with the interface decreases as more of the component accumulates at the interface.
We view this work in this paper as preparatory for studies of multiphase fluid flows
with 3 or more components [12].

The contents of this paper are as follows. In Section 2, the governing equations
are presented. In Section 3, we derive the discrete scheme, demonstrate the existence
of a discrete energy functional and prove stability and convergence of the algorithm.
In Section 4, we present numerical experiments.

2. Governing equations
The composition of a ternary mixture (A, B, and C) can be mapped onto an

equilateral triangle (the Gibbs triangle [16]) whose corners represent 100% concentra-
tion of A, B or C as shown in Fig. 2.1(a). Mixtures with components lying on lines
parallel to BC contain the same percentage of A, those with lines parallel to AC have
the same percentage of B concentration, and analogously for the C concentration. In
Fig. 2.1(a), the mixture at the position marked ‘◦’ contains 60% A, 10% B, and 30%
C (The total percentage must sum to 100%).

A B

C

O

(a)

(0,0,1)

(0,1,0)(1,0,0)

(b)

Fig. 2.1. (a) Gibbs triangle. (b) Contour plot of the free energy F (c)

Assuming that evolution is isothermal, the ternary CH model is as follows [15].
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Let c = (c, d) be the phase variable (i.e. concentration), then

ct(x, t) = ∇ · [M(c)∇ µ(x, t)], for (x, t) ∈ Ω × (0, T ] ⊂ R
n × R (2.1)

and µ(x, t) = f(c(x, t)) − Γε∆c(x, t), (2.2)

where

f(c) = (f1(c), f2(c)) = (∂cF (c), ∂dF (c)) and Γε ≡
(

2ε2 ε2

ε2 2ε2

)
.

Here we denote by ∂i
c∂

j
dF the i-th and j-th partial derivatives of F (c) with respect to

c and d, respectively. M(c) is the mobility, µ = (µ1, µ2) is the generalized chemical
potential, and F (c) is the Helmholtz free energy which is nonconvex if T < Tc, to
reflect the coexistence of separate phases and ε > 0 is a nondimensional measure of
non-locality due to the gradient energy (Cahn number) and introduces an internal
length scale (interface thickness).

Here, for simplicity, we consider a constant mobility1 (M ≡ 1) and we use the
quartic free energy2 F (c) on the Gibbs triangle, which is defined by

F (c) =
1
4
[c2d2 + (c2 + d2)(1 − c − d)2]. (2.3)

The contours of the free energy F (c) projected onto the Gibbs triangle are shown in
Fig. 2.1 (b). Note the energy minima at the vertices and the maximum at the center.
Two important features of the system (2.1) and (2.2) are the conservation of the mass
and the existence of a Lyapunov (energy) functional, E , which is given by

E(c) =
∫

Ω

(
F (c) +

ε2

2
(|∇c|2 + |∇d|2 + |∇(1 − c − d)|2)

)
dx,

such that

d

dt
E(c) = −

∫
Ω

|∇ µ|2dx

when the natural boundary conditions are applied

∂c
∂n

=
∂ µ

∂n
= 0, on ∂Ω, (2.4)

where n is the normal unit vector pointing out of Ω. The initial condition is c(x, 0) =
c0(x).

3. Numerical analysis

3.1. Discretization. We shall first discretize the ternary CH equation (2.1-
2.2) in space.

Let [a, b] and [c, d] be partitioned by

a =x 1
2

< x1+ 1
2

< · · · < xNx−1+ 1
2

< xNx+ 1
2
= b,

c = y 1
2

< y1+ 1
2

< · · · < yNx−1+ 1
2

< yNy+ 1
2

= d,

1The extension to more general M = M(c) is straightforward.
2The extension to regular solution model free energies is straightforward [13].
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so that the cells

Iij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
], 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

cover Ω = [a, b] × [c, d]. We denote

∆xi = xi+ 1
2
− xi− 1

2
, ∆yj = yj+ 1

2
− yj− 1

2

and, for simplicity, we assume the above partitions are uniform in both directions,
that is

∆xi = ∆yj = h for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

where h = (b − a)/Nx = (d − c)/Ny. Therefore, xi+ 1
2

and yj+ 1
2

can be represented as
follows:

xi+ 1
2

= a + ih, yj+ 1
2

= c + jh.

We denote by Ωh = {(xi, yj) : 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} the set of cell centered
points (xi, yj) where

xi =
1
2
(xi− 1

2
+ xi+ 1

2
), yj =

1
2
(yj− 1

2
+ yj+ 1

2
).

For Neumann boundary value problems, it is natural to compute numerical solu-
tions at cell centers. Let cij and µij be approximations of c(xi, yj) and µ(xi, yj).
We first implement the zero Neumann boundary condition (2.4) by requiring that

Dxci+ 1
2 ,j = 0 for i = 0, Dxci+ 1

2 ,j = 0 for i = Nx,

Dyci,j+ 1
2

= 0 for j = 0, Dyci,j+ 1
2

= 0 for j = Ny, (3.1)

where the discrete differentiation operators are

Dxci+ 1
2 ,j =

1
h

(ci+1,j − cij), Dyci,j+ 1
2

=
1
h

(ci,j+1 − cij).

We then define the discrete Laplacian by

∆hcij =
1
h

(Dxci+ 1
2 ,j − Dxci− 1

2 ,j) +
1
h

(Dyci,j+ 1
2
− Dyci,j− 1

2
),

and the discrete L2 inner product by

(c, c̃)h = h2
Nx∑
i=1

Ny∑
j=1

(cij c̃ij + dij d̃ij). (3.2)

For a grid function c defined at cell centers, Dxc and Dyc are defined at cell-edges,
and we use the following notation

∇hcij = (Dxci+ 1
2 ,j, Dyci,j+ 1

2
),

to represent the discrete gradient of c. We can define an inner product for ∇hc on
the staggered grid by

(∇hc,∇hc̃)h = h2

⎛
⎝Nx∑

i=0

Ny∑
j=1

(Dxci+ 1
2 ,jDxc̃i+ 1

2 ,j + Dxdi+ 1
2 ,jDxd̃i+ 1

2 ,j) (3.3)

+
Nx∑
i=1

Ny∑
j=0

(Dyci,j+ 1
2
Dyc̃i,j+ 1

2
+ Dydi,j+ 1

2
Dyd̃i,j+ 1

2
)

⎞
⎠ .
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We also define discrete norms associated with (3.2) and (3.3) as

‖c‖2 = (c, c)h, |c|21 = (∇hc,∇hc)h.

