
Chapter 3

Cahn-Hilliard Equation with

degenerate mobility

In chapter 2, we considered the constant mobility case in Cahn-Hilliard equation, but the original deriva-

tion of the equation a concentration dependent mobility appeared [32]. Therefore, in this chapter, we

consider an efficient and accurate finite difference multigrid approximation of the Cahn-Hilliard equa-

tion with degenerate mobility

∂c

∂t
= ∇ · (M(c)∇µ(c)), x ∈ Ω, t > 0, (3.0.1)

µ(c) = F ′(c) − ε2∆c. (3.0.2)

This equation arises from the Ginzburg-Landau free energy

E(c) :=

∫

Ω

(
F (c) +

ε2

2
|∇c|2

)
dx.

F (c) is the Helmholtz free energy and ε2

2 |∇c|2 penalizes the occurrence of interfaces where c changes

rapidly and thus models the influence of the interfacial energy. To obtain the Cahn-Hilliard equation with

degenerate mobility one introduces a chemical potential µ as the variational derivative of E ,

µ :=
δE
δc

= F ′(c) − ε2∆c,

and defines the flux,

J := −M(c)∇µ,

where M(c) ≥ 0 is a diffusional mobility. We took a mobility of the form M(c) := c(1 − c), which is a

thermodynamically reasonable choice [43]. This mobility significantly lowers the long-range diffusion
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across bulk regions. This is particularly appropriate when we study fluid flows with immiscible com-

ponents. Our development here is in preparation for such studies presented in the later chapters of this

thesis.

Having defined the flux the Cahn-Hilliard with degenerate mobility now follows from the equation

∂c

∂t
= −∇ · J ,

which is a consequence of mass conservation. The system is completed by taking initial conditions and

the natural and no-flux boundary conditions

∂c

∂n
= J · n = 0 on ∂Ω, (3.0.3)

where n is normal to ∂Ω. We differentiate the energy E and use the boundary condition (3.0.3) to get

d

dt
E(t) =

d

dt

∫

Ω

(
F (c) +

ε2

2
|∇c|2

)
dx

=

∫

Ω

(F ′(c)ct + ε2∇c · ∇ct)dx =

∫

Ω

µctdx =

∫

Ω

µ∇ · (M(c)∇µ)dx

=

∫

∂Ω

µM(c)
∂µ

∂n
ds−

∫

Ω

∇µ · (M(c)∇µ)dx = −
∫

Ω

M(c)|∇µ|2dx

Therefore, the total energy is non-increasing in time.

3.1 The Scheme

We present a semi-implicit time (Crank-Nicholson) and centered difference space discretizations of equa-

tions (3.0.1) and (3.0.2).

cn+1
ij − cnij

∆t
=

1

Pe
∇̃e

d · [M(c
n+ 1

2

ij )∇e
dµ

n+ 1
2

ij ] + s
n+ 1

2

ij , (3.1.4)

µ
n+ 1

2

ij =
1

2
(f(cn+1

ij ) + f(cnij)) −
ε2

2
(∆dc

n+1
ij + ∆dc

n
ij). (3.1.5)

where f(c) = F ′(c) and s
n+ 1

2

ij is a source term due to advection, for example. Mass conservation and

stability estimate of a discrete energy functional are established in the following theorem.

Theorem 3.1. If {cn, µn+ 1
2 } is the solution of (3.1.4) and (3.1.5) with s

n+ 1
2

ij = 0 and if we define the

discrete energy functional by

Eh(cn) = (F (cn), 1)h +
ε2

2
|cn|2e,1,

for simplicity, let Pe = 1, then

(cn+1, 1)h = (cn, 1)h.
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Eh(cn+1) − Eh(cn) ≤ −(∆t− C(∆t)2

h2
)(M∇e

dµ
n+ 1

2 ,∇e
dµ

n+ 1
2 )e.

Proof.

(cn+1, 1)h = (cn, 1)h + ∆t(∇̃e
d · (M∇e

dµ
n+ 1

2 ), 1)h

= (cn, 1)h − ∆t(M∇e
dµ

n+ 1
2 ,∇e

d1)e = (cn, 1)h.

It remains to prove the second assertion. Multiplying µn+ 1
2 and cn+1 − cn to (3.1.4) and (3.1.5), respec-

tively and summing by parts, we obtain the following two identities

(cn+1 − cn, µn+ 1
2 )h + ∆t(M∇e

dµ
n+ 1

2 ,∇e
dµ

n+ 1
2 )e = 0,

(cn+1 − cn, µn+ 1
2 )h =

1

2
(cn+1 − cn, f(cn+1) + f(cn))h − ε2

2
(cn+1 − cn,∆dc

n+1 + ∆dc
n)h

=
1

2
(cn+1 − cn, f(cn+1) + f(cn))h +

ε2

2
(|cn+1|e,1 − |cn|e,1)

Next, using our scheme (3.1.4) and (3.1.5), we also have the following estimates.

||cn+1 − cn||2 ≤ C|∆t|2
h2

||M∇e
dµ

n+ 1
2 ||2,

|cn+1 − cn|2e,1 ≤ C|∆t|2
h4

|µn+ 1
2 |2e,1,

where C depends on the dimension of domain of Ω.

