Chapter 6

Ternary Cahn-Hilliard system

We consider a second-order conservative multigrid method for the ternary Cahn-Hilliard system of a
model for phase separation in a ternary mixture. We prove stability of the numerical solution for a
sufficiently small time step and convergence to the solution of the associated continuous problem. We
perform a linear stability analysis of the system, demonstrate the second-order accuracy of the numerical

scheme, and describe some numerical experiments.

6.1 Governing equations

The purpose of this chapter is to consider a conservative nonlinear multigrid method of the ternary Cahn-
Hilliard (C-H) system for three component mixture, occupying a domain Q C R (d = 1,2,3). It is
concerned with finding the vector pair {c(x,t), pu(x,t)} € R? x R forx € Qand¢ > 0 solving the

system of non-linear diffusion equations given by

dc

5 = V- (M(c)Vu), (x,t)eQx(0,T) (6.1.1)

u = f(c) —TAc, (6.1.2)
3

where f(c), = 8?59, M(c) = Zcicj, (6.1.3)
¢ i<j
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The typical boundary conditions for the ternary (C-H) system are the zero Neumann boundary conditions

oc Ju
c(x,0) =c(x) inQ
We only solve equations of ¢; and ¢g since ¢; + c2 + ¢35 =1, i.e.,, ¢ = (c1,¢2), = (u1, p2)-
Two important aspects of the ternary (C-H) problem in the case of zero Neumann boundary con-

ditions are the conservation of the average ﬁ fQ c(x,t)dx, and the existence of a Lyapunov function

E(c)

d 2
— = - V| dx.
tc‘:(c) Q| pledx

dx (6.1.5)

3 2
€
F(c) + E bl |Veil?
i=1

so that

The Cahn-Hilliard equation is a continuum model for phase separation in binary systems. An exten-
sion to this model for ideal mixtures with more than two components was proposed by Morral and Cahn

[95]. And ternary numerical experiments were performed by a couple of authors [14], [37], and [51].

6.2 Numerical analysis

We shall first discretize the ternary (C-H) system (6.1.1) and (6.1.2) in space. Let [a,b] and [c, d] be
partitioned by

azm%<x1+%<---<xm,1+%<xNI+%=b7

C:y% <y1+% <"'<me_1+% <yNy+l:d

3
so that the cells
Lj; = [Ii_%aﬂfwr%] X [yj—%ayj-q—%]v 1<i< N, 1<j5< N,
cover Q = [a, b] x [c,d]. We denote
Az, =, ) Ayj =y 1 —y; 1

and, for simplicity, we assume the above partitions are uniform in both directions, that is
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where h = (b — a)/N, = (d — ¢)/N,. Therefore, z;y1 andy;, 1 can be represented as follows:

2
xH%:a—&—ih, yj+%:C+jh

We denote by Q;, = {(xs,y;) : 1 <i < N,, 1<j<N,} setof cell centered points (z;,y;) where

1 1
T; = E(ZCZ,% +$i+%)7 Yj = §(yj7% +yj+%)'

For Neumann boundary value problems, it is natural to compute numerical solutions at cell centers.
Let c;; and p,; be approximations of c(z;,y;) and p(z;,y;). We first implement the zero Neumann

boundary condition (6.1.4) by requiring that

Dyc; =0 forj=0, Dyc; 1 =0 forj=N,,

|
)3

where the discrete differentiation operators are

1 1
Daeiyy = p(eivrg —€ij), Dyeijry = (i1 — €ij).
We then define the discrete Laplacian by
1 1
Adcij = 7 (DaCiyy ;= Daciog ;) + 5 (DyCijyy = Dyeijy),
and the discrete L2 inner product by
N, Ny
(Ca d)h = h? Z Z(Clijdlij + C2ijd2ij)' (6.2.6)
i=1 j=1

For a grid function c defined at cell centers, D,.c and D, c are defined at cell-edges, and we use the
following notation
aCij = (DICiJr%,j’Dyci,jJr%)v
to represent the discrete gradient of c. We can define an inner product for V¢c on the staggered grid by

N, Ny
(Vie,Vid)n = h[Y > (Ducrjys jDadiyys j+ Dacoy jDadoyy ;) (627)
i=0 j=1
NI NU
+ Z Z(Dycli,jJr%Dydli,jJr% + Dyca; i3 Dyda; i 1))

i=1 j=0
We also define discrete norms associated with (6.2.6) and (6.2.7) as

lel* = (e, ), lely = (Vie, Vie)e.
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The time-continuous, space-discrete system that corresponds to (6.1.1-6.1.2) is
d
7S = Aapij, g = f(cij) — Telaciy, (6.2.8)

where f(c;;) is defined in (6.1.3) and boundary conditions are implemented using (6.1.4). It is easy to
see that this discretization is second order accurate in space and that mass is conserved identically. The
scheme also has an energy functional given by the discretization of (6.1.5). Here, we assume ¢; = e; =

e3 = eand M (c) = 1 and for simplicity, we use the following notations

OF OF ny_ OF .  OF
= (5er 96y (Cij):(a—cl(cij)aa—cz(cij))
and
22 2
r. = ° |erxr:.
€2 2¢2