The time-continuous, space-discrete system that corresponds to (2.1-2.4) is

d

dt
cij = ∆h µij , µij = f(cij) − Γε∆hcij , (3.4)

where f(cn
ij) ≡ (

f1(cn
ij), f2(cn

ij)
)

and boundary conditions are implemented using
(3.1). We discretize (3.4) in time by the scheme

cn+1
ij − cn

ij

∆t
= ∆h µ

n+ 1
2

ij , (3.5)

µ
n+ 1

2
ij = φ̂(cn

ij , c
n+1
ij ) − 1

2
Γε∆h(cn

ij + cn+1
ij ), (3.6)

where φ̂ = (φ̂1, φ̂2) and φ̂1(...) and φ̂2(...) denote Taylor series approximations to
f1 and f2 up to second order, respectively:

φ̂1(cn, cn+1) = f1(cn+1) − 1
2
∂cf1(cn+1)(cn+1 − cn)

−1
2
∂df1(cn+1)(dn+1 − dn) +

1
3!

∂2
c f1(cn+1)(cn+1 − cn)2

+
2
3!

∂d∂cf1(cn+1)(cn+1 − cn)(dn+1 − dn) +
1
3!

∂2
df1(cn+1)(dn+1 − dn)2

and

φ̂2(cn, cn+1) = f2(cn+1) − 1
2
∂cf2(cn+1)(cn+1 − cn)

−1
2
∂df2(cn+1)(dn+1 − dn) +

1
3!

∂2
c f2(cn+1)(cn+1 − cn)2

+
2
3!

∂d∂cf2(cn+1)(cn+1 − cn)(dn+1 − dn) +
1
3!

∂2
df2(cn+1)(dn+1 − dn)2.

Although these series expansions result in somewhat complicated expressions, they are
easy to implement and the expansions allow us to prove that the fully discrete scheme
has a non-increasing energy functional for any value of the time step ∆t. In contrast,
in Appendix B, we introduce an alternative (Crank-Nicholson) scheme, in which the
scheme is much more straightforward. However, we are only able to prove that the
Crank-Nicholson scheme has an associated non-increasing energy for restricted values
of ∆t [11].

3.2. Analysis of Scheme. In this subsection, assuming that the nonlin-
ear system at the implicit time step is solvable, we establish the mass conservation
and demonstrate that the energy functional is non-increasing in time. Moreover, we
demonstrate the convergence of the scheme at a fixed time. We first show the mass
conservation and energy dissipation in the next Lemma.
Lemma 3.1. If {cn+1, µn+1} is the solution of (3.5) and (3.6) and the discrete
energy functional is given by

E(cn) = (F (cn), 1)h +
ε2

2
‖∇hcn‖2

m, (3.7)
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where

‖∇hcn‖2
m := |cn|21 + |dn|21 + |1 − cn − dn|21

= 2|cn|21 + 2|dn|21 + 2(∇hcn,∇hdn).

Then

(cn+1, 1)h = (cn, 1)h (3.8)

and

E(cn+1) − E(cn) ≤ −∆t
∣∣∣ µn+ 1

2

∣∣∣2
1
−Rh(cn, cn+1), (3.9)

where

Rh(cn+1, cn) =
1
4

(
(‖cn+1 − cn‖2 + ‖dn+1 − dn‖2)‖cn+1 − cn + dn+1 − dn‖2

+ ‖cn+1 − cn‖2‖dn+1 − dn‖2)
)

.

Proof. The mass conservation is straightforward by using summation by parts.
Indeed,

(cn+1, 1)h = (cn + ∆t∆h( µn + µn+1), 1)h = (cn, 1)h.

It remains to show the second assertion. First, multiplying µn+ 1
2 and cn+1 − cn to

(3.5) and (3.6), we obtain the following two identities:

(cn+1 − cn, µn+ 1
2 )h + ∆t| µn+ 1

2 |21 = 0, (3.10)

( µn+ 1
2 , cn+1 − cn)h = (φ̂(cn, cn+1), cn+1 − cn)h +

ε2

2
(‖∇hcn+1‖2

m − ‖∇hcn‖2
m).

(3.11)
Since the first identity (3.10) is straightforward, we only verify the second one (3.11).
Indeed,

( µn+ 1
2 , cn+1 − cn)h = (φ̂(cn, cn+1) − 1

2
Γε(∆cn+1 + ∆cn), cn+1 − cn)h

= (φ̂(cn, cn+1), cn+1 − cn)h − 1
2
Γε((∆cn+1 + ∆cn), cn+1 − cn)h

The second term on the right side is calculated as follows:

(Γε(∆cn+1 + ∆cn), cn+1 − cn)

=
(

2ε2 ε2

ε2 2ε2

)(
∆cn+1 + ∆cn

∆dn+1 + ∆dn

)
·
(

cn+1 − cn

dn+1 − dn

)
= −2ε2(|cn+1|21 − |cn|21) − 2ε2(∇hdn+1,∇hcn+1) + 2ε2(∇hdn,∇hcn)
= −2ε2(|cn+1|21 + (∇hdn+1,∇hcn+1)) + 2ε2(|cn|21 + (∇hdn,∇hcn))
= −ε2‖∇hcn+1‖2

m + ε2‖∇hcn‖2
m.
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This completes the derivation of (3.11). Now we consider

E(cn+1) − E(cn) = (F (cn+1) − F (cn), 1)h +
ε2

2
(‖∇hcn+1‖2

m − ‖∇hcn‖2
m)

= (F (cn+1) − F (cn), 1)h + ( µn+ 1
2 − φ̂(cn, cn+1), cn+1 − cn)h

= (F (cn+1) − F (cn), 1)h − (φ̂(cn+1, cn), cn+1 − cn)h − ∆t| µn+ 1
2 |21,

where we used the identities (3.10) and (3.11). We abbreviate F (cn+1, dn+1)=Fn+1

for simplicity. Using Taylor expansions, we have

(Fn+1 − Fn, 1)h − (φ̂(cn, cn+1), cn+1 − cn)h = − 1
4!

[(∂4
c Fn+1, (cn+1−cn)4)h

+4(∂3
c ∂dF

n+1, (cn+1−cn)3(dn+1−dn))h+6(∂2
c ∂2

dFn+1, (cn+1−cn)2(dn+1−dn)2)h

+4(∂c∂
3
dFn+1, (cn+1 − cn)(dn+1 − dn)3)h + (∂4

dFn+1, (dn+1 − dn)4)h]

= −1
4
[(1, (cn+1 − cn)4)h + 2(1, (cn+1 − cn)3(dn+1 − dn))h + (1, (cn+1 − cn)4)h

+2(1, (cn+1 − cn)(dn+1 − dn)3)h + 3(1, (cn+1 − cn)2(dn+1 − dn)2)h]

= −1
4
(
((cn+1 − cn)2 + (dn+1 − dn)2)(cn+1 − cn + dn+1 − dn)2

+(cn+1 − cn)2(dn+1 − dn)2
)
,

where we used ∂4
c F = 6, ∂3

c ∂dF = 3, ∂2
c ∂2

dF = 3, ∂c∂
3
dF = 3, and ∂4

dF = 6. Note
that the last term is non-positive. Therefore, using the identity above, we have

E(cn+1) − E(cn) ≤ −∆t| µn+ 1
2 |21 −Rh(cn, cn+1).

