
Chapter 7

Ternary Navier-Stokes-Cahn-Hilliard

system

Many engineering and industrially important applications involve flows with more than two liquid com-

ponents. Therefore, I developed an extension of the diffuse interface model and numerical algorithms to

the case of ternary (three-phase) fluid flows. In the Boussinesq limit, the ternary Navier-Stokes-Cahn-

Hilliard system is

∂u

∂t
+ u · ∇u = −∇p+ ∇ · [η

(
∇u + ∇uT

)
] − σiε(∆ci∇ci −

1

2
∇|∇ci|2) (7.0.1)

+ρgG, (7.0.2)

∇ · u = 0, (7.0.3)

∂c1
∂t

+ ∇ · (c1u) = ∇ · (M1(c1, c2)∇µ1), (7.0.4)

∂c2
∂t

+ ∇ · (c2u) = ∇ · (M2(c1, c2)∇µ2), (7.0.5)

where the c1, c2, and c3 = 1 − c1 − c2 are the mass ratios of the components, σi satisfies the relation,

σij = σi + σj , where σij is the surface tension between i component and j component. ρ is density, ε is

a measure of interface thickness, and the chemical potentials are given by

µ1 =
∂F

∂c1
(c1, c2) − 2ε2∆c1 − ε2∆c2, (7.0.6)

µ2 =
∂F

∂c2
(c1, c2) − ε2∆c1 − 2ε2∆c2, (7.0.7)

where F (c1, c2) is Helmholtz free energy.
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7.1 Hydrodynamics of a compound drop with application to leuko-

cyte modeling

Leukocytes (white blood cells) play a key role in the human immune defense network. In the course

of carrying out their functions, they must undergo large deformations as they navigate through small

apertures in the tissues. The ability of leukocytes to deform and flow in capillaries and to migrate in

tissues is largely governed by their rheological properties. Therefore, knowledge of the rheological

properties of leukocytes is critical not only for the comprehension of microcirculatory system, but also

for the understanding of their functions and behavior in health and disease [73]. In this chapter, we study

the dynamics of a compound liquid drop which is comprised of an outer membrane surface, a shell layer,

and a core. The deformation due to an imposed shear boundary flow and the subsequent recovery are

investigated computationally employing a diffuse-interface method. The numerical method allows for

large viscosity and capillarity differences between layers.

Γ23

σ23

ρ3, η3, Ω3

Ro Ri

ρ1, η1, Ω1

σ12

ρ2, η2, Ω2

Γ12

Figure 7.1: Illustration of the parameters in the analysis.

1.A Governing equations

The deformation and recovery of a viscous drop subjected to different flow conditions is investigated by

a three-layer incompressible Newtonian fluid system of density ρi and viscosity ηi, which occupies the

regions Ωi (i = 1, 2, 3), will be adopted to define the problems under investigation. In the case of a

compound drop, Ω1, Ω2, and Ω3 represent core (or nucleus), shell (or cytoplasm), and the suspending

fluid, respectively. The suface tensions σ12 and σ23 at the two interfaces Γ12 and Γ23, are assumed to be

constant. The lengths Ro and Ri are the undeformed radii of the drop (or cell) and core (or nucleus),
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repectively. The choices of characteristic velocity, length, time, and pressure are as follows:

lc = Ro, uc =
σ23

η3
, tc =

Roη3
σ23

, pc =
η3uc

lc
,

where uc is the charateristic velocity scale. Here, we consider density matched case. Based on the

reference scales, the dimensionless governing equations for Navier-Stokes flows are:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇ ·
[
η(∇u + ∇uT )

]
− ε

Wei
(∆ci∇ci −

1

2
∇|∇ci|2)

∇ · u = 0,

∂c1
∂t

+ ∇ · (c1u) =
1

Pe1
∆µ1, (7.1.8)

∂c2
∂t

+ ∇ · (c2u) =
1

Pe2
∆µ2, (7.1.9)

µ1 =
∂F (c1, c2)

∂c1
− 2ε2∆c1 − ε2∆c2, (7.1.10)

µ2 =
∂F (c1, c2)

∂c2
− ε2∆c1 − 2ε2∆c2, (7.1.11)