We discretize (6.2.8) in time by the Crank-Nicholson algorithm:

C’.PH —ch 1 1
LA Ny NP 6.2.9
Al 5 dl;; ( )
n+3 1 n n 1 n n
pig * = 5B +£(elp) = STelalel™ + ), (6.2.10)

where f(c) = VF(c) and the free energy F'(c) is defined as follows:

[cfcg +—c§(1 —c —-62)2 +(1-¢ —-62)20%]

2.A Stability and convergence

In this subsection, we establish mass conservation and stability estimate of a discrete energy functional.
Moreover, we demonstrate the convergence of the scheme at a fixed time. Next lemma shows the mass

conservation.

Lemma6.1. If {c"!, u"+2} isthe solution of (6.2.9) Then
(€ )p = (€, Dn.
Proof. It is straightforward by using summation by parts. Indeed,

), = (" + AtAgp™ 3, 1),

= (Cna 1)h + (AtAdll’n+%7 1)}1 = (Cna 1)h

This completes the proof. O
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The discrete energy functional is given by
2
€
E(c") = (F(e"): Dn + 5 1vee™|?,, (6.2.11)

where

2
IVac" | ler[21 + e l2y + 11— cf — 32,

2|C?|§,1 + 2|c’2’|§,1 +2(Vicer, Vicy).

Theorem 6.1. Supposethat 0 < c¥, ¢& < 1 for all k. Under the same assumptionsin Lemma 6.1, there
exists an absolute constant C' depending only on 2 such that if
h2
At < ————,
2C [|D?F|| o
then
C||D*F|, At)

E(Th) —E(e") < —Atlu" =2, (1 =

Proof. First, multiplying p"*2 and ¢! — ¢” to (6.2.9) and (6.2.10), we obtain the following two

identities:
("1 — ", uEY, + At =0, (6.212)

n+s n n 1 n n n n 62 e . n 2 e n
("2 e =)y = () + £(e”), e = e+ o (|| Vae L, — Va7

Since the first one is straightforward, the details are omitted. Thus we need to verify only the second

one. Indeed,
1
(un+§ L T i(f(c"H) +£(c™) =T (Age™™ + Agc™), e — ™),
1 1
— i(f(c"H) +f(c™), " — ") — §(I‘€(Adc”+1 + Age™), e —c™)y.

The second one in the right side is calculated as follows:

(Ce(Age™™ + Age™), et — )

2¢2 €2 Ager™ T+ Agey™ "t — e

e 262 Agea™ 4+ Ages™ et — o™
9 (em M2, — [¢2,) — 2¢2(Vheam T, Ve ) + 26 (Vies™, Vier)

= —26(Je 2+ (Vo™ Vier™ 1) 4 263(e” 2+ (Viea”, V™))
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This completes the second assertion above. Next, using our scheme (6.2.9) and (6.2.10), we also have
the following estimates.

2
ch-i-l _ an2 < C|ﬁ2t| |Nn+%|§71 (6.2.13)

2
|Cn+1 _ 2, < C|}it| |Hn+%|2

e,l = e, 1

where C depends on €. Indeed, multiplying c®*! — ¢ to (6.2.9) and the Holder inequality, we obtain
[ C"H2 < At|un+%|e,1|CnJrl — e

On the other hand, the following inequality can be easily verified

et — ey < et e

Combining the above inequalities, we get

Jerst e < S

The second estimate is easy consequence of first one. Indeed,

n n O n n||2 OAtQ n+i
"t —c 5,1 < 2 ||C ¢ H < TW +2|g,1-
Now we consider
2
£ =€) = (F(eh) = F(e"), U+ 5 (Ve ~ [Vell7,)

= (F(c™) = F(c"), 1)y + (u" 2, " — ¢y,

S () (), e ey

1

= () = F(e), s = 5(E(e™)

+H(e™), e — M)y — AtV

where we used the identities (6.2.12) and (6.2.13). Since F' is differentiable, the first term in right-side

is estimated as follows:

~n n+1
F(et, Co

oty F(eE
Lt — oy L)

n n ) T n
F(e"!) = F(e") = (@ =)
(&, 5t F(er, e

(961 ’ 602

where & and ¢4 are numbers between ¢} and ¢, and ¢ and 5, respectively. Therefore, using the

)@t~ en),

identity above, we have

(F(e") = F(e"), D — (B ("), e — ™),
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<2||D?F| o [l —

Putting above inequalities together, we obtain

5(cn+1) - g(cn) < —At|'u,n+%|g.’1 +2 ||D2F||Loc ||cn+1 _ CnH2
C||D?*F At)?