This completes the proof of assertion (3.9).
Next we demonstrate the convergence of the scheme at a fixed time. Let un

denote the continuous solution and cn = (cn, dn) discrete solution, respectively and
we denote en = un − cn. Here we remark that since discrete energy is bounded, it
can be easily seen that a numerical solution cn is bounded. Since this argument is
straightforward, the details are omitted. Now we are ready to prove the following
error estimate.

Theorem 3.2. Suppose u is smooth. Then, for any T > 0, there exists a constant
K, ∆t0, and h0 depending on T, f , φ̂, ε, and smoothness of u such that the following
error estimate holds:

‖en‖ ≤ C(h2 + ∆t2) (3.12)

for n∆t ≤ T if h ≤ h0 and ∆t ≤ ∆t0.

Proof. Using the numerical scheme, we obtain

∂tem + Γε∇4
he

m+ 1
2 = ∂tum + Γε∇4

hu
m+ 1

2 −∇2
hφ̂(cm+1, cm)

= ut(tm+ 1
2
) + Γε∆2u(tm+ 1

2
) −∇2

hφ̂(cm+1, cm) + τm

= ∆f(um+ 1
2 ) −∇2

hφ̂(cm+1, cm) + τm

= ∇2
hf(u

m+ 1
2 ) −∇2

hφ̂(cm+1, cm) + τm

= ∇2
hf(u

m+ 1
2 )−∇2

hf(c
m+ 1

2 )+∇2
hf(c

m+ 1
2 )−∇2

hφ̂(cm+1, cm)+τm,



60 CONSERVATIVE MULTIGRID METHODS

where ∂tem = (em+1 − em)/∆t, τm is the discretization error, and ‖τm‖ ≤ C(h2 +
∆t2). For convenience, we denote

A ≡ f(um+ 1
2 ) − f(cm+ 1

2 ), B ≡ f(cm+ 1
2 ) − φ̂(cm+1, cm).

Forming the inner product with em+ 1
2 , using summation by parts and Young’s in-

equality, we have

1
2
∂t‖em‖2 + ε2‖∇2em+ 1

2 ‖2 ≤ (A,∇2
he

m+ 1
2 )h + (B,∇2

he
m+ 1

2 )h

+‖em+ 1
2 ‖2 + ‖τm‖2, (3.13)

where we used

ε2‖∇2em+ 1
2 ‖2 ≤ (Γε∇2em+ 1

2 ,∇2em+ 1
2 ).

We first consider the first term of the right side of (3.13). Since ‖un‖∞ and ‖cn‖∞
are bounded, one can easily see that |A| ≤ C|em+ 1

2 |. Therefore, we obtain

(A,∇2
he

m+ 1
2 ) ≤ C(|em+ 1

2 |, |∇2
he

m+ 1
2 |) ≤ C‖em+ 1

2 ‖2 +
ε2

4
‖∇2

he
m+ 1

2 ‖2.

It remains to estimate the second term. Using a similar argument, we obtain

|B| ≤ C|cm+1 − cm|2, (3.14)

where C depends on the boundedness of the numerical solution (see Lemma A.1 in
Appendix A for the details). Using the factorization and Young’s inequality, we get

(B,∇2
he

m+ 1
2 ) ≤ C‖B‖2 +

ε2

4
‖∇2

he
m+ 1

2 ‖2 ≤ C‖(cm+1 − cm)2‖2 +
ε2

4
‖∇2

he
m+ 1

2 ‖2.

The next step is to estimate ‖(cm+1−cm)2‖2. Adding and subtracting the continuous
solution, we have

‖(cm+1 − cm)2‖2 ≤ 2(||(cm+1 − cm)2 − (um+1 − um)2||2 + ||(um+1 − um)2||2)

≤ C(‖em+1 − em‖2 + ‖(um+1 − um)2‖2),

where we again used the fact that discrete and continuous solutions are bounded.
Since the continuous solution u is smooth, the second term is estimated as follows:

‖(um+1 − um)2‖2 ≤ C(∆t)4‖ut‖4
∞.

Summing up all the estimates above, we obtain

(B,∇2
he

m+ 1
2 ) ≤ C‖em+1 − em‖2 +

ε2

4
‖∇2

he
m+ 1

2 ‖2 + ‖τm‖2,

and therefore, we have

1
2
∂t‖em‖2 + ε2‖∇2em+ 1

2 ‖2 ≤ ‖em+ 1
2 ‖2 +

ε2

2
‖∇2

he
m+ 1

2 ‖2

+C‖em+1 − em‖2 + ‖τm‖2. (3.15)
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Subtracting ε2

2 ‖∇2
he

m+ 1
2 ‖2

2 and multiplying 2 to both sides in (3.15), we obtain

∂t‖em‖2 + ε2‖∇2
he

m+ 1
2 ‖2 ≤ C‖em+ 1

2 ‖2 + C‖em+1 − em‖2 + ‖τm‖2.

Dropping ε2‖∇2
he

m+ 1
2 ‖2 and summing up from 0 to n − 1, we have

‖en‖2

∆t
≤

n−1∑
m=0

[C‖em+ 1
2 ‖2 + C‖em+1 − em‖2 + ‖τm‖2]

≤
n−1∑
m=0

[C‖em+1‖2 + C‖em‖2 + ‖τm‖2]

= 2C

n−1∑
m=0

‖em‖2 + C‖en‖2 + n‖τ‖2,

where τ = max0≤k≤n−1 ‖τk‖. Multiplying ∆t to both sides and simplifying, we obtain

(1 − C∆t)‖en‖2 ≤ C∆t

n−1∑
m=0

‖em‖2 + (n∆t)‖τ‖2

≤ C∆t

n−1∑
m=0

‖em‖2 + T ‖τ‖2

≤ C∆t

n−1∑
m=0

‖em‖2 + CT (h2 + ∆t2)

where we used the fact that n∆t ≤ T and ‖τ‖ ≤ C(h2 +∆t2). Since ∆t can be chosen
such that 1− C∆t > 0, according to the discrete version of Gronwall’s inequality, we
obtain ‖en‖ ≤ C(h2 + ∆t2). This completes the proof.

3.3. Numerical solution. We use a nonlinear Full Approximation Storage
(FAS) multigrid method to solve the nonlinear discrete system (3.5) and (3.6) at the
implicit time level. The nonlinearity is treated using one step of Newton’s iteration
and a pointwise Gauss-Seidel relaxation scheme is used as the smoother in the multi-
grid method. This is a generalization of two-phase FAS Cahn-Hilliard equation solver
we developed in [13]. Following a similar analysis as in [13], it can be shown that the
convergence of the multigrid method can be achieved with ∆t ≤ ∆t0, where ∆t0
depends only on physical parameters and is independent of the grid size. Typically,
we take ∆t ∼ ∆x to be safe. We describe the algorithm in Appendix C in detail for
completeness.

