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a b s t r a c t

Buoyancy-drivenmixing ofmulti-component incompressible immiscible fluids in two-dimensional tilted
channels is studied numerically using a phase-field model. This paper extends the previous work [K.C.
Sahu, S.P. Vanka, A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel,
Comput. Fluids 50 (2011) 199–215] to the multi-component (more than two) fluid case. The mixing
dynamics are governed by the modified Navier–Stokes equations and the multi-component convective
Cahn–Hilliard equations. A finite difference method is used to discretize the governing system. To
solve the equations efficiently and accurately, we employ Chorin’s projection method for the modified
Navier–Stokes equations, and the recently developed practically unconditionally stable method for the
multi-component Cahn–Hilliard equations. We numerically investigate the effects of various density
ratios, tilt angles, Reynolds numbers, andWeber numbers on the interface structures and front velocities.
The trends observed in simulations with multi-component fluids are consistent with previous numerical
results for two-component fluids.

© 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

Buoyancy-drivenmixing of multi-component fluids in a pipe or
a channel of arbitrary inclination (including the vertical and hori-
zontal) is a widespread phenomenon encountered in both natural
(oceanography, hydrology, and atmospheric sciences) and indus-
trial (chemical and petroleum engineering) systems [1–3]. A few
examples of such mixing processes include the transportation of
crude oil in pipelines [4], the propagation of fire through stairwells
or ventilation ducts in buildings [5], and the mixing of fluids using
centerline injectors [6].

Recently, buoyancy-driven mixing has been studied experi-
mentally [7–12] and numerically [13–16]. In a series of papers
[7–11], Séon and co-authors reported their experimental investi-
gations of the lock-exchange problem [1,17,18], whereby a tilted
cylindrical tube is filled with two-component fluids of different

∗ Corresponding author. Tel.: +82 2 3290 3077; fax: +82 2 929 8562.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: http://math.korea.ac.kr/∼cfdkim (J. Kim).

0997-7546/$ – see front matter© 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.euromechflu.2013.06.004
densities (the upper part is the heavier fluid) and a gate valve sepa-
rating them is suddenly removed. As a result of buoyancy, the fluids
interpenetrate and mix with each other.

Hallez and Magnaudet [13] conducted a numerical study of the
effects of channel geometry on buoyancy-driven mixing using a
finite volume method. They considered four different geometries:
a two-dimensional channel, a cylindrical tube, a square duct with
four no-slipwalls, and a square ductwith twono-slipwalls and two
periodic lateral walls. The authors showed that the vortices that
develop during the evolution of the flow are more coherent and
persistent in two than in three dimensions. They also observed that
the two-dimensional vortices can tear off the head of the current
and separate it from the body. In contrast, such separations are
only temporary in square channels, and never occur in a cylindrical
tube.

Sahu et al. [14] examined the characteristics of pressure-driven
two-fluid flow in two-dimensional inclined channels with density
and viscosity contrasts using numerical simulations. They investi-
gated the effects of the density ratio, Froude number, and channel
inclination on the flow dynamics for moderate Reynolds numbers
and viscosity ratios. The authors observed that the rates of mix-
ing and displacement of the more viscous fluid are enhanced with
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increasing density ratio and Froude number. They also found that
these rates increase with increasing inclination angles (measured
from the horizontal).

Sahu and Vanka [15] studied the effects of density ratios,
Reynolds numbers, tilt angles, and surface tension parameters on
the buoyancy-induced interpenetration of two immiscible fluids in
a two-dimensional tilted channel using a two-phase lattice Boltz-
mannmethod. Their resultswere in good agreementwith the finite
volume solutions generated with the code used by Sahu et al. [14]
and exhibited similar trends to the experiments of Séon et al.
[7–11]. Redapangu et al. [16] studied the effects of the viscosity
difference in the same situation. Relatively stable fingers were ob-
served for high viscosity ratios, with the flow essentially becoming
two individual Poiseuille flows.