< ety ¢ AP B e
C||D?*F At
B L

where we used the estimate (6.2.13). If we take At sufficiently small such that it satisfies

o, A

s >0

(For example, we may take At = h?/[2C ||D2FHLOO]), then the right side is negative. This completes
the proof. O

Since discrete energy is bounded, it can be easily seen that a numeric solution c™ is bounded in L2.
Next we demonstrate the convergence of the scheme at a fixed time. Let C* = (C},C%) and
c" = (cf, %) be analytic and numerical solution, respectively and we denote e” = C™ — ¢™. Then we

have the following error estimate.

Theorem 6.2. Suppose C™ is smooth. Then there exists a constant K such that the following error
estimate holds:
le”|| < K(h? + At?). (6.2.14)

Proof. Using the numerical scheme, we obtain

e + T AZe™s = g™ + T AZu™ts — %Ad(f(cm) + f(c™ 1Y)
= Wty 1) +TeA%u(ty, 1) - %Ad(f(cm) + f(c™ ) + O(h? + At?)
= Af(u™t3)— %Ad(f(cm) +f(c™t) + O(h? + At?)
= Agf(u™t3) — %Ad(f(cm) +f(c™t) + O(h? + At?)
= A f(uT2) — Agf(c2) + Agf(c™ ) — %Ad(f(cm) + £(c™ 1))
+O(R? 4+ At?).

For convenience, we denote

A= f(uer%) — f(chF%)’ B = f(chr%) _ %(f(cm) + f(Cerl))_
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Forming the inner product with e™ "z and using summation by parts and Young’s inequality, we have

1 2
2 le™|* + € ’Adem% < (A, Age™TE)) + (B, Age™ E), (6.2.15)
2
+K(h* + AtY) + Hem+% :
where we used
2
€2 ‘Adem“'% < (I‘EAdem+%,Adem+%).

We first consider the first term of the right side of (6.2.15). Since ||u™||  and ||c"|| ., are bounded, it can

be easily seen that | A| < K|e™"z|. Therefore, we obtain

2

2 2
(4, e h) < K (e |Agen ) < & o | G [agems

It remains to estimate the second term. With similar computations as the first term, we obtain
|B| S K|Cm+1 _ Cm|2,

where C again depends on upper bounds of smooth and numerical solutions. Using the factorization and
Young’s inequality, we get

1 2
(B,Aqe™*?)

IN

62
KB + 5 |[ae

2

IN

m+1 _ m)\2 2 i m+%
KH(C C )|| +4 Age

Next step is to estimate ||(c™ ! — ¢™)? H2 Adding and subtracting the analytic solution, we have
e —em2|F < F (e — e |[F 4 |t — w2 ),

where the fact is again used that numeric and analytic solutions are bounded. Since analytic solution «

is smooth, the second term is estimated as follows:
[+ —wm)2||* < K (A [[ug, -
Summing up all estimates above, we obtain

2 2
(B, 8™ ) < K et — e (* + || avem ||+ Kt + Art),

and therefore,

1 2 2 2 2
S0l + ¢ < K|lemtt |+ 5 A

1
’Adeer 2

(6.2.16)
K [lemtt —e™|” + K (h* + AY).
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2
Subtracting % and multiplying 2 to both sides in (6.2.16), we obtain

’Ade””%

O lle™|* + ¢ "< KHem+% 2JrK||eerl —em?

1
‘Adem"' 2

+K(h* + Ath).

2
Dropping €2 ‘Ade’“% and summing up from 0 to n — 1, we have
nn2 n—1
D < S et i et — e 4 K (nt 4 At
At T~
n—1 )
< YK |e™] + K [le™|® + K(h* + AtY)]
m=0
n—1
= 2K Y [le”|® + Kle"]|* + Kn(h* + At*).
m=0

Multiplying At to both sides and simplifying it, we obtain

n—1
(1— KAt [le™|* < KAtY  [le™|* + K(nAt)(h* + At')
m=0
n—1
KAt |le™|* + KT (h* + At*)

m=0

IN

where we used the fact that nA¢ < T'. Since At can be chosen such that 1 — KAt > 0, according to

discrete version of Gronwall’s inequality, we obtain ||e™|| < K (h?+At?). This completes the proof. O

