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Abstract

We present a new phase field model for three-component immiscible liquid flows with surface tension. In the phase field approach, the
classical sharp-interface between the two immiscible fluids is replaced by a transition region across which the properties of fluids change
continuously. The proposed method incorporates a chemical potential which can eliminate the unphysical phase field profile and a con-
tinuous surface tension force formulation from which we can calculate the pressure field directly from the governing equations. The capa-
bilities of the method are demonstrated with several examples. We compute the ternary phase separation via spinodal decomposition,
equilibrium phase field profiles, pressure field distribution, and a three-interface contact angle resulting from a spreading liquid lens
on an interface. The numerical results show excellent agreement with analytical solutions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many biomedical, chemical, and industrial processes
involve mixtures of three or more liquids. For example,
mixing two immiscible fluids produces an emulsion, which
is defined as a dispersion of droplets of one fluid in a sec-
ond fluid. Double emulsions are highly structured fluids
consisting of emulsion drops that contain smaller droplets
inside [35]. Emulsions play critical roles in many forms of
applications such as prolonged drug delivery systems [7],
entrapment of vitamin [3], and flavor encapsulation for
food additives [12].

There have been few theoretical and numerical studies of
flows containing three liquid components [5,22,29] as com-
pared to a large body of research on two-phase fluid flows.
For example, the volume-of-fluid (VOF) [15,16,26,33], level
set method [9,27,30,32], immersed boundary method [14],
and phase field method [2,10] are used for the studies of
two-component flow. See a recent review paper [23] for
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more details of two-phase fluid flows. In this paper, we
present our study of a phase field model for the mixture
of three immiscible fluids. Here we view the phase field
model as a computational method. Our model for surface
tension effect is different from thermodynamically derived
ones [1]. We take continuum surface tension (CSF) frame-
work [6] to model surface tension effects in our phase-field
model for three-component fluids. There is another phase-
field approach which is based on an ensemble averaging.
Based on a superposition of microscopic and macroscopic
interface morphologies, an expression for the interfacial
momentum source due to surface tension is introduced that
is equivalent to the capillary stress term encountered in
thermodynamically derived models [31]. The most signifi-
cant computational advantage of this method is that expli-
cit tracking of the interface is unnecessary.

We propose a ternary phase field model which combines
good features of previous multiphase models [5,20]. First,
we use the continuous surface tension formulation for
phase field models, from which the pressure field can be
calculated directly from the governing equations. Second,
we use a non-constant Lagrange-multiplier in the chemi-
cal potential term, which guarantees that non-physical
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apparition of one phase inside the interface between the
other two phases will not occur. The primary advantage
of the continuous surface tension formulation for ternary
fluid flows is that it allows us to extend three-component
fluid flow model to an arbitrary number of fluid compo-
nents (more than three components, e.g., four-component
fluid flow) [21].

The remaining parts of this paper are organized as fol-
lows. In Section 2, we describe a phase field model for
the mixture of three immiscible fluids. In Section 3, we give
a numerical solution. Representative numerical experi-
ments for ternary fluid flow are provided in Section 4. In
Section 5, conclusions are drawn.
2. A phase field model for the mixture of three immiscible

fluids

We consider viscous three-component incompressible
fluid flow with surface tension. The fluid dynamics are
described by the Navier–Stokes equations with surface ten-
sion force:

q
ou

ot
þ u � ru

� �
¼ �rp þr � ½gðruþruTÞ� þ SFþ qg;

r � u ¼ 0;

where q is the fluid density, u is the fluid velocity, p is the
pressure, g is the fluid viscosity, and SF is the surface ten-
sion of the interface. Density and viscosity are constant in
each phase but may vary from phase to phase taking values
qi and gi in phase i. The Navier–Stokes equations without
the surface tension term are applied for each phase of the
flow away from the interface [23]. The composition of a ter-
nary mixture (A, B, and C) can be mapped onto an equilat-
eral triangle (the Gibbs triangle [25]) whose corners
represent 100% concentration of A, B or C as shown in
Fig. 1. Mixtures with components lying on lines parallel
 100% A

 100% B 100% C

o

Fig. 1. Gibbs triangle. At the top corner c1 ¼ 1; c2 ¼ 0; c3 ¼ 0, at the left
corner c1 ¼ 0; c2 ¼ 1; c3 ¼ 0, and at the right corner c1 ¼ 0; c2 ¼ 0; c3 ¼ 1.
At the position marked ‘�’, c1 = 0.3, c2 = 0.6, and c3 = 0.1.
to BC contain the same percentage of A; those with lines
parallel to AC have the same percentage of B concentra-
tion; and analogously for the C concentration. In Fig. 1,
the mixture at the position marked ‘�’ contains 30% A,
60% B, and 10% C.