4. Numerical experiments

4.1. Convergence test. We consider a ternary system in a one dimensional
domain, Ω = [0, 1]. To obtain an estimate of the rate of convergence, we perform a
number of simulations for a sample initial problem on a set of increasingly finer grids.
The initial data is

c(x) = d(x) = 0.25 + 0.01 cos(3πx) + 0.04 cos(5πx) on Ω = [0, 1]. (4.1)

The numerical solutions are computed on the uniform grids, ∆x = 1/2n for n =
6, 7, 8, 9, and 10. For each case, the calculations are run to time T = 0.2, the uniform
time steps, ∆t = 0.1∆x and ε = 0.005, are used to establish the convergence rates.
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Fig. 4.1. The time dependent total energy of the numerical solutions with the initial data (4.1).

Since we use a cell centered grid, we define the error to be the discrete l2-norm of
the difference between that grid and the average of the next finer grid cells covering
it:

eh/ h
2 i

def
= chi −

(
ch

2 2i
+ ch

2 2i−1

)
/2.

The rate of convergence is defined as the ratio of successive errors:

log2(||eh/ h
2
||/||eh

2 / h
4
||).

Table 4.1. Convergence Results — Concentration c1.

Case 64-128 rate 128-256 rate 256-512 rate 512-1024

l2 9.69e-3 2.54 1.66e-3 2.11 3.86e-4 2.03 9.43e-5

The errors and rates of convergence are given in table 4.1. The results suggest
that the scheme is indeed second order accurate. In Fig. 4.1, the time evolution of
the energy E(c) with the same initial data (4.1) is shown accompanied with plots of
concentrations (dotted line: c, solid line: d, and dashed line : 1-c-d). Note that the
early stages of evolution, the curves for c and d overlap. At later times, all three phases
separate. As expected from lemma 3.1, the energy is non-increasing and tends to a
constant value. This is in fact a local equilibrium for Neumann boundary conditions.
A global equilibrium consists of two interfaces since the components do not mix.
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Fig. 4.2. Eigenvalues for different wave numbers k with m = 0.05, 0.22, 0.4 and ε = 0.01. (a):
λ1 and (b): λ2.
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Fig. 4.3. Eigenvalues (λ1 : ‘ − ’, λ2 : ‘o’) with m1 = m2 = m, k = 6, and ε = 0.01.

4.2. Linear stability analysis. Following the linear stability analysis in [7],
we seek a solution of the form

(c(x, t), d(x, t)) = m +
∞∑

k=1

cos(kπx)(αk(t), βk(t))

where m = (m1, m2) and |αk(t)|, |βk(t)| 	 1. After linearizing ∂cF (c) and ∂dF (c)
about m, we have

∂cF (c) ≈ ∂cF (m) + ∂2
c F (m)(c − m1) + ∂c∂dF (m)(d − m2),

∂dF (c) ≈ ∂dF (m) + ∂c∂dF (m)(c − m1) + ∂2
dF (m)(d − m2).

Substituting these into (2.1) and (2.2) and letting m1 = m2 = m for simplicity, then,
up to first order, we have

ct = (7.5m2 − 4m + 0.5)∆c + (6m2 − 2m)∆d − 2ε2∆2c − ε2∆2d, (4.2)
dt = (6m2 − 2m)∆c + (7.5m2 − 4m + 0.5)∆d − 2ε2∆2d − ε2∆2c. (4.3)
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After substituting c = m + α(t) cos(kπx) and d = m + β(t) cos(kπx) into (4.2)
and (4.3), we get

(
αk(t)
βk(t)

)′
= A

(
αk(t)
βk(t)

)
, A =

(
a b
b a

)
,

where

a = −(kπ)2(7.5m2 − 4m + 0.5 + 2(εkπ)2),
b = −(kπ)2(6m2 − 2m + (εkπ)2).

The solution to the system of ODEs is given by(
αk(t)
βk(t)

)
= eAt

(
αk(0)
βk(0)

)
.

And eigenvalues of A are

λ1 = −(kπ)2[13.5m2 − 6m + 0.5 + 3(εkπ)2], (4.4)
λ2 = −(kπ)2[1.5m2 − 2m + 0.5 + (εkπ)2]. (4.5)

In Fig. 4.2(a), the theoretical growth rate λ1 is compared to that obtained from
the nonlinear numerical scheme with m = 0.05, 0.22, and 0.4, initial data c(x) =
d(x) = m + 0.001 cos(kπx), ε = 0.01, ∆t = 10−3, h = 1/128 and T = 0.1. In
Fig. 4.2(b), the theoretical growth rate λ2 is compared to that obtained from the
nonlinear numerical scheme with the same previous data except the initial data c(x) =
m + 0.001 cos(kπx) and d(x) = m − 0.001 cos(kπx). The numerical growth rate is
defined by

λ̃ = log
(

maxi |c(xi, T )− m|
maxi |c(xi, 0) − m|

)
/T.

The figures show that the linear analysis (solid line) and numerical solution (symbols)
are in good agreement.

To test the effect of m, we set k = 6 and ε = 0.01 and plotted the eigenvalues in
Fig. 4.3 as a function of m (m1 = m2 = m). Observe for small m, both eigenvalues
are negative leading to decay of perturbations. The maximum growth rate for λ1

occurs when m ≈ 0.2 and for λ2 occurs for m > 0.5.
We performed three experiments with initial data taking m = 0.22, 0.4, and

0.05. We chose ∆x = 1/128 and ∆t = 0.001. The initial conditions were random
perturbations with amplitude 0.05 of the uniform state m.

In the first experiment (Fig. 4.4 (a)), where m = 0.22 (λ1 > 0 and λ2 < 0),
initially the third phase 1 − c − d dominates. At early times, the evolution tends
toward the development of a 5-mode dominated two-phase structure with c ≈ d,
which is consistent with linear theory (see Fig. 4.4 (a), t = 0.5). However, as the
evolution proceeds, competition among the three phases leads to the development
of a fully three-phase microstructure at t = 10.0. Note the tendency of one of the
components to accumulate at interfaces (see also [10]).

In the second experiment (Fig. 4.4 (b)), m = 0.4 (λ1 < 0 and λ2 > 0), the
evolution again proceeds much like that of a binary system where the c and d phases
separate creating a 6-mode dominated microstructure while the third (1−c−d) phase
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Fig. 4.4. (a) (m1, m2, m3) = (0.22, 0.22, 0.56), (b) (m1, m2, m3) = (0.4, 0.4, 0.2), and (c)
(m1, m2, m3) = (0.05, 0.05, 0.9). Solid, dotted, and dashed lines are c, d, and 1− c− d, respectively.

remains nearly constant (see Fig. 4.4 (b), t = 0.5). At later times (t = 10.0), the
three phases fully separate with the third phase existing at the c and d interfaces and
in the region 0.0 < x < 0.15.