6.3 Solution of the system

In this section, we develop a nonlinear Full Approximation Storage (FAS) multigrid method to solve the
nonlinear discrete system at the implicit time level. The fundamental idea of the nonlinear multigrid is
analogous to the linear case. First, the errors to the solution have to be smoothed so that they can be
approximated on a coarser grid. An analog of the linear defect equation is transformed to the coarse grid.
The coarse grid corrections are interpolated back to the fine grid, where the errors are again smoothed.
However, because the system is nonlinear formally we do not work with the errors, but rather with full
approximations to the discrete solution on the coarse grid. The nonlinearity is treated using one step
of Newton’s iteration and a pointwise Gauss-Seidel relaxation scheme is used as the smoother in the

multigrid method. See the reference text [125] for additional details and background.
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3.A  Smoothing operator

We discretize the ternary (C-H) system by Crank-Nicholson in time and a centered difference in space

discretizations, and solve the resulting system of second order equations. Here, we present a 3D space

discretization, 1D and 2D are straightforward. For clarity, let ¢ = ¢1,d = ¢o, u = 1 and v = o, then

n+1

Tl en 1
ijk ijk nt3
T = Adﬂijkzu
ntl 1.0F , i1 a1 or n
Pige® = 5[%(01';’2 (i) + %(Cijk’ ik
€ + €2 n n e n s
—%Ad(%ﬂgl + Cijk) — ;Ad(di;lgl + dijk).

After applying the standard discrete Laplacian operator to (6.3.17), we get

n+1 n+ty nty oty n+s nty | nty
Cijk (:ui-i-l,jk = 2h1" B 4 Mgtk 2t + Rk
At Ax? Ay?
n+ty nty | nts n
Pijain = 2Hig° + :uij,k—l) _ Cijk
Az? At
n+1 n
Cijk +( 2 n 2 n 2 )Mn+§ _ Cijk
At Az? T Ay? A2k At
n+% n+% n+% n+% n+% n+%
+:ui+1,jk + i1k n H it e T 1 51k n Hoij i1 T Bije—1
Ax? Ay? Az?

After applying the standard discrete Laplacian operator to (6.3.19), we get
1

1
24 €2 +1
—a+ 63)(m + Ay? T Az2)c?jk
1 1 1 1
2 n+1 n+
_63(A$2 + Ay? + AZ2)dijk + Mgy
10 d+d, . g OF
= 590 Gl di) = =5 Aaclly = 5 Aadiy + 5o (et diE)
2 2 2 2
61 +€3 +1 +1 61 +€3 +1 +1
N (Civngn F Gtm) = 2Ay? (€ T i)
2 2 2
1€, nt1 +1 €3 +1 +1
YN (Cjmer T Cie1) — A2 (&850 T 47 %)
Eg m+1 Jqrtt 6% n+1 Jn+l
_2Ay2( Patik T k) = m( i1 T ik 1)
After linearize 95 (¢t i) about (¢, , 477, ), then we have
8F 82F

oF
(i) = S el ) + o (s (€ = )

+M(Cijkv ijk)(diﬂ;l— i)

ik o Qijk

Jdc
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111 LPF,
) (Fgm + mpp T A T 3 g e el

1 1 1 82F m m )]dnJrl + n+%

_[2 cm m
ik Yijk ijk ijk

1
Azt a7 T a2 T 300

_1or
2 Jc : )

A a2 e~ SO e aga,

T )~ e )

B 6;2_;2% (e + Ce1) = 22%52 (55 + a7 )

2 2
€ €
3 (gn+l n+1 3 (gn+l n+1
_2Ay2( i1,k T di,j—l,k) o 2Az2( ij,k+1 dij,k—l)'

(C%kv Zk) -

2 2 2

€7+ € €
1 3 n 3 n
D) Adcijk — gAddUk

For the second equation, we have

+1
d?jk _d?jk - A n+%
T A D

ik 394
S A (n ny_ Bt n
_EBAd(C o + i) — 2 5 3Ad(di;121 + dp)-

n mn 6 n mn
(it dith) + — (i diig )]