Clearly the total percentage must sum to 100%, or
expressed as a mole fraction, c1 + c2 + c3 = 1, so that,
admissible states will belong to the Gibbs triangle

GT :¼ ðc1; c2; c3Þ 2 R3
X3

i¼1

ci ¼ 1; 0 6 ci 6 1

�����
)(
:

We postulate that the free energy can be written as follows:

F ¼
Z

X
F ðc1; c2; c3Þ þ

�2

2

X3

i¼1

jrcij2
" #

dx; ð1Þ

where F ðc1; c2; c3Þ ¼ 1
4

P3
i¼1c2

i ð1� ciÞ2 and X is an open,
bounded subset of Rnðn ¼ 1; 2; 3Þ occupied by the system.
The time dependence of ci is given by the following advec-
tive Cahn–Hilliard equation for describing each phase
convection:

oci

ot
þ u � rci ¼ r � ðMrliÞ; i ¼ 1; 2; 3; ð2Þ

li ¼
oF ðc1; c2; c3Þ

oci
� �2Dci þ bðc1; c2; c3Þ; ð3Þ

where M is a mobility, � is a positive constant, and
bðc1; c2; c3Þ is a non-constant Lagrange-multiplier, which
is enforcing that the sum of the variational derivatives is
zero, i.e.,

P3
i¼1li ¼ 0 [17]. The natural and mass conserving

boundary conditions for the quaternary CH system are the
zero Neumann boundary ones:
rci � n ¼ rli � n ¼ 0 on oX; ð4Þ
where n is the unit normal vector to oX. To calculate
bðc1; c2; c3Þ, we sum up Eqs. (2) and (3) and write the equa-
tion satisfied by S = c1 + c2 + c3,
oS
ot
þ u � rS ¼ r � Mr

X3

i¼1

oF
oci
� �2DS þ 3bðc1; c2; c3Þ

 !" #
:

ð5Þ
We want S � 1 to be a solution to this Eq. (5). Therefore,
bðc1; c2; c3Þ ¼ � 1

3

P3
i¼1

oF
oci

. For the sake of simplicity, we as-
sume that each component of the fluids has the same mass
density and the mobility M is constant. Since
c1 + c2 + c3 = 1 for ternary systems, we only need to solve
the equations with c1 and c2. Let c = (c1,c2) and
l ¼ ðl1; l2Þ, then the three-component fluids are governed
by the modified Navier–Stokes equations and the convec-
tive Cahn–Hilliard equations.
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qðcÞ ou

ot
þ u � ru

� �
¼ �rp þr � ½gðcÞðruþruTÞ� þ SF;

ð6Þ
r � u ¼ 0; ð7Þ
oc

ot
þ u � rc ¼ MDl; ð8Þ

l ¼ fðcÞ � �2Dc; ð9Þ

where the variable density and the viscosity are given as

qðcÞ ¼ q1c1 þ q2c2 þ q3ð1� c1 � c2Þ;
gðcÞ ¼ g1c1 þ g2c2 þ g3ð1� c1 � c2Þ;
fðcÞ ¼ ðf1ðcÞ; f2ðcÞÞ
¼ ðc3

1 � 1:5c2
1 þ 0:5c1 � c1c2ð1� c1 � c2Þ;

c3
2 � 1:5c2

2 þ 0:5c2 � c1c2ð1� c1 � c2ÞÞ:

The interfacial tension force SF acts in a normal direction
to the fluid interface and is proportional to the curvature
times a surface tension coefficient. Therefore, the capillary
term can be written in the form