In the third experiment ((Fig. 4.4 (c)), where m = 0.05 (λ1 < 0 and λ2 < 0),
the initial perturbation is not large enough to stimulate domain growth. Instead the
perturbation is damped and the evolution tends toward a homogeneous mixture (see
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Fig. 4.4 (c), t = 2.0).

Fig. 4.5. Time evolution of half isosurface of each component is shown (transparent: c, light
gray: d, and dark gray: 1 − c − d). The nondimensional times are t=1, 2, 4, 7, 9, 10, 13, and 16
(from left to right and top to bottom order).

Since our algorithm extends straightforwardly to 3D, we also performed three
dimensional experiment with initial data taking m = 0.4 on box size [0, 1] × [0, 1] ×
[0, 1]. We chose a mesh size 64× 64× 64 and ∆t = 0.001. The initial conditions were
random perturbations with amplitude 0.1 of the uniform state m. Fig. 4.5 shows
time evolution of the 0.5 isosurface of each component (transparent: c, light gray:
d, and dark gray: 1 − c − d). The nondimensional times are t=1, 2, 4, 7, 9, 10, 13,
and 16 (from left to right and top to bottom order). As in the second case of the
1D experiments, initially a binary system (transparent and light gray phases) forms
(up to time 2 in the Fig. 4.5). And then later times (from t = 4), the third phase
emerges.
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Fig. 4.6. (a) Surface and contour plots of the free energy F (c). (b) Initial concentration,
(c1, c2, c3) = (0.25, 0.75, 0), ◦, case 1 (�), and case 2 (+).
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4.3. Phase transition. Next, we study a phase transition by adding a third
component to a phase-separated binary system that then results in the dissolution of
the separate phases. The free energy F (c) of the system is defined as follows:

F (c, d) =
1
4
[c2d2 + (c2 + d2)(1 − c − d)2 − cd(1 − c − d)]. (4.6)

Figs. 4.6(a) and 4.6(b) show the surface and contour plots of free energy F (c, d)
from Eq. (4.6), respectively. When the third component is absent (c+d = 1), the free
energy is double-welled with minima at c = 0 and d = 0. Thus, the binary system
tends to phase-separate. When the third component is present, there is a global
minimum in the center of the Gibbs triangle. Thus, the phases can mix uniformly
when enough of the third component is added.

We consider an initial configuration given by

c(x, y, 0) = 0.25 + 0.3(0.5 − rand(x, y)),
d(x, y, 0) = 1 − c(x, y, 0), (4.7)

where 0.25 lies in the spinodal region (∂2F
∂c2 ≤ 0) for the binary system and rand(x, y)

is a random number between 0 and 1. The numerical parameters are ε = 0.005,
h = 1/128, ∆t = 0.1h with Nx = Ny = 128. The initial average concentration (‘o’)
is indicated on the Gibbs triangle in Fig. 4.6 (b). During the evolution, spinodal
decomposition first occurs and then the phases separate.

Fig. 4.7. Phase separation of binary mixture at time t = 0.12, 0.20, 0.66, and 1.56 (left to
right). The concentration fields are shown with filled contours at from c=0.1 to c=0.9 increased by
0.1.

Fig. 4.7 shows the concentration c at different times during the evolution. By
time t = 1.56, the binary microstructure is created. At this point the evolution is
stopped and we add some of the third component as follows.

First, we replace the half of the component d (in the exterior of the circular c-phase
domains) with the third component. The average concentration (‘*’) is located on the
Gibbs triangle in Fig. 4.6 (b). Fig. 4.8 shows the time evolution of each component
during the succeeding evolution. Observe that the microstructure dissolves. Fig. 4.9
shows the evolution of the total and interface energy throughout the whole process
(case 1). Note that the time scale for dissolution is much faster than that for phase
separation.

In the second example (case 2), we replace 1
10 of component d by the third com-

ponent at t = 1.56. The average concentration (‘+’) is located on the Gibbs triangle
in Fig. 4.6 (b). Fig. 4.10 shows the time evolution of each component during the
succeeding evolution. Observe that while the microstructure dissolves somewhat,
complete dissolution does not occur. This can also be seen in Fig. 4.9 where it is
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demonstrated that the interface energy for this case remains non-zero (unlike case
1). The reason the microstructure does not completely dissolve in case 2 is that not
enough of the third component was added.

4.4. Surfactant. In this section, we provide an example of microphase sep-
aration in which one of the components accumulates at an interface separating two
immiscible components. The idea here is to model the effects of a surfactant. The
free energy we consider here is

E(c) =
∫

Ω

(
F (c) +

ε2

2
|∇c|2

)
dx, (4.8)

F (c) =
1
4
c2(1 − c)2 + sd2h(c) + s(d − tot

2
)2, (4.9)

h(c) = 1.1 − 0.5 tanh
c − 0.2

ε
− 0.5 tanh

0.8 − c

ε
, (4.10)

where c represents the concentration of one of the immiscible components and d the
concentration of surfactant. Each of the terms in (4.9) is understood as follows. The
first promotes phase-separation of the immiscible components, which are denoted by
c = 0 and c = 1. The second term promotes the adsorption of d to the interface. The
third term models the miscibility of the surfactant in the immiscible components.

Fig. 4.8. After time t=1.56, concentrations are I (25%), II (37.5%), and III (37.5%) Times are
t = 1.56, 1.60, 1.68, and 1.95 (left to right). Top: c; middle: d; bottom: 1-c-d. The concentration
fields are shown with filled contours at from c=0.1 to c=0.9 increased by 0.1.
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Fig. 4.9. Total energy and interfacial energy for evolution in Figs. 4.8 and 4.10

Fig. 4.10. After time t=1.56, concentrations are I (25%), II (67.5%), and III (7.5%). Times
are t = 1.56, 1.68, 1.80, and 1.95 (left to right). Top: c; middle: d; bottom: 1-c-d. The concentra-
tion fields are shown with filled contours at from c=0.1 to c=0.9 increased by 0.1.
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Fig. 4.11. Evolution of surfactant concentration with average concentration dave = 0.11. The
inset is an equilibrium state of interface and surfactant.
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Fig. 4.12. Local total energy

Note that here since we want d to accumulate at the interface, we drop the condition
that the third component is given by 1− c − d. Further, in (4.9), s is a scalar factor.
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We consider an initial configuration given by

c(x, 0) = 0.5[1 − tanh(
x − 0.5
2
√

2ε
)],

d(x, 0) = dave, (4.11)

where dave is constant and varies from 0.058 to 0.21 in each case. The parameters are
ε = 0.02, s = 0.1, tot = 1, h = 1/128, ∆t = 0.1h, and Nx = Ny = 128. In Fig. 4.11,
the evolution of the surfactant concentration with average concentration dave = 0.11
is shown. Evolution directions are indicated by arrows. Observe that the surfactant
rapidly absorbs to the interface and the overshoots that occur at early times flatten
out.