v ik Qijk od

ijk

Applying the standard Laplacian operator to the equation (6.3.19), we get

n+1 n+g n+3 n+3 n+g ntg ntg
dijk B (ViJrl,jk =207 F V0 " Viitik — 2V~ T Vi
At A2 Ay?
n+3 n+3g n+g n
yYight1 ~ Wi + Vij,k—l) _ i
Az? At
it (222 e dr,
V.. =
At Az?2  Ay? A2 Tk At
n-l—% n+% n+% n-l—% n-l—% n-l—%
Vietik T Vici ik n Vijtik TVii 1k n Viikt1 T Vijr—1
Ax? Ay? Az?
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1 1 1 1 1 1
2 nt1 2, 2
_ES(AI2 + Ayg + AZQ)Cij-}; - (62 +63)(AIE2 + Ayg + AZQ)
ntt 10F, ., €2 " €2 +e2 n
+Vip” = 5%(%1@7 k) — EsAdCijk — 2 5 3Addijk
18F n+1l jm+1 6% n+1 n+1
+§%(Cij-}; adiﬂ; ) — A2 (CiJ:_l,jk + cijl,jk)
Eg n+1 n+1 Eg n+1 n+1
TOAy? (¢ jiin T in) — 9A2 (i T Ciir1)
2, 2 2, 2
€ 1T€3 nt1 nt1 €+ €, my1 nt1
TOALR (diJrl,jk + di—l,jk) - 2Ay2 (di,jJrl,k + di,jfl,k)
2., 2
€T €3, nt1 nt1
DTN (dfeer + i)
Finally, linearize S5 (c“t!, diit") about (cI7,, dif ) to get
aF n+1l n+1 aF m m 82F m m n+1 m
%(Cij-}; 7diﬁ; )= %(Cijkv ijk) + —acad(cijkadijk)(cij-’l; - Cz‘jk)
+—8d2 (ks ijk)(dij-"l;l —d5).
1 1 1 1 9%F
2 m m n+1
~lalmE et R 5 aepa e Akl

1 1 1 10°F, . il
—[(e3 + eg)(AZ2 + Ay + AZQ) T 5ok (P Al + vy

10F €3 G+e
= 5%(031@7 k) — 5Adc?jk T T Aadijy
19F 1 O*F L O*F
+§%(C?}kv k) — §M(C%f’ ik )Cik — §W(C?}’f’ ik )diji
B €3 (n+1 4+ ot ) — 3 (n+1 4 it )_6_3("“ +
ALz (Citigh T G0k YN Cij+ik T Cij—1k) T 5A 2 \Cijht1 T Cijk—1
_6%+€§( ntl 4 gntl ) — E% +E§( ntl gt )
oAz \it1,jk T Fio1,jk 9Ay2 itk T G-k
e% + e%

n+1 n—+1
TOAL2 (dihen + dihs)-
Let us rewrite equations (6.3.17)-(6.3.20) as follows.

NSO( 1 3, @+ v+ 3y = (g7, g8 g3, g,
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where the nonlinear system operator (NSO) is defined as

el

1 1 n+i
NSO(c" L, pnts gntt pnts) = (Zt —Apyi %,

n+i 1 n+1 n+1 6% + Eg n+1 Eg n+1
2 — §f1( d; ) + TAdCij + 5Addij ’

(%) [t %1

dntl N
Al = By
n+2 n+1 dn+l 6% +€§A dn+1 EgA n+1
Vij .f2( ) Ay g )"’T dt;; +5 dCij )
and the source term is
1 €2 + €2 €2
(91,95, 95,91) = (R hlehdy) — =5 Aacy = Aad,
a1 €2 + ¢2
J 2 3 &
Ev Ef ( ZJ?d;l]) 92 Addz - EAdC;l])

In the following description of one FAS cycle, we assume a sequence of grids 2, (2x_1 is coarser
than Q;, by factor 2). Given the number 7 of pre- and post- smoothing relaxation sweeps, an iteration

step for the nonlinear multigrid method using the V-cycle is formally written as follows:

FAS multigrid cycle

1

Let {c;" ", u;n+2 Ldth Vm+2}
m m—% m m—% n n n n
:FASCyCle(kvck s Mo, 7dk » Vi 7NSOkaglk792k393kvg4kan)'
1 1 1 . .
Thatis, {c*, p, 2,dP, v, } and {1 " TF dm T L2 ) are the approximations of
1 1

(& @i yy), e 2 (@), A2 (@, ), vi 2 (24, ;) ) before and after an FAScycle.
Now, define the FAScycle.

(1) Presmoothing

1 — 1 1
Compute {e*, fi, 2, d, D,T >} by applying n smoothing steps to {c}*, s, d;”, vy}

1
{5217 ﬂk} dk ) V;gn 2}
1 1
:SMOOTHU(C?,‘LLZI 2a Z’L’V;n 27NSOk7912a922793Za942)a

_1 _1
which means performing n smoothing steps with initial approximation c;”, M;: 2. dp, y;n 2 g1k, 921, 931y Gaps

and SMOOT H relaxation operator to get the approximation {¢;", ﬁk 2, dy, I/,T 3 }.
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One SMOOTH relaxation operator step consists of solving the system (6.3.21)-(6.3.23) given below

by 4 x 4 matrix inversion for each ijk:

_ m—3 _m—1 m—3 _m—1 m—1 _m—1
Cigte y 6 om=y o Mg T Rimage T Pigaetn T R T Ry R (6.3.21)
At h2'uwk = Y1ijk 12 : e
6e2 10%F _ 3¢ 10°F - m—1
_[F + 2 de a9 ( Cijk> Z?k)] Zlk [ +5 2 dc ad( ljk’dljk)]d;?k +M:;Lk :
10F 1 O°F 10°F
= g2ljk +35 9 8 ( zyk’ Z;Lk) 2 de a9 ( zyk7 ;?k) Zlk 28 ad( ijk> Z;Lk)dy;k
2
_ﬁ(cﬁl,jk + &0y gk T ik TGtk T G 1 T Cig k1)
2
2h2(d7}rljk+dl 1jk+d1J+1k+dlg 1k+dljk+1+dljk 1)
_ m—l 1 1 1 mel 1
dily 6 _m-1 Vivigk T Vicige T Vijeie T Vijik  Vijktr T Vije1
AL ﬁy”k g3ljk + h2 + h2 . (6322)
3e2 1 9°F » Ge2 10%F - m—1
—[F + §6c6d( Ciites A )G — [h2 + 208 (irs Al + Uiy 2
10F 1 0%°F 10%F
= Gaik t 3 5 6d( i diye) — 2@(0%@%)0% - gw(%k,d%)d%
2
€ _ - —
—W(Cﬁuk + &1k T Clr1k TGtk T Cij k1 T Cigp—1)
2

¢ _ _ _
_ﬁ(dﬁl,jk it A g A g A e i)
(2) Computethe defect
(def,, ,def,,, defs,  defy,)
_ n n n ny _ NSO, (" _m—3 qm _m—g
= (91%> 921> 93> 94%) AU TN AN 7 P

(3) Restrict thedefect and {e, [, d}f, 74 2}

(def,),_,, defoy_,, defs;_,, defy,_ ) = 177! (def,,, defy.’, defs, defu),)

1 1
—m —-Mm—3 5

1 1
—m =m—3 Im =m=—3y _ 7k—1 2 gm SM—3
(Chits Bpr s dins Uy 2) = I (G g, 2o dysmy, 2).
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The restriction operator I,’:_l maps k-level functions to (k — 1)-level functions.

de-r(@iyyjoze) = I di(@i,yg, )
= %[dk(xi - g,yj — guzk - g)-i-dk(ivi - g,yj—i— 5%k~ 5)

+dk($i+§,yj—g,zk—g)+dk($i ;L,yg—i—;b, 5)
+di(z; — g,yj — g,zk + g) + di(z; — g,yj + ;L 2k + ;L)
+dp, (i + g,yj - g,zk + g) + dy(z; + g,yj + g,zk + g)].

That is, coarse grid values are obtained by averaging the eight nearby fine grid values.

(4) Computetheright-hand side

(91%-1,92%—1,93%—1>94p_1) = (wl;n 17E2Zl 17E3Zl 17E4Zl 1)

1
=m—3

+NSOy_1(ci2 17,Uk 1 udk 1V )-

(5) Compute an approximate solution {¢&}" ,, ﬂ;:_?, d}f_l, 1),1”__17} of the coarse grid equation on

Qp_1, i.e

1
Nsokfl(czzlhu;gn_lzv k— 1’Vk; 12):(912’71792271393271594271)' (6323)

If £ = 1, we explicitly invert a 4 x 4 matrix to obtain the solution. If & > 1, we solve (6.3.23) by

—_1 _ _1 ... . .
performing a FAS k-grid cycle using {¢}" ,, [LZL_IZ A, 5,2"_12} as an initial approximation:

—1

~ Amfl > ,\mfl o ,/ITLfl k7 _m
{Gi, y_ 1 dyy, 07} = FAScycle(k — 1,6, iy diy, 717
NSOL—1,91%_1,92h—1,93%—1594k—_17)-

(6) Computethe coarse grid correction (CGC):

~m _ N —-m
Uig—1 = Cg—1 = Ck—1-
~m—3 . m—1 _m—1
Uagy® = fgq® — fp_q”
~m _ m m
Uspq = dpq —dpiq.
~ ’m*l ,\m—l _ _1
Ugy® = Dpq® — V4"
(7) Interpolate the correction
~ k ~
iy = Lt
~ 77’L7l ~ mfl
Uy = Ik 1V2p_ 1" -
A m k ~m
U3 = Ip_qUsplg.
~ m—l ~ m—l
Uy, P = Ik 1045_1" -
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The interpolation operator I}, maps (k-1)-level functions to k-level functions. Here, the coarse values
are simply transferred to the four nearby fine grid points, i.e. vi(z;,y;,2k) = I,’j_lvk,l(a:i, Yj, 2k) =