Indeed, multiplying cn+1 − cn to (3.1.4) and the Hölder inequality, we obtain

||cn+1 − cn||2 ≤ ∆t||M∇e
dµ

n+ 1
2 |||cn+1 − cn|e,1

On the other hand, the following inequality can be easily verified

|cn+1 − cn|2e,1 ≤ C

h2
||cn+1 − cn||2,

Combining the above inequalities, we get

||cn+1 − cn|| ≤ C∆t

h
||M∇e

dµ
n+ 1

2 ||.

The second estimate is easy consequence of first one. Indeed,

|cn+1 − cn|2e,1 ≤ C

h2
||cn+1 − cn||2 ≤ C|∆t|2

h4
||M∇e

dµ
n+ 1

2 ||2.

Using the identities above, we obtain

Eh(cn+1) − Eh(cn) = (F (cn+1) − F (cn), 1)h + ε2

2 |cn+1|2e,1 − ε2

2 |cn|2e,1

= (F (cn+1) − F (cn), 1)h − ∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

− 1
2 (f(cn+1) + f(cn), cn+1 − cn)h
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Since F is differentiable, the first term in right side is estimated as follows:

F (cn+1) − F (cn) = f(
cn+1 + cn

2
)(cn+1 − cn) +O((cn+1 − cn)2).

Therefore,

Eh(cn+1) − Eh(cn) ≤
(
F (cn+1) − F (cn)

cn+1 − cn
− 1

2
(f(cn+1) + f(cn)), cn+1 − cn

)

h

−∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

=

(
f(
cn+1 + cn

2
) − 1

2
(f(cn+1) + f(cn)) +O(cn+1 − cn), cn+1 − cn

)

h

−∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

=
(
O((cn+1 − cn)2) +O(cn+1 − cn), cn+1 − cn

)
h

−∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

≤ C‖cn+1 − cn‖2 − ∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

≤ C∆t2

h2
‖M∇e

dµ
n+ 1

2 ‖2 − ∆t(M∇e
dµ

n+ 1
2 ,∇e

dµ
n+ 1

2 )e

≤ C∆t2

h2
(M∇e

dµ
n+ 1

2 ,∇e
dµ

n+ 1
2 )e − ∆t(M∇e

dµ
n+ 1

2 ,∇e
dµ

n+ 1
2 )e

= (
C∆t2

h2
− ∆t)(M∇e

dµ
n+ 1

2 ,∇e
dµ

n+ 1
2 )e

This completes the theorem.

3.2 Solution of implicit discretization

In this section, the solution of the implicit discrete Cahn-Hilliard system with degenerate mobility and a

source term is presented using a nonlinear multigrid method. Let us rewrite equations (3.1.4), (3.1.5) as

follows.

NSO(cn+1, µn+ 1
2 ) = (fn, gn),

where

NSO(cn+1, µn+ 1
2 ) = (

cn+1
ij

∆t
− ∇̃e

d · [M(cij)
n+ 1

2∇e
dµ

n+ 1
2

ij ], µ
n+ 1

2

ij − 1

2
f(cn+1

ij ) +
ε2

2
∆dc

n+1
ij ),

and the source term is

(fn, gn) = (
cnij
∆t

+ s
n+ 1

2

ij ,
1

2
f(cnij) −

ε2

2
∆dc

n
ij).
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Here, we derive the smoothing operator in two dimensions (the corresponding operator in 3-D is pre-

sented in chapter 5). Recall that the scheme is

cn+1
ij − cnij

∆t
=

1

Pe
∇̃e

d · [M(c
n+ 1

2

ij )∇e
dµ

n+ 1
2

ij ] + s
n+ 1

2

ij ,

µ
n+ 1

2

ij =
1

2
(f(cn+1

ij ) + f(cnij)) −
ε2

2
(∆dc

n+1
ij + ∆dc

n
ij).