Fig. 4.12 shows the numerical result of local total energy (symbols), which is the
numerical evaluation of E(c) within interface area (0.1 ≤ c ≤ 0.9) as a function of the
surfactant concentration

∫
0.1≤c≤0.9 d. The solid line is the curve, −0.01572+0.08(d−

tot/2)2. The surface tension is 0.00428−0.08d2 [14]. The inscribed figures correspond
to equilibrium states.

5. Conclusion
In this paper, we have developed and proved the convergence of a 2nd order

accurate finite difference numerical scheme for ternary CH systems. This is a natural
extension of our previous work [13] on binary mixtures. The scheme has a discrete
energy functional. We have used a FAS nonlinear multigrid method to solve the
discrete system accurately and efficiently. We applied the scheme to simulate phase
transitions in ternary media. We showed that a two-phase microstructure in binary
media can be de-stabilized by the addition of a small amount of a third component,
leading to a system in which a homogeneous mixture has the lowest energy and thus
the dissolution of the microstructure. We also considered a ternary system in which
the 3rd component adsorbs to an interface, resulting in decreases of the excess energy
associated with the interface as more of the component accumulates at the interface.

We view the work presented here as preparatory for a study of 3-component
liquids. In a companion paper [12], we will couple the ternary CH model to the
equations of fluid flow to simulate the dynamics of flows consisting 3 components.

Appendix A. Verification of (3.14). In this appendix, we verify (3.14) in
Theorem 3.2. We recall F (c), which is given by

F (c, d) =
1
4
[c2d2 + (c2 + d2)(1 − c − d)2].

Then, we have
Lemma A.1.

|f(cm+ 1
2 ) − φ̂(cm+1, cm)| ≤ C|cm+1 − cm|2, (A.1)

where C depends on the uniform boundedness of numerical solution ck for all k.

Proof. We denote ∂i
c∂

j
dF (cm+1) = Fm+1

cidj for convenience of notation. We first
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expand f(cm+ 1
2 ) at cm+1. After simple calculations, we have

f1(
cm+1 + cm

2
) = Fm+1

c + Fm+1
c2 (

cm − cm+1

2
) + Fm+1

cd (
dm − dm+1

2
)

+
1
2
Fm+1

c3 (
cm − cm+1

2
)2 + Fm+1

dc2 (
cm − cm+1

2
)(

dm − dm+1

2
)

+
1
2
Fm+1

d2c (
dm − dm+1

2
)2 +

1
3!

Fm+1
c4 (

cm − cm+1

2
)3

+
1
2
Fm+1

dc3 (
cm − cm+1

2
)2(

dm − dm+1

2
)

+
1
2
Fm+1

d2c2 (
cm − cm+1

2
)(

dm − dm+1

2
)2 +

1
3!

Fm+1
d3c (

dm − dm+1

2
)3,

and

f2(
cm+1 + cm

2
) = Fm+1

d + Fm+1
cd (

cm − cm+1

2
) + Fm+1

d2 (
dm − dm+1

2
)

+
1
2
Fm+1

c2d (
cm − cm+1

2
)2 + Fm+1

cd2 (
cm − cm+1

2
)(

dm − dm+1

2
)

+
1
2
Fm+1

d3 (
dm − dm+1

2
)2 +

1
3!

Fm+1
c3d (

cm − cm+1

2
)3

+
1
2
Fm+1

c2d2 (
cm − cm+1

2
)2(

dm − dm+1

2
)

+
1
2
Fm+1

cd3 (
cm − cm+1

2
)(

dm − dm+1

2
)2 +

1
3!

Fm+1
d4 (

dm − dm+1

2
)3.

Recalling the expression of φ̂, we obtain

I := f1(
cm+1 + cm

2
) − φ̂(cm, cm+1) = − 1

24
Fm+1

c3 (cm+1 − cm)2

− 1
12

Fm+1
dc2 (cm+1 − cm)(dm+1 − dm) − 1

24
Fm+1

d2c (dm+1 − dm)2

− 1
48

Fm+1
c4 (cm+1 − cm)3 − 1

16
Fm+1

dc3 (cm+1 − cm)2(dm+1 − dm)

− 1
16

Fm+1
d2c2 (cm+1 − cm)(dm+1 − dm)2 − 1

48
Fm+1

d3c (dm+1 − dm)3

= − 1
24

(6cm+1 + 3dm+1 − 3)(cm+1 − cm)2 − 1
16

(dm+1 − dm)3

− 1
12

(3dm+1 + 3cm+1 − 1)(cm+1 − cm)(dm+1 − dm)

− 1
24

(3cm+1 + 3dm+1 − 1)(dm+1 − dm)2 − 1
8
(cm+1 − cm)3

− 3
16

(cm+1 − cm)2(dm+1 − dm) − 3
16

(cm+1 − cm)(dm+1 − dm)2.

Since each term is at least second order, using Young’s inequality, i.e. 2ab ≤ a2 + b2

for a, b ∈ R, we get

|I| ≤ C
(
(cm+1 − cm)2 + (dm+1 − dm)2

)
, (A.2)
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where we used that cm, cm+1 are bounded. In a similar manner, we obtain

II := f2(
cm+1 + cm

2
) − φ̂2(cm, cm+1) = − 1

24
Fm+1

c2d (cm+1 − cm)2

− 1
12

Fm+1
cd2 (cm+1 − cm)(dm+1 − dm) − 1

24
Fm+1

d3 (dm+1 − dm)2

− 1
48

Fm+1
c3d (cm+1 − cm)3 − 1

16
Fm+1

c2d2 (cm+1 − cm)2(dm+1 − dm)

− 1
16

Fm+1
cd3 (cm+1 − cm)(dm+1 − dm)2 − 1

48
Fm+1

d4 (dm+1 − dm)3

= − 1
24

(3dm+1 + 3cm+1 − 1)(cm+1 − cm)2 − 1
8
(dm+1 − dm)3

− 1
12

(3cm+1 + 3dm+1 − 1)(cm+1 − cm)(dm+1 − dm)

− 1
24

(6dm+1 + 3cm+1 − 3)(dm+1 − dm)2 − 1
16

(cm+1 − cm)3

− 3
16

(cm+1 − cm)2(dm+1 − dm) − 3
16

(cm+1 − cm)(dm+1 − dm)2

By the same arguments as used for (A.2), we get

|II| ≤ C
(
(cm+1 − cm)2 + (dm+1 − dm)2

)
, (A.3)

where we used the fact that cm, cm+1 are bounded and omitted subscripts i and j for
simplicity. From Eqs. (A.2) and (A.3), our assertion (A.1) follows.

Appendix B. Crank-Nicholson. Here, we present another scheme in which

φ̂(cn, cn+1) =
1
2
(
f(cn) + f(cn+1)

)
.