vg—1(z; + %, yj + %, 2K+ %) for i, j and k£ odd-numbered integers. The values at the other node points

are given by
’Uk((Ei +h7yjazk) = Uk(ffiayj +h,2’k) = Uk($z+h7y7 +h72k)
= op(®i, Y5, 26 +h) = vi(zi + hyyjy, 20 +h) = vk(@i, 5 + hy 2+ h)
h h h
= (@i +hy; +hyze+h) = v+ 5,y + 505+ 3),
where i, j and k are odd.
8) Computethe corrected approximation on 2,
p pp
e afterccc _ &
_1 _1 _1
T E after cao _ A g E
ar after ccc _ I + 3.
_1 _1 _1
V;n 1, after ccc _ D;n 3y UA4;n i
(9) Postsmoothing
1 1 . . 1
Compute {1, u" ¥ dr+t 7% ) by applying » smoothing steps to ¢} &fter €GC | m—s. after ccc
g aftercee  m—3, after cac
k )y Vi

1 1
m—+1 m+z m—+1 m+z
{en ™o, 2 Ay,

)

— SMOOTH"(¢™ after cac Mm—%, after cco g after cco
- k s ML y Ay,

m—1, after ccc
Vi 2 7NSOkvglzaQQng3Zag4Z)'

This completes the description of a nonlinear FAScycle.

6.4 Numerical experiments
We consider a ternary system in a one dimension domain, 2 = [0, 1]. The free energy F' is given by
1
F(ei,e0) = Z[C% +c2(1—c1 — )+ (1 —c1 — )¢,

To fix ideas, let My = My = 1 and €; = e5 = e3 = e for simplicity.

131



Then, the partial differential equations (6.1.1) and (6.1.2) become

dcy(x,t) dco(,t)
T = Adul ((E, t)7 T - Adﬂ? ((E, t)7 (6424)
pi(z,t) = —gg (c1,¢2) — 262 Agcy (z,t) — 2 Agca(x, t), (6.4.25)
oF 5 5
pa(z,t) = 8—(01,02) — e Ager(z,t) — 267 Agea(a, t), (6.4.26)
C2

where (z,t) € [0,1] x [0,T].

4 A Convergencetest

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample initial

problem on a set of increasingly finer grids. The initial data is
c1(z) = c2(x) = 1/4 4 0.01 cos(37z) + 0.04 cos(bmx) (6.4.27)

on a domain, Q = [0, 1]. The numerical solutions are computed on the uniform grids, Az = - for
n =15,6,7,8,9, and 10. For each case, the calculations are run to time t = 0.2, the uniform time steps,
At = 0.1Az and € = 0.005, are used to establish the convergence rates.

In our formulation of the method for ternary (C-H) system, since a cell centered grid is used, we
define the error to be the discrete Lo-norm of the difference between that grid and the average of the next

finer grid cells covering it:
def
Cn/h, = Chi— (C%Qi + 0%21'71) /2

The rate of convergence is defined as the ratio of successive errors: logy(|le,, /. [|/lles /2 ])-

Table 6.1: Convergence Results — Concentration c;.

Case  32-64 rate  64-128 rate 128-512 rate 512-1024

Lo 9.69-3 254 166e-3 211 3.86e-4 203 9.43e5

The errors and rates of convergence are given in table 6.1. The results suggest that the scheme is
indeed second order accurate. In Fig. 6.1, the time evolution of the energy £(c) with same initial data
(6.4.27) is shown. As expected from theorem 6.1, the energy is non-increasing and tends to a constant

value. This is in fact a local equilibrium for Neumann boundary conditions.
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Figure 6.1: Energy decrease

4B Linear stability analysis

Let the mean concentration take the form m = (m1, ms, ms) where m; > 0Viand ms = 1 —mj —ma.

We seek a solution of the form

c1(x,t) =mq + Z o, (t) cos(nmx)

n=1

ca(x,t) = ma + Z B (t) cos(nmx)

n=1

cs(z,t) = mg + Z Y (t) cos(nmz)

n=1
where | a,,(t) |,| Bn(t) |, and | v, (¢) | < 1; note that «,,(t) + Bn(t) + Y. (t) = 0. Linearizing