SF ¼ �
X3

i¼1

a�cir �
rci

jrcij

� �
jrcijrci;

where ci is the phase specific surface tension coefficient and
satisfies the relation, rij = ci + cj [29]. rij are the physical
fluid surface tension coefficients between the fluid i and
the fluid j (see Fig. 2). The decomposition is uniquely
defined. That is, c1 = (r12 � r23 + r13)/2, c2 = (r12 +
r23 � r13)/2, and c3 = (�r12 + r23 + r13)/2. To match the
surface tension of the sharp-interface model, a must satisfyZ 1

�1
a�jrceq

1 ðx; yÞj
2 dx ¼ 1; ð10Þ

where ceq
1 ðx; yÞ ¼ 1þ tanh x= 2

ffiffiffi
2
p

�
� �� �� 	

=2 is an equilib-
rium composition profile in the infinite domain, X =
(�1,1) · (�1,1), when the chemical potential is given
as Eq. (9) with c3ðx; yÞ � 0 [5,19]. It is a good approxima-
tion in the finite domain since it approaches 0 or 1 away
from the interfacial transition zone. Therefore from Eq.
Ω 1

Ω2 Ω 3

σ12

σ13

σ
23

θ1

θ 2 θ3

Fig. 2. Schematic of domain. rij denotes the surface tension coefficient of
fluids ‘i’ and ‘j’. hi is a contact angle of phase i with two other phases.
(10), we get a ¼ 6
ffiffiffi
2
p

. To make the governing equations
dimensionless, we choose the following definitions:

x0 ¼ 1

L
x; u0 ¼ 1

U
u; t0 ¼ U

L
t; q0 ¼ q

q1

;

p0 ¼ p

q1U 2
; g0 ¼ g

g1

; ð11Þ

where the primed quantities are dimensionless and
L;U ; q1; g1 are, respectively, the characteristic length, char-
acteristic velocity, the density of fluid 1, and the dynamic
viscosity of fluid 1. Substituting the above Eqs. (11) into
Eqs. (6)–(9), and dropping the primes, we have

ou

ot
þ u � ru ¼ �rp þ 1

Re
r � ½gðcÞðruþruTÞ� þ SF; ð12Þ

r � u ¼ 0; ð13Þ
oc

ot
þ u � rc ¼ 1

Pe
Dl; ð14Þ

l ¼ fðcÞ � �2Dc; ð15Þ

where � is redefined according to the scaling and

SF ¼ �
X3

i¼1

6
ffiffiffi
2
p

�

Wei
r � rci

jrcij

� �
jrcijrci:

The dimensionless parameters are the Reynolds number,
Re = q1UL/g1, the phase specific Weber number, Wei =
q1LU2/ci, and the diffusional Peclet number, Pe = LU/
(Ml*). Pe measures the relative strengths of advection
and diffusion. � > 0 is a non-dimensional measure of non-
locality resulting from the gradient energy (Cahn number)
and introduces an internal length scale (interface
thickness).

The key difference between these Eqs. (6)–(9) and the
previous phase field models [5,22] is the presence of the
new surface tension force formulation which was applied
to the two-component fluid flow model [20]. The presence
of this term allows these equations to be applied over an
arbitrary number of component fluid flow models [21].
3. Numerical solution

An efficient approximation can be obtained by decou-
pling the solution of the momentum equations from the
solution of the continuity equation by a projection method
[8]. The extension to 3D is straightforward. We will focus
on describing the idea in two-dimensions.

A staggered marker-and-cell (MAC) mesh of Harlow
and Welch [18] is used in which pressure and phase fields
are stored at cell centers and velocities at cell interfaces
(see Fig. 3). Let a computational domain be partitioned
in Cartesian geometry into a uniform mesh with mesh spac-
ing h.