This results in the more traditional (Crank-Nicholson) scheme:

cn+1
ij − cn

ij

∆t
= ∆d µ

n+ 1
2

ij ,

µ
n+ 1

2
ij =

1
2
(
f(cn) + f(cn+1)

)− 1
2
Γε∆d(cn

ij + cn+1
ij ).

The nonlinear multigrid method given in section C also can be modified to solve
this nonlinear system at the implicit time level. Moreover, at the linear level (i.e. f(c)
is a linear function), this scheme is the same as that considered in (3.5) and (3.6).
However, at the nonlinear level, we are unable to prove that the Crank-Nicholson
system given above has a discrete energy function unless a second order time step
constraint is imposed. This constraint is much stronger than that needed for stability
and seems to be a shortcoming of the analysis as simulation results always seem to
yield non-increasing discrete energies.

Appendix C. A nonlinear multigrid V-cycle algorithm.
Let us rewrite equations (3.5)-(3.6) as follows.

NSO(cn+1, µn+ 1
2 , dn+1, νn+ 1

2 ) = (gn
1 , gn

2 , gn
3 , gn

4 ), (C.1)
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where the nonlinear system operator (NSO) is defined as

NSO(cn+1, µn+ 1
2 , dn+1, νn+ 1

2 ) = (
cn+1
ij

∆t
− ∆hµ

n+ 1
2

ij ,

µ
n+ 1

2
ij − φ̂1(cn

ij , c
n+1
ij , dn

ij , d
n+1
ij ) + ε2∆hcn+1

ij +
ε2

2
∆hdn+1

ij ,

dn+1
ij

∆t
− ∆hν

n+ 1
2

ij ,

ν
n+ 1

2
ij − φ̂2(cn

ij , c
n+1
ij , dn

ij , d
n+1
ij ) + ε2∆hdn+1

ij +
ε2

2
∆hcn+1

ij )

and the source term is

(gn
1 , gn

2 , gn
3 , gn

4 ) =
(

cn
ij

∆t
,−ε2∆hcn

ij −
ε2

2
∆hdn

ij ,
dn

ij

∆t
,−ε2∆hdn

ij −
ε2

2
∆hcn

ij

)
.

In the following description of one FAS cycle, we assume a sequence of grids Ωk

(Ωk−1 is coarser than Ωk by factor 2). Given the number η of pre- and post- smooth-
ing relaxation sweeps, an iteration step for the nonlinear multigrid method using the
V-cycle is formally written as follows:

FAS multigrid cycle

{cm+1
k , µ

m+ 1
2

k , dm+1
k , ν

m+ 1
2

k }

= FAScycle(k, cm
k , µ

m− 1
2

k , dm
k , ν

m− 1
2

k ,NSOk, g1
n
k , g2

n
k , g3

n
k , g4

n
k , η).

That is, {cm
k , µ

m− 1
2

k , dm
k , ν

m− 1
2

k } and {cm+1
k , µ

m+ 1
2

k , dm+1
k , ν

m+ 1
2

k } are the approxima-

tions of {cn+1
k (xi, yj), µ

n+ 1
2

k (xi, yj), dn+1
k (xi, yj), ν

n+ 1
2

k (xi, yj)} before and after a FAS-
cycle. Now, define the FAScycle.

(1) Presmoothing

{c̄m
k , µ̄

m− 1
2

k , d̄m
k , ν̄

m− 1
2

k }
= SMOOTHη(cm

k , µ
m− 1

2
k , dm

k , ν
m− 1

2
k ,NSOk, g1

n
k , g2

n
k , g3

n
k , g4

n
k ),

which means performing η smoothing steps with initial approximation cm
k , µ

m− 1
2

k ,

dm
k , ν

m− 1
2

k , gn
1 k, gn

2 k, gn
3 k, gn

4 k, and the SMOOTH relaxation operator to get the ap-

proximation {c̄m
k , µ̄

m− 1
2

k , d̄m
k , ν̄

m− 1
2

k }.

One SMOOTH relaxation operator step consists of solving the system (C.2)-(C.5)
given below by a 4 × 4 matrix inversion for each ij:

c̄m
ij

∆t
+

4
h2

µ̄
m− 1

2
ij = g1

n
ij +

µ
m− 1

2
i+1,j + µ̄

m− 1
2

i−1,j + µ
m− 1

2
i,j+1 + µ̄

m− 1
2

i,j−1

h2
, (C.2)
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−
(

4ε2

h2
+

∂φ̂1

∂cn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )

)
c̄m
ij −

(
2ε2

h2
+

∂φ̂1

∂dn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )

)
d̄m

ij

+µ̄
m− 1

2
ij = g2

n
ij +

1
2
φ̂1(cn

ij , c
m
ij , dn

ij , d
m
ij ) − ∂φ̂1

∂cn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )cm

ij (C.3)

− ∂φ̂1

∂dn+1
ij

(cn
ij , c

m
ij , d

n
ij , d

m
ij )dm

ij − ε2

h2
(cm

i+1,j + c̄m
i−1,j + cm

i,j+1 + c̄m
i,j−1)

− ε2

2h2
(dm

i+1,j + d̄m
i−1,j + dm

i,j+1 + d̄m
i,j−1).

Using similar procedures as above, we get Eqs. (C.4) and (C.5) from the second
components of Eqs. (3.5) and (3.6), respectively:

d̄m
ij

∆t
+

4
h2

ν̄
m− 1

2
ij = g3

n
ij +

ν
m− 1

2
i+1,j + ν̄

m− 1
2

i−1,j + ν
m− 1

2
i,j+1 + ν̄

m− 1
2

i,j−1

h2
, (C.4)

−
(

2ε2

h2
+

∂φ̂2

∂cn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )

)
c̄m
ij −

(
4ε2

h2
+

∂φ̂2

∂dn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )

)
d̄m

ij

+ν̄
m− 1

2
ij = g4

n
ij + φ̂2(cn

ij , c
m
ij , dn

ij , d
m
ij ) − ∂φ̂2

∂cn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )cm

ij (C.5)

− ∂φ̂2

∂dn+1
ij

(cn
ij , c

m
ij , dn

ij , d
m
ij )dm

ij − ε2

2h2
(cm

i+1,j + c̄m
i−1,j + cm

i,j+1 + c̄m
i,j−1)

− ε2

h2
(dm

i+1,j + d̄m
i−1,j + dm

i,j+1 + d̄m
i,j−1).

This a straightforward generalization of the smoother we used in [13] for binary sys-
tem. See [13] for a derivation.
(2) Compute the defect

(def
m

1 k, def
m

2 k, def
m

3 k, def
m

4 k)

= (gn
1 k, gn

2 k, gn
3 k, gn

4 k) − NSOk(c̄m
k , µ̄

m− 1
2

k , d̄m
k , ν̄

m− 1
2

k ).