76}?592{02) about (m4, ms), then we have

aF(Cl, Cg) aF(ml, mg) 62F(m1, mg)

i T 8 T ag ™)
+%(02 —ma),

Olene)  OFlmoma) | S ),y
+62F(3m701%’m2)(02 —ma)
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and substituting into (6.4.25), (6.4.26), up to first order, also let m; = mo = m for simplicity, then we

have
Ocy 9?F(m,m) 9?F(m,m)
E = TAdCl =+ TlczAdCQ — 2€2A301 — €2A§CQ,
dez _ O*F(m,m) 9*F(m,m) 272 2 A2
5 = Tlchdcl + TC%AdCQ —2e“Ajco — € Afcr.
801 2 2
prl (7.5m* —4dm + 0.5)Agcq + (6m* — 2m)Agce (6.4.28)
—262A501 — €2A§CQ,
% = (6m? —2m)Aqger + (7.5m* — 4m + 0.5)Agco (6.4.29)

—262A302 — GQAZCL

After substitution ¢c; = m + «(t) cos(nmz), co = m + B(t) cos(nmz) in (6.4.28), (6.4.29), respec-

tively. We get
a (t) / _ A an(t) @ b (1)
Bn(t) Bn(t) b a Bn(t)
where
a = —(nm)*(7.5m* —4m +0.5) — 26*(n7)*,
b = —(nn)*(6m?* —2m) — (nm).

The solution to the system of ODEs is given by
an(t) _ At an(0)
Bn(t) £n(0)

—(nm)?[13.5m? — 6m + 0.5 + 3€*(nm)?],

And eigenvalues of A are

At

Ay = —(nm)?[1.5m?* —2m + 0.5 + ¢*(nm)?].

In Fig. 6.2, the theoretical growth rate \; is compared to that obtained from the nonlinear scheme.

The numerical growth rate is defined by

max; |c17 — 0.25]
o [tn.
max; |c1; — 0.25]

/\~1k = log (

Here, we used (m1, ma,m3) = (0.25,0.25,0.5), initial data ¢; () = ca(z) = 0.25 + 0.01 cos(kmx)
and ¢ = 0.01, At = 1074, h = 1/128 and ¢,, = 0.02. The graph shows that the linear analysis (solid

line) and numerical solution (circle) are in good agreement.
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Figure 6.3: Eigenvalues with ¢c; = ¢co = m, n =1, and ¢ = 0.005.
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Fig. 6.3 shows the eigenvalues, \; = —(n7)?[13.5m?—6m+0.5+3€%(n7)?], Ao = —(nm)?[1.5m?*—
2m + 0.5 + €2(nm)?], when m; = ma = m and e = 0.005,n = 1.

We chose Az = 1/128, At = 0.001, and e = 0.005. The initial conditions were random perturba-
tions of the uniform state m. We stop the numerical computations when the error between (m + 1) —

and mt" — iterations become less than 10~7. That is
||Cm+1 _ Cm” < 1077'

The pictures are arranged in a matrix format with time increasing to the right in rows then down columns.
The final numerical solution plotted in Fig. 6.4 is a stationary numerical solution, that is, the stopping
criterion for the iterative procedure is satisfied in a single step from one time level to the next, for
example, ||c"t! — ¢ <1077,

We performed three experiments with initial data taking m; = 0.22, 0.4, and 0.05. In the first
experiment with m, = 0.22, where A; > 0 and Ay < 0. Initially the third phase c¢3 dominates. Moreover,
for some time the evolution is in the direction of ¢; = ¢ with a two-phase structure (see Fig. 6.4t =
0.16). However, at a time shortly after t = 1.40, we see growth in the phases c¢; and co. Atatime t = 10.5,
we see three phases are separated and there is always a phase that resides in the interfacial region.

In the second experiment with m; = 0.4, where A; < 0 and A2 > 0. The evolution, after the quench,
shows two phases with either ¢; or ¢c3 dominating (see Fig. 6.5, t = 0.16, 0.78; decomposition proceeds
like a binary alloy). And at t = 11.6, three three phases are separated.

In the third experiment with m; = 0.05, where A\; < 0 and A2 < 0. Initial perturbation is not enough
to initiate domain growth, instead the small perturbation is damped and the evolution is to homogeneous

mixture state (see Fig. 6.6, t = 5.31).
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Figure 6.4: (m1,ma, m3) = (0.22,0.22,0.56).

137



o9t g o9t 1
cl
08 c, — 08 —
g
071 — 071 —
06 -
o5t g

1 M | b

\ » Koot
[ Vi

! ' A /‘H’u\/‘

Yoo s

v 4 n

g

B P

-
ot
AN

\
[ ‘
. B 01f 4

n |
[
Vo

]
'
[
ny M
! o

\
PR vl
'\H'\' \!U " HY

ot NERATE)
Y

‘

o L L L L L L L L L o L L L L L L L L L
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t

Figure 6.5: (ml, ma, mg) = (0.47 0.4, 02)
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Figure 6.6: (m1, ma, ms3) = (0.05,0.05,0.9).
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