F (c1, c2) =
1

4
(c21c

2
2 + c22c

2
3 + c23c

2
1) =

1

4
[c21c

2
2 + (c21 + c22)(1 − c1 − c2)

2]. (7.1.12)

Next, c1 is taken to be the core mass concentration, c2 is the shell mass concentration and c3 is the

suspending fluid mass concentration. The domain is [0, 4]× [0, 2]× [0, 2]. The mesh size is 64×32×32

and in the simulation, periodic boundary conditions are taken for x and y and no-slip conditions are used

in the z direction. The simulation parameters are

η1 = 0.5, η2 = 0.5, η3 = 0.5, ρ1 = ρ2 = ρ3 = 1.0,

λ1 = η1/η3 = 1.0, λ2 = η2/η3 = 1.0, ε = 0.015, σ = 0.1, γ̇ = 1.0,

Pe1 = 0.5/ε, Pe2 = 0.5/ε, Wei = ρ1u
2
c/σi, Re = ρ1lcu

2
c/η3, Ca = η3γ̇Ro/σ23

1.B Deformation dynamics

The recovery of a leukocyte suspending in an immiscible, quiescent fluid is investigated. A simple shear

flow is selected in the present study. Fig. 7.2 shows a typical compound drop deformation under shear

flow.

1.C Recovery Dynamics and the effect of core viscosity

After the drop is deformed, the flow is turned off and the drop relaxes (i.e. t = 2.0 from Fig. 7.2 is

taken as the initial condition). This is shown in the left columns of Figs. 7.3 and 7.4, where the c2 = 0.5
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t=0.0 t=0.8

t=1.6 t=2.0

Figure 7.2: a compound drop deformation under shear flow

contours are plotted in the x-z plane with y = 1. The velocity vectors are also indicated. The outer

interface rapidly relaxes to a sphere while the inner drop rotates and relaxes much more slowly.

For comparision, we next consider the same initial configuration except that the viscosity of the inner

drop is increased by a factor of ten to η1 = 5.0. The results are presented in the right columns of Figs.

7.3 and 7.4. At early times, the inner interface rotates and relaxes more rapidly than the outer interface

and exhibits much less deformation than the corresponding case shown in the left column. At later times,

an internal velocity field is generated by the motion of the outer interface which then causes a further

deformation of the inner interface.

7.2 Numerical simulation of a buoyancy-driven compound drop

In this section, the buoyant-driven evolution a 3-D compound drop is investigated. The governing equa-

tions are:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇ ·
[
η(∇u + ∇uT )

]
− ε

Wei
(∆ci∇ci −

1

2
∇|∇ci|2) +

ρ− 1

Fr2 G,

∇ · u = 0,

143



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a1) t=2.0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b1) t=2.0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a2) t=2.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b2) t=2.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a3) t=2.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b3) t=2.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a4) t=3.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b4) t=3.2

Figure 7.3: Early time: dependence of the recovery field on the viscosity of the core. Initial configuration

for the η1 = 0.5 and η1 = 5.0 deformation are shown in (a1) and (b1). The flow fields in the recovery

stages are shown in (a2)-(a4) for η1 = 0.5 and (b2)-(b4) for η1 = 5.0.
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Figure 7.4: Late time continuation of Fig. 7.3 The flow fields in the recovery stages are shown in (a5)-

(a8) for η1 = 0.5 and (b5)-(b8) for η1 = 5.0.
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Figure 7.5: Illustration of the parameters in the analysis.

∂c1
∂t

+ ∇ · (c1u) =
1

Pe1
∆µ1,

∂c2
∂t

+ ∇ · (c2u) =
1

Pe2
∆µ2,

µ1 =
∂F (c1, c2)

∂c1
− 2ε2∆c1 − ε2∆c2,

µ2 =
∂F (c1, c2)

∂c2
− ε2∆c1 − 2ε2∆c2,

F (c1, c2) =
1

4
(c21c

2
2 + c22c

2
3 + c23c

2
1) =

1

4
[c21c

2
2 + (c21 + c22)(1 − c1 − c2)

2].

In Fig. 7.5, a schematic of the initial configuration is shown. The evolution is presented in Fig. 7.6.