At the beginning of each time step, given un, and cn, we
want to find un+1, cn+1, and pn+1 which solve the following
temporal discretization of Eqs. (12)–(15) of motion:
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Fig. 3. Velocities are defined at cell boundaries while the pressure and
phase field are defined at the cell centers, Xij.
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unþ1 � un

Dt
¼ �rdpnþ1 þ 1

Re
rd � gðcnÞ½rdun þ ðrdunÞT�

þ SFn � ðu � rduÞn; ð16Þ
rd � unþ1 ¼ 0; ð17Þ
cnþ1 � cn

Dt
¼ 1

Pe
Ddl

nþ1
2 � ðu � rdcÞn; ð18Þ

lnþ1
2 ¼ 1

2
½fðcnÞ þ fðcnþ1Þ� � 1

2
�2Ddðcn þ cnþ1Þ: ð19Þ

The outline of the main procedures in one time step is:

Step 1. Initialize c0 to be the locally equilibrated concentra-
tion profile and u0 to be the divergence-free velocity
field.

Step 2. Solve an intermediate velocity field, ~u, which does
not satisfy the incompressible condition, without
the pressure gradient term,
~u� un

Dt
¼ 1

Re
rd � gðcnÞ½rd un þ ðrd unÞT� � un � rdun þ SFn;

where the convective term, un Æ $dun, is computed
using a higher order ENO procedure derived in
Ref. [28]. The surface tension force term, SFn, is de-
scribed in Section 3.1. Then, we solve the following
equations for the advanced pressure field at (n + 1)
time step.
unþ1 � ~u

Dt
¼ �rdpnþ1; ð20Þ

rd � unþ1 ¼ 0: ð21Þ

With application of the divergence operator to Eq.
(20), we find that the Poisson equation for the pres-
sure at the advanced time (n + 1).
Ddpnþ1 ¼ 1

Dt
rd � ~u; ð22Þ

where we have made use of Eq. (21). The resulting
linear system of Eq. (22) is solved using a multigrid
method, specifically, V-cycles with a Gauss–Seidel
relaxation. Then the divergence-free velocities are
defined by unþ1 ¼ ~u� pnþ1.
Step 3. Update the phase field cn to cn+1. This step is
described in Appendix A. These complete the one
time step.
3.1. Discretization of the surface tension force formulation

In this section, we derive a discretization of the cell-face
based surface tension force. Let / be one of three phase
fields, c1; c2, and c3. A normal vector at the top right vertex
of a computational cell Xij is given by

niþ1
2;jþ

1
2
¼ nx

iþ1
2;jþ

1
2
;ny

iþ1
2;jþ

1
2


 �
¼

/iþ1;jþ/iþ1;jþ1�/ij�/i;jþ1

2h
;
/i;jþ1þ/iþ1;jþ1�/ij�/iþ1;j

2h

� �
:

The curvature j(/ij) is given by

jð/ijÞ ¼ rd �
n
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� �
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2h
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2
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2
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2
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:

The cell-centered normal is the average of the vertex
normals,

rd/ij ¼ niþ1
2;jþ

1
2
þ niþ1

2;j�
1
2
þ ni�1

2;jþ
1
2
þ ni�1

2;j�
1
2


 �
=4:

Let ðsf x
ijð/Þ; sf y

ijð/ÞÞ ¼ jð/ijÞjrd/ijjrd/ij. Then, the re-
quired face-centered values are obtained by interpolating
from the two nearest cell-centered values,

SF x�edge
iþ1

2;j
ðcÞ ¼ �

X3

k¼1

3
ffiffiffi
2
p

�

Wek
ðsf x

ijðckÞ þ sf x
iþ1;jðckÞÞ and

SF y�edge
i;jþ1

2

ðcÞ ¼ �
X3

k¼1

3
ffiffiffi
2
p

�

Wek
ðsf y

ijðckÞ þ sf y
i;jþ1ðckÞÞ:
4. Computational verification of the model

We now present numerical results for several standard
problems with a three-component mixture to illustrate
the flexibility and accuracy of the new phase field model
for ternary immiscible fluid flows. The numerical experi-
ments are the spinodal decomposition dynamics in a ter-
nary mixture with a spatially varying mobility,
equilibrium phase field profiles with two different chemical
potentials, the pressure field distribution, and the contact
angle of a liquid lens located at an interface between two
other immiscible fluids.