Most experimental and numerical studies of buoyancy-driven
mixing have been performed for two-component fluids. However,
many problems in real-world applications relate to the mixing of
multi-component fluids. For example, a correct understanding of
three-component fluid flow (oil/gas/water) is crucial in petroleum
engineering for the design of efficient recovery techniques. There-
fore, this paper is concerned with the mixing of multi-component
(more than two) fluids. In the present paper, we extend the pre-
vious work of Sahu and Vanka [15] to the multi-component fluid
case using a phase-field model [19,20]. We are particularly inter-
ested in evaluating the effects of parameters such as the density
ratio, tilt angle, Reynolds number, andWeber number. The mixing
dynamics are governed by the modified Navier–Stokes equa-
tions and the multi-component convective Cahn–Hilliard equa-
tions [21–26]. We discretize the governing system using a finite
difference method. To solve the equations efficiently and accu-
rately,we employ Chorin’s projectionmethod [27] for themodified
Navier–Stokes equations, and the recently developed practically
unconditionally stable method for the multi-component Cahn–
Hilliard equations [26].

The paper is organized as follows. In Section 2, we present
the governing equations that describe the buoyancy-drivenmixing
of multi-component fluids. In Section 3, a numerical solution is
given. We perform some characteristic numerical experiments for
two- and four-component fluids in Section 4, before drawing our
conclusions in Section 5.

2. Governing equations

We consider the flow of N incompressible immiscible fluids
in a two-dimensional channel, inclined at an angle θ to the ver-
tical. A schematic illustration of the initial fluid configuration is
shown in Fig. 1. x and y denote the axial and transverse coordi-
nates, respectively, and L and H are the length and height of the
channel, respectively. Fluids 1 and N are the heaviest and lightest
fluids, respectively, and the heavier fluids are initially above the
lighter fluids in a gravitational field. Let c = (c1, c2, . . . , cN) be
a vector-valued phase-field, where each order parameter ck is the
concentration of each component in the mixture. In order to in-
vestigate the multiphase fluid flow characteristics, we couple the
modified Navier–Stokes equations and the N-component convec-
tive Cahn–Hilliard equations:

ρ(c)


∂u
∂t

+ u · ∇u


= −∇p + ∇ ·

η(c)(∇u + ∇uT )


+ SF(c) + ρ(c)g, (1)

∇ · u = 0, (2)
∂ck
∂t

+ ∇ · (cku) = ∇ · (M(c)∇µk), (3)

µk = f (ck) − ϵ21ck + βk, for k = 1, 2, . . . ,N, (4)
Fig. 1. Schematic illustration of the initial fluid configuration. x and y denote the
axial and transverse coordinates, respectively, and the two-dimensional channel
is inclined at an angle θ to the vertical. Fluids 1 and N are the heaviest and
lightest fluids, respectively, and heavier fluids are initially above lighter fluids in
a gravitational field.

where ρ(c) is the variable density, u is the fluid velocity, p is the
pressure, η(c) is the variable viscosity, SF(c) is the surface ten-
sion force, g = (−g cos θ, −g sin θ) is the gravity term under
gravitational acceleration g,M(c) is a mobility, f (ck) = ck(ck −

0.5)(ck−1), ϵ is a positive constant, and βk = −ck
N

j=1 f (cj). ρ(c)
and η(c) are defined as ρ(c) =

N
k=1 ρkck and η(c) =

N
k=1 ηk

ck, where ρk and ηk are the density and viscosity of the kth
fluid, respectively. For the surface tension force SF(c), we use
the generalized continuous surface tension force formulation [24]:
SF(c) =

N−1
i=1

N
j=i+1 0.5σij[sf(ci) + sf(cj)]δ(ci, cj)


, where σij

is the physical surface tension coefficient between fluid i and fluid
j, sf(ci) = −6