(3) Restrict the defect and {c̄m
k , µ̄

m− 1
2

k , d̄m
k , ν̄

m− 1
2

k }

(def
m

1 k−1, def
m

2 k−1, def
m

3 k−1, def
m

4 k−1) = Ik−1
k (def

m

1 k, def
m

2 k, def
m

3 k, def
m

4 k),

(c̄m
k−1, µ̄

m− 1
2

k−1 , d̄m
k−1, ν̄

m− 1
2

k−1 ) = Ik−1
k (c̄m

k , µ̄
m− 1

2
k , d̄m

k , ν̄
m− 1

2
k ).

(4) Compute the right-hand side

(g1
n
k−1, g2

n
k−1, g3

n
k−1, g4

n
k−1) = (def

m

1 k−1, def
m

2 k−1, def
m

3 k−1, def
m

4 k−1)

+NSOk−1(c̄m
k−1, µ̄

m− 1
2

k−1 , d̄m
k−1, ν̄

m− 1
2

k−1 ).

(5) Compute an approximate solution {ĉm
k−1, µ̂

m− 1
2

k−1 , d̂m
k−1, ν̂

m− 1
2

k−1 } of the
coarse grid equation on Ωk−1, i.e.

NSOk−1(cm
k−1, µ

m− 1
2

k−1 , dm
k−1, ν

m− 1
2

k−1 ) = (gn
1 k−1, g

n
2 k−1, g

n
3 k−1, g

n
4 k−1). (C.6)
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If k = 1, we explicitly invert a 4 × 4 matrix to obtain the solution. If k > 1, we
solve (C.6) by performing a FAS k-grid cycle using {c̄m

k−1, µ̄
m− 1

2
k−1 , d̄m

k−1, ν̄
m− 1

2
k−1 } as an

initial approximation:

{ĉm
k−1, µ̂

m− 1
2

k−1 , d̂m
k−1, ν̂

m− 1
2

k−1 } = FAScycle(k − 1, c̄m
k−1, µ̄

m− 1
2

k−1 , d̄m
k−1,

ν̄
m− 1

2
k−1 ,NSOk−1, g

n
1 k−1, g

n
2 k−1, g

n
3 k−1, g

n
4 k−1η).

(6) Compute the coarse grid correction (CGC)

v̂m
1k−1 = ĉm

k−1 − c̄m
k−1, v̂

m− 1
2

2k−1 = µ̂
m− 1

2
k−1 − µ̄

m− 1
2

k−1 ,

v̂m
3k−1 = d̂m

k−1 − d̄m
k−1, v̂

m− 1
2

4k−1 = ν̂
m− 1

2
k−1 − ν̄

m− 1
2

k−1 .

(7) Interpolate the correction

v̂m
1k = Ik

k−1v̂
m
1k−1, v̂

m− 1
2

2k = Ik
k−1v̂

m− 1
2

2k−1 ,

v̂m
3k = Ik

k−1v̂
m
3k−1, v̂

m− 1
2

4k = Ik
k−1v̂

m− 1
2

4k−1 .

(8) Compute the corrected approximation on Ωk

cm, after CGC
k = c̄m

k + v̂m
1k, µ

m− 1
2 , after CGC

k = µ̄
m− 1

2
k + v̂

m− 1
2

2k ,

dm, after CGC
k = d̄m

k + v̂m
3k, ν

m− 1
2 , after CGC

k = ν̄
m− 1

2
k + v̂

m− 1
2

4k .

(9) Postsmoothing

{cm+1
k , µ

m+ 1
2

k , dm+1
k , ν

m+ 1
2

k }
= SMOOTHη(cm, after CGC

k , µ
m− 1

2 , after CGC

k , dm, after CGC
k ,

ν
m− 1

2 , after CGC

k ,NSOk, g1
n
k , g2

n
k , g3

n
k , g4

n
k ).

This completes the description of a nonlinear FAScycle.

Appendix D. The first (J.S. Kim) and third (J. S. Lowengrub) authors acknowl-
edge the support of the Department of Energy, Office of Basic Energy Sciences and
the National Science Foundation. The authors are also grateful for the support of
the Minnesota Supercomputer Institute, the Network & Academic Computing Ser-
vices (NACS) at UCI, and the hospitality of the Institute for Mathematics and its
Applications.

REFERENCES

[1] J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of a model
for phase separation of a multi-component alloy, IMA J. Numer. Anal., 16:257–287, 1996.

[2] J.W. Barrett and J.F. Blowey, An improved error bound for a finite element approximation of
a model for phase separation of a multi-component alloy, IMA J. Numer. Anal., 19(1):147–
168, 1999.

[3] J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation
of a multi-component alloy with nonsmooth free energy and a concentration dependent
mobility matrix, Math. Models Methods Appl. Sci., 9(5):627–663, 1999.



JUNSEOK KIM, KYUNGKEUN KANG, AND JOHN LOWENGRUB 77

[4] J.W. Barrett, J.F. Blowey and H. Garcke, On fully practical finite element approximations
of degenerate Cahn-Hilliard systems, M2AN Math. Model. Numer. Anal., 35(4):713–748,
2001.

[5] J. W. Barrett and J. F. Blowey, Finite element approximation of an Allen-Cahn/Cahn-Hilliard
system, IMA J. Numer. Anal., 22(1):11–71, 2002.

[6] V.E. Badalassi, H.D. Ceniceros and S. Banerjee, Computation of multiphase systems with phase
field models, J. Comp. Phys., 190:371–397, 2003.

[7] J.F. Blowey, M.I.M. Copetti and C.M. Elliott, The numerical analysis of a model for phase
separation of a multi-component alloy, IMA J. Numer. Anal., 16:111–139, 1996.

[8] M. Copetti, Numerical experiments of phase separation in ternary mixtures, Math. Comput.
Simulation, 52(1):41–51, 2000.

[9] D.J. Eyre, Systems for Cahn-Hilliard equations, SIAM J. Appl. Math., 53(6):1686-1–712, 1993.
[10] H. Garcke, B. Nestler and B. Stoth, A multiphase field concept: numerical simulations of

moving phase boundaries and multiple junctions, SIAM J. Appl. Math., 60(1):295–315,
2000.

[11] Junseok Kim, Modeling and simulation of multi-component, multi-phase fluid flows, Ph.D.
thesis, School of Mathematics, University of Minnesota, 2002.

[12] Junseok Kim and John Lowengrub, Conservative Multigrid Methods for ternary Cahn-Hilliard
Fluids, in preparation.

[13] Junseok Kim, Kyungkeun Kang, and John Lowengrub, Conservative multigrid methods for
Cahn-Hilliard fluids, J. Comp. Phys., 193:511–543, 2004.

[14] John Lowengrub and Vittorio Cristini, in preparation.
[15] J.E. Morral and J.W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 19:1037–

1045, 1971.
[16] D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, van Nostrand,

Reinhold, 1993.
[17] U. Trottenberg, C. Oosterlee, A. Schüller, MULTIGRID, Academic press, 2001.