Rewriting these equations, we get

cn+1
ij

∆t
+



M(c

n+ 1
2

i+ 1
2
,j
) +M(c

n+ 1
2

i− 1
2
,j
)

Pe∆x2
+
M(c

n+ 1
2

i,j+ 1
2

) +M(c
n+ 1

2

i,j− 1
2

)

Pe∆y2


µn+ 1

2

ij

=
cnij
∆t

+ s
n+ 1

2

ij +
M(c

n+ 1
2

i+ 1
2
,j
)µ

n+ 1
2

i+1,j +M(c
n+ 1

2

i− 1
2
,j
)µ

n+ 1
2

i−1,j

Pe∆x2

+
M(c

n+ 1
2

i,j+ 1
2

)µ
n+ 1

2

i,j+1 +M(c
n+ 1

2

i,j− 1
2

)µ
n+ 1

2

i,j−1

Pe∆y2
, (3.2.6)

whereM(c
n+ 1

2

i+ 1
2
,j
) = [M((cn+1

ij +cn+1
i+1,j)/2)+M((cnij +cni+1,j)/2)]/2 and the other values,M(c

n+ 1
2

i− 1
2
,j
),

M(c
n+ 1

2

i,j+ 1
2

), and M(c
n+ 1

2

i,j− 1
2

) are calculated similarly.

−[
ε2

∆x2
+

ε2

∆y2
]cn+1

ij + µ
n+ 1

2

ij =
1

2
f(cn+1

ij ) +
1

2
f(cnij) −

ε2

2
∆dc

n
ij (3.2.7)

− ε2

2∆x2
(cn+1

i+1,j + cn+1
i−1,j) −

ε2

2∆y2
(cn+1

i,j+1 + cn+1
i,j−1).

Next, linearize the term in above equation containing f(cn+1
ij ), i.e.

f(cn+1
ij ) ≈ f(cmij ) +

df

dc
(cmij )(cn+1

ij − cmij ).

After substitution of this into (3.2.7), we get

−[
ε2

∆x2
+

ε2

∆y2
+

1

2

df

dc
(cmij )]cn+1

ij + µ
n+ 1

2

ij =
1

2
f(cnij) −

ε2

2
∆dc

n
ij +

1

2
f(cmij ) − 1

2

df

dc
(cmij )cmij

− ε2

2∆x2
(cm+1

i+1,j + cm+1
i−1,j) −

ε2

2∆y2
(cm+1

i,j+1 + cm+1
i,j−1).

(3.2.8)

The smoother then consists of solving the 2 × 2 system (3.2.6) and (3.2.8) for cn+1
ij and µ

n+ 1
2

ij . With

these NSO and a smooth operator, we apply the same nonlinear multigrid procedure which is described

in chapter 2.
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3.3 Numerical experiments

In this section, we demonstrate in the case of a degenerate mobility a quite different qualitative behavior

is observed when compared to results obtained with constant mobility. In the paper [82], finite element

approximation is used to solve the (C-H) equation with degenerate mobility numerically and we take

similar a test problem in there. We performed two numerical experiments in two spatial dimensions

with Ω = (0, 1) × (0, 1) and s
n+ 1

2

ij = 0. In the first experiment we took the degenerate mobility,

M(c) := c(1 − c). In the second experiment we took exactly the same data, but with constant mobility,

M(c) ≡ 1.

The initial data were taken to be c0 = 0.25 + 0.2 cos(2π rand()), where rand() is a random number

between 0 and 1. ε = 0.004, ∆t = 0.1/128, and mesh size 128 × 128. We stop the numerical com-

putations when the error between (m + 1)th − and mth− iterations become less than 10−7. That is

‖cm+1 − cm‖ ≤ 10−7. The pictures are arranged in a matrix format with time increasing to the right

in rows then down columns. The final numerical solution plotted in Fig. 3.1 is a stationary numerical

solution according to the stopping criteria.

In Fig. 3.1, the case of degenerate mobility, second-phase regions are nucleated (black regions). The

surface energy in the C-H system causes the regions to be circular. There is evidence of a small amount

of coarsening as small regions vanish and redistribute their mass to the other regions. There seems to be a

minimum radius for viability of the region. As the remaining regions grow, an equilibrium is established

when the two-phase domain is nearly monodisperse. The degenerate mobility generally reduces diffusion

in the bulk. This is made clear by comparing to the results in Fig. 3.2 where the mobility is constant.

For this case, the initial data is taken to be c0 ≡ c(·, 23.92) from the first experiment. In the case of

constant mobility, the evolution leads to a microstructure consisting entirely of a single large, semi-

circular second-phase domains.
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Figure 3.1: c(·, t) plotted for t = 23.92, 55.80, 91.68, 99.65, 119.58, 131.54, 139.51, 151.47,

and 195.31 when M(c) := c(1 − c).
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Figure 3.2: c(·, t) plotted for t = 23.92, 26.31, 31.09, 35.87, 43.05, 50.22, 57.40 62.18, and

114.79 when M(c) := 1.
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