The following parameters were used in the simulation :

η1 = 0.1833, η2 = 0.1833, η3 = 0.1833, ρ1 = 1.15, ρ2 = 1.1, ρ3 = 1.2,

ε = 0.01, gravity = 980.0, Pe1 = 10.0/ε, Pe2 = 10.0/ε, Re = 1.0.

An upper (flat) interface separates the heavy ambient from same fluid that encapsulates the heavy drop.

The compound drop is lighter than the heavy ambient and so it rises and deforms. The encapsulating

fluid rises faster than the heavy inner drop but nevertheless the compound drop remains intact until it

penetrates the upper interface. The heavy inner drop is carried upwards as the encapsulated fluid is

released. The drop then falls back on the interface remaining trapped there as it is neutrally buoyant

with respect to the lower heavy ambient. At this point, the drop could be removed from the system by
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“sucking” it off the interface. Imagining that the heavy inner drop is a contaminant in the lower ambient,

this provides a mechanism by which the ambient may be cleansed. Observe that the equilibrium drop

configuration (at the final time) actually has sharp corners due to the contact of all three immiscible

components. The contact angle is approximately 120 degrees since the surface tensions between all the

components were taken to be the same.

7.3 Rayleigh-Taylor Instability of Ternary Fluid Flows

In this section, we exploit the fact that our NSCH system is capable of describing multicomponent fluid

flows containing immiscible, miscible and partially miscible components. For immiscible components,

three-phase contact angles are automatically handled though the continuum formulation (e.g. see [69]

). The miscibility of the components is modeled through the properties of the free energy F (c1, c2)

and the thermodynamics of ternary flows is much more complicated than for binary case. Thus it is

much more difficult to describe equilibrium configurations and to construct free energies capable of

describing partially miscible systems where, for example, two components are immiscible and the third

component is preferentially miscible in one of the immiscible components. Nevertheless, I have been

able to construct a class of such a free energies an example of which is given below:

F (c1, c2) = 2c21(1 − c1 − c2)
2 + (c1 + 0.2)(c2 − 0.2)2 + (1.2 − c1 − c2)(c2 − 0.4)2.

A contour plot of the free energy F (c1, c2) is shown in Fig. 7.7. The two minima of F (c1, c2) are at

(0.7779, 0.2330,−0.0109) and (−0.0151, 0.3651, 0.6499).

To demonstrate the evolution possible in ternary fluid flows, I present an example in which there

is a gravity-driven (Rayleigh-Taylor) instability that enhances the transfer of a preferentially miscible

contaminant from one immiscible fluid to another. The initial configuration is shown in Fig. 7.8. The

top half of the domain consists of a mixture of fluid I and fluid II, and the bottom half consists of fluid

III, which is immiscible with fluid I. Fluid II is preferentially miscible with fluid III. Fluid I is assumed

to be the lightest and fluid II the heaviest. The density of the I/II mixture is heavier than that of fluid III,

so the density gradient induces Rayleigh-Taylor Instability. The simulation parameters are

η1 = η2 = η3 = 0.1, ρ1 = 1.0, ρ2 = 1.5, ρ3 = 1.2,

ε = 0.01, gravity = 980.0, Pe1 = 0.5/ε, Pe2 = 0.5/ε, Re = 10.0

ρ1 =
σ

2
, ρ2 = −σ

2
, ρ3 =

σ

2
, σ = 0.001.

As the simulation begins, in Fig. 7.9, the I/II mixture falls and fluid II diffuses into fluid III. The

overall diffusion is much more rapid due to the large velocities generated in the flow that act to increase
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t=0.0 t=6.0 t=8.0

t=12.0 t=14.0 t=17.0

t=20.0 t=35.0 t=44.0

Figure 7.6: Evolution of a compound drop
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Figure 7.7: Contour plot of the free energy F (c1, c2)

on the Gibbs triangle.
Figure 7.8: schematic of initial configuration

the surface area of the I/III interface. As fluid II is diffused from fluid I, the pure fluid I rises to the top

as shown in Fig. 7.9. Imagining that fluid II is a contaminant in fluid I, this configuration provides an

efficient means of cleansing fluid I.
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Figure 7.9: Evolution of concentration of fluid I.
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Figure 7.10: Evolution of concentration of fluid II.
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Figure 7.11: Evolution of concentration of fluid III.
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