4.1. Spinodal decomposition – phase separation

We begin the numerical experiments with an example of
spinodal decomposition of a ternary mixture. When a one-
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phase homogeneous system composed of three species, at
high temperature and thermal equilibrium, is rapidly
cooled to a uniform temperature below a critical tempera-
ture, where it is unstable with respect to concentration
fluctuations, spinodal decomposition takes place. The
system separates into spatial regions rich in one phase
and poor in the other phases and evolves into an equilib-
rium state with lower overall free energy [13]. Ternary
spinodal decomposition has been studied numerically by
[4,11,13,24]. We use the ternary Cahn–Hilliard system, (2)
and (3) with zero velocity, u = 0. In the simulations, the ini-
tial conditions were random perturbations of the maximum
amplitude 0.05 of the uniform state c ¼ cave ¼ ð1=3; 1=3Þ. A
256 · 256 mesh was used on the square domain
X ¼ ½1� � ½0; 1� for the spatial discretization and a time
step, Dt = 0.1/512 was employed for the time integration.
We took a spatially varying mobility, M ¼ Mðx; yÞ ¼
0:01þ 0:99y and � = 0.0035.

The result is presented in Fig. 4. The area shown by
white indicates the C phase region; while the gray and
black color regions stand for A-rich and B-rich domains,
respectively. We observed three phases in the early stages
of spinodal decomposition. Since the composition was
completely symmetric with respect to the three compo-
nents, all three phases had similar morphologies and evolu-
tion dynamics [11]. As we can expect from the form of the
mobility, at an earlier time Fig. 4a and a later time Fig. 4b,
computations show non-uniform coarsening wherein the
smaller (larger) scales occur in the lower (upper) regions.
4.2. Comparison between two different chemical

potentials – equilibrium phase field profiles

The computational domain was 2 · 1. We used a uni-
form grid of 128 · 64. The initial conditions were
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(a) t=0.02

Fig. 4. The temporal evolution of morphologies during a spinodal phase separ
A is represented by the gray region, phase B by the black region, and phase C
c1ðx; y; 0Þ

¼ 0:5 1� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
� 0:15

2
ffiffiffi
2
p
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0
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1
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0
@

1
A;
ð23Þ

c2ðx; y; 0Þ

¼ 0:5 1� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1:5Þ2 þ ðy � 0:5Þ2

q
� 0:15

2
ffiffiffi
2
p

�

0
@

1
A

0
@

1
A:
ð24Þ

The simulations were stopped when profiles did not change
for a long time. The dependence of the numerical solution
on the chemical potential is demonstrated in Figs. 5a and b.

In Fig. 5a, we show the numerical equilibrium profiles of
c1, c2, and c3 with the previous chemical potential [22]. The
phase c1 appeared between the phase c2 and c3 interface,
which was not a physical phenomenon. Likewise, the phase
c2 appeared between the phase c1 and c3 interface. Fig. 5b
shows the numerical equilibrium profiles of c1, c2, and c3

with the current chemical potential, l ¼ ðc3
1 � 1:5c2

1þ
0:5c1 � c1c2ð1� c1 � c2Þ � �2Dc1, c3

2 � 1:5c2
2 þ 0:5c2�

c1c2ð1� c1 � c2Þ � �2Dc2Þ. We noticed very small changes
in the numerically equilibrated c1; c2; and c3 compared to
the initial profiles, Eqs. (23) and (24).

In Fig. 6, we show slices of the phase fields at y = 0.5. In
Fig. 6a, note that there were non-physical phase profiles in
other phase boundaries. In Fig. 6b, note that there were no
non-physical phase profiles in other phase boundaries.

4.3. Pressure field distribution – refinement study

To demonstrate the ability to calculate the pressure field
directly from the governing equations using the present
x
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ation of a ternary system with average composition cave = (1/3,1/3). Phase
by the white region.



Fig. 5. (a) The equilibrium state obtained with the previous chemical potential [22]. (b) The equilibrium state obtained with the current chemical potential,
l ¼ ðc3

1 � 1:5c2
1 þ 0:5c1 � c1c2ð1� c1 � c2Þ � �2Dc1, c3

2 � 1:5c2
2 þ 0:5c2 � c1c2ð1� c1 � c2Þ � �2Dc2Þ.
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Fig. 6. Vertical cutline of phase fields at y = 0.5 with the previous chemical potential (a) and the current chemical potential (b).
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model, we considered the equilibrium of two drops placed
within another fluid. In the absence of viscous, gravita-
tional, and other external forces, surface tension caused a
static liquid drop to become spherical. The Laplace for-
mula [6] for an infinite cylinder surrounded by a back-
ground fluid at zero pressure gives pdrop = rj = r/R,
where pdrop is the drop pressure, r is the surface tension
coefficient, j is the curvature, and R is the drop radius.
In this test, we selected the same initial condition for c1

and c2 as before, Eqs. (23) and (24) sketched in Fig. 7a.
We solved the following Eq. (25) on the computational
domain, X = [0,2] · [0,1]. The drop radius R ¼ 0:15; r13 ¼
0:075; r23 ¼ 0:15, and r12 = 1 are used. The pressure field
is shown in Fig. 7b.

Dp ¼ r � SF: ð25Þ

The convergence of the CFS model to the theory was dem-
onstrated by the results shown in Fig. 7c for the drop pres-
sure computed with recursively refined meshes (256 · 128,
512 · 256, and 1024 · 512). Increasing resolution localized
the surface forces and yielded a uniform ring around the
circumference of the drop.
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Fig. 7. (a) A schematic of two-dimensional drops, (b) the pressure field and (c) slice plots of the pressure field at y = 0.5 with three different mesh
resolutions.
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4.4. Liquid lens – contact angle

Following [29], we next investigated the spreading of a
circular liquid lens (Fig. 8a) located at an interface between
two other immiscible fluids. The initial condition is a circu-
lar droplet, X2 (located at an interface between X1 and X3).
The initial velocity was zero, i.e.,

c1ðx; y; 0Þ ¼ max 0:5 1þ tanh
y � 0:5

2
ffiffiffi
2
p

�

� �� �
� c2ðx; yÞ; 0

� 
;

c2ðx; y; 0Þ

¼ 0:5 1þ tanh
0:15�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
2
ffiffiffi
2
p

�

0
@

1
A

0
@

1
A;

uðx; y; 0Þ ¼ vðx; y; 0Þ ¼ 0:

The computational domain was X ¼ ½0; 1� � ½0; 1� and the
mesh size was 256 · 256. The fluid viscosities were matched
ðg1 ¼ g2 ¼ g3Þ;Re ¼ 60;We2 ¼ 60, and We1 = We3 = 36.

In Fig. 8b, the evolution of the c2 = 1/2 contour line is
shown. In this case, � ¼ 0:006=

ffiffiffi
2
p

, Pe ¼ 10=�, h = 1/256,
and Dt = 0.05h were used. As the droplet spread, it reached
an equilibrium shape. The most deformed curve was the
numerical steady-state. Theoretically, the shape of the
steady-state drop is controlled by the three surface tension
coefficients. The equilibrium three-phase contact angle is
determined by

sin h1

r23

¼ sin h2

r13

¼ sin h3

r12

:

The relationship between the lens area A, its length d (the
distance between two triple junctions), and the contact
angles hi (see Fig. 2) of the ith phase (Young’s law) is

d ¼ 2ðp�h1Þ� sinð2ðp�h1ÞÞ
8Asin2ðp�h1Þ

þ2ðp�h3Þ� sinð2ðp�h3ÞÞ
8Asin2ðp�h3Þ

 !�1
2

:

Thus, the accuracy of the steady lens shape can be mea-
sured by comparing the observed d with the analytical va-
lue. We found that there was very good agreement between
the theoretical value, d = 0.4596 and the simulation result
value, d = 0.4539.
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In Fig. 9, we plot the final equilibrium stage with con-
tour lines of each concentration ci at the five levels
ci ¼ 0:1; 0:3; 0:5; 0:7, and 0.9. Fig. 9a and b are results with
� = 0.006 on a mesh size of 128 · 128 and � ¼ 0:006=
ffiffiffi
2
p

on
a mesh size of 256 · 256, respectively. Increasing resolution
localizes the interfacial transition zone.
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5. Conclusions

In this article, we proposed a new phase field model for
the incompressible, immiscible ternary fluid flows with
interfaces. The model consists of a Navier–Stokes equation
with an extra surface tension term resulting from the pres-
ence of interfaces and a Cahn–Hilliard equation with the
corresponding transport term. We used a recent chemical
potential [5] and continuous surface tension force formula-
tion [20], which has the capability to generalize to multi-
component fluid flow models. We presented several
illustrative numerical examples which exhibited various
physical mechanisms of the model and demonstrated its
robustness and versatility. In upcoming work, we will
investigate the cases with more than three-component fluid
flows with surface tension. In that work, we will generalize
the continuous surface tension force formulation to multi-
component (more than three) fluid flows.
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Appendix A. Ternary Cahn–Hilliard system with
advection – a nonlinear multigrid method

In this section, we describe a nonlinear Full Approxima-
tion Storage (FAS) multigrid method to solve the nonlinear
discrete system at the implicit time level. If the nonlinearity,
f(c) in Eq. (19), is treated using one step of Newton’s iter-
ation, we obtain Gauss–Seidel–Newton relaxation. See the
reference text [34] for additional details and the following
notations. The convective CH Eqs. (18) and (19) can be
written in the form Nðcnþ1; lnþ1

2Þ ¼ ð/n;wnÞ, where the non-
linear system operator (N) is defined as

Nðcnþ1;lnþ1
2Þ¼ cnþ1

Dt
� 1

Pe
Ddl

nþ1
2;

�
lnþ1

2�1

2
fðcnþ1Þþ �

2

2
Ddcnþ1

�

and the source term is ð/n;wnÞ ¼ cn

Dt � ðu � rdcÞn;
�

1
2
fðcnÞ � �2

2
DdcnÞ.

In the following description of one FAS cycle, we
assume a sequence of grids Xk (Xk�1 that is coarser than
Xk by factor 2). Given the number m of pre- and post-
smoothing relaxation sweeps, an iteration step for the non-
linear multigrid method using the V-cycle is formally
written:

FAS multigrid cycle:

cmþ1
k ; l

mþ1
2

k

n o
¼ FAScycleðk; cm

k ; l
m�1

2
k ;Nk;/

n
k ;w

n
k ; mÞ

on Xk grid:

That is, fcm
k ; l

m�1
2

k g and fcmþ1
k ; l

mþ1
2

k g are the approximations

of fcnþ1
k ðxi; yjÞ, l

nþ1
2

k ðxi; yjÞg before and after an FAScycle.
We set the initial guess, c0
k ¼ cn

k and l
�1

2
k ¼ l

n�1
2

k . Now, define
the FAScycle.
Step 1 – Pre-smoothing:

�cm
k ; �l

m�1
2

k

n o
¼ SMOOTHmðcm

k ; l
m�1

2
k ;Nk;/

n
k ;w

n
kÞ on Xk grid;

which means performing m smoothing steps with an initial

approximation cm
k ; l

m�1
2

k , /n
k ;w

n
k , and the SMOOTH relaxa-

tion operator to get the approximation f�cm
k ; �l

m�1
2

k g. One
SMOOTH relaxation operator step consists of solving
the system (A.1) and (A.2) given below by the 4 · 4 matrix
inversion for each ij. First, let us discretize Eq. (18).

�cm
ij

Dt
þ 4

h2Pe
�l

m�1
2

ij ¼ /n
ij þ

l
m�1

2
iþ1;j þ �l

m�1
2

i�1;j þ l
m�1

2
i;jþ1 þ �l

m�1
2

i;j�1

h2Pe
:

ðA:1Þ
Next, let us discretize Eq. (19). Since fð�cm

ijÞ is nonlinear with
respect to �cm

ij , we linearize fð�cm
ijÞ at �cm

ij , i.e.,

fð�cm
ijÞ � fðcm

ijÞ þ ð�cm
ij � cm

ijÞ
ofðcm

ijÞ
oc

;

where
ofðcm

ijÞ
oc

¼
of1ðcm

ij Þ
oc1

of2ðcm
ij Þ

oc1

of1ðcm
ij Þ

oc2

of2ðcm
ij Þ

oc2

0
@

1
A;

� �cm
ij

ofðcm
ijÞ

2oc
þ 2�2

h2

� �
þ �l

m�1
2

ij

¼ wn
ij þ

1

2
fðcm

ijÞ � cm
ij

ofðcm
ijÞ

2oc

� �2

2h2
ðcm

iþ1;j þ �cm
i�1;j þ cm

i;jþ1 þ �cm
i;j�1Þ:

ðA:2Þ

Step 2 – Compute the defect:

ðdefm
1 k; defm

2 kÞ ¼ ð/
n
k ;w

n
kÞ � Nkð�cm

k ; �l
m�1

2
k Þ.

Step 3 – Restrict the defect and f�cm
k ; �l

m�1
2

k g:

ðdefm
1 k�1; defm

2 k�1;�c
m
k�1; �l

m�1
2

k�1 Þ ¼ Ik�1
k ðdefm

1 k; defm
2 k;�c

m
k ; �l

m�1
2

k Þ:

Step 4 – Compute the right-hand side:

ð/n
k�1;w

n
k�1Þ ¼ ðdefm

1 k�1; defm
2 k � 1Þ þ Nk�1ð�cm

k�1; �l
m�1

2
k�1 Þ:

Step 5 – Compute an approximate solution fĉm
k�1; l̂

m�1
2

k�1g on

Xk�1:

Nk�1ðcm
k�1; l

m�1
2

k�1 Þ ¼ ð/
n
k�1;w

n
k�1Þ: ðA:3Þ
If k = 1, we explicitly invert a 4 · 4 matrix to obtain the
solution. If k > 1, we solve Eq. (A.3) by performing a
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FAS k-grid cycle using f�cm
k�1; �l

m�1
2

k�1g as an initial
approximation:

fĉm
k�1; l̂

m�1
2

k�1g ¼FAScycleðk� 1;�cm
k�1;�l

m�1
2

k�1 ;N k�1;/
n
k�1;w

n
k�1;mÞ:
Step 6 – Compute the coarse grid correction (CGC):

v̂m
k�1 ¼ ĉm

k�1 � �cm
k�1; ŵ

m�1
2

k�1 ¼ l̂
m�1

2
k�1 � �l

m�1
2

k�1 :

Step 7 – Interpolate the correction:

ðv̂m
k ; ŵ

m�1
2

k Þ ¼ Ik
k�1ðv̂m

k�1; ŵ
m�1

2
k�1 Þ.

Step 8 – Compute the corrected approximation on Xk:

cm;after CGC
k ¼ �cm

k þ v̂m
k ; l

m�1
2;after CGC

k ¼ �l
m�1

2
k þ ŵ

m�1
2

k :

Step 9 – Post-smoothing:

fcmþ1
k ;l

mþ1
2

k g¼ SMOOTHmðcm;after CGC
k ;l

m�1
2;after CGC

k ;Nk;/
n
k ;w

n
kÞ

on Xk grid:

This completes the description of a nonlinear FAScycle.
References

[1] D. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse interface
methods in fluid mechanics, Ann. Rev. Fluid Mech. 30 (1998) 139–
165.

[2] V.E. Badalassi, H.D. Ceniceros, S. Banerjee, Computation of
multiphase systems with phase field models, J. Comput. Phys. 190
(2003) 371–397.

[3] A. Benichou, A. Aserin, N. Garti, Double emulsions stabilized by new
molecular recognition hybrids of natural polymers, Polym. Adv.
Technol. 13 (2002) 1019–1031.

[4] J.F. Blowey, M.I.M. Copetti, C.M. Elliott, Numerical analysis of a
model for phase separation of a multi-component alloy, IMA J.
Numer. Anal. 16 (1996) 111–139.

[5] F. Boyer, C. Lapuerta, Study of a three component Cahn–Hilliard
flow model, M2AN 40 (4) (2006) 653–687.

[6] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for
modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.

[7] A.F. Brodin, D.R. Kavaliunas, S.G. Frank, Prolonged drug release
from multiple emulsions, Acta Pharm. Suec. 15 (1) (1978) 1–12.

[8] A.J. Chorin, A numerical method for solving incompressible viscous
flow problems, J. Comput. Phys. 2 (1967) 12–26.

[9] Y.C. Chang, T.Y. Hou, B. Merriman, S. Osher, A level set
formulation of Eulerian interface capturing methods for incompress-
ible fluid flows, J. Comput. Phys. 124 (1996) 449–464.
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