√
2ϵ∇ · (∇ci/|∇ci|)|∇ci|∇ci, and δ(ci, cj) = 5cicj. For

a large density ratio, the continuity equation cannot be reduced to
Eq. (2). In such cases, we should use ρt + ∇ · (ρu) = 0 as the
continuity equation. In [28], Ding et al. discussed this issue and de-
rived a set of equations from the conservation law of the mass of
binary mixtures. M(c) in Eq. (3) is treated as a variable mobility
in [28–34], and the Cahn–Hilliard equation has been extensively
employed with a constant mobility [35–41]. In this paper, we take
the mobility to be constant (M(c) ≡ M), as a variable mobility is
computationally more expensive.

To non-dimensionalize the governing equations (1)–(4), we
define characteristic quantities of length (Lc), velocity (Uc), density
(ρc), viscosity (ηc), and chemical potential (µc). In our simulations,
we choose Lc = H,Uc =

√
gH, ρc = ρN , and ηc = ηN . We then

introduce the following dimensionless variables:

x′
=

x
Lc

, u′
=

u
Uc

, t ′ =
tUc

Lc
, ρ ′

=
ρ

ρc
,

p′
=

p
ρcU2

c
, η′

=
η

ηc
, g′

=
g
g
, µk

′
=

µk

µc
,

where the primed quantities are dimensionless. Substituting these
variables into Eqs. (1)–(4) and dropping the primes, we have

ρ(c)


∂u
∂t

+ u · ∇u


= −∇p +
1
Re

∇ ·

η(c)(∇u + ∇uT )


+ SF(c) +

ρ(c)
Fr2

g, (5)

∇ · u = 0, (6)
∂ck
∂t

+ ∇ · (cku) =
1
Pe

1µk, (7)

µk = f (ck) − ϵ21ck + βk, for k = 1, 2, . . . ,N, (8)
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where SF(c) =
N−1

i=1 (
N

j=i+1 0.5[sf(ci) + sf(cj)]δ(ci, cj)/Weij), g
= (− cos θ, − sin θ), and ϵ is redefined according to the scaling.
The dimensionless parameters are the Reynolds number, Re =

ρcUcLc/ηc , the Weber number of fluids i and j,Weij = ρcLcU2
c /σij,

the Froude number, Fr = Uc/
√
gLc , and the Péclet number, Pe =

UcLc/(Mµc).

2.1. Boundary conditions

The accurate implementation of boundary conditions is an im-
portant issue associated with the direct numerical simulation of
buoyancy-driven mixing processes. The boundary conditions em-
ployed in this paper are as follows.
Order parameter ck. The previously used boundary condition for the
concentration [14] and the index function [15] (in the phase-field
method, these variables correspond to an order parameter ck) is
the zero Neumann boundary condition. However, this boundary
condition means that the contact angle of the fluid interface is 90°
at the walls. Thus, this boundary condition does not preserve the
tilt angle near the boundary. In order to resolve this problem, we
use the linear boundary condition for order parameters ck:

∂2ck
∂x2

(0, y, t) =
∂2ck
∂x2

(L/H, y, t) =
∂2ck
∂y2

(x, 0, t)

=
∂2ck
∂y2

(x, 1, t) = 0 for 0 ≤ x ≤ L/H,

0 ≤ y ≤ 1, 0 ≤ t ≤ T .

Chemical potential µk. Because we are also interested in long-time
simulations, mass conservation is an important factor. For mass
conservation,we use the zeroNeumann boundary condition:∇µk ·

n = 0 on ∂Ω , where n is the unit normal vector to ∂Ω .
Velocities. No-slip boundary conditions are imposed: u = 0 on ∂Ω .
Pressure. Taking the inner product of both sides of Eq. (5) with n,
we have the boundary condition for the pressure:

n · ∇p = n ·


1
Re

∇ ·

η(c)(∇u + ∇uT )


+ SF(c) +

ρ(c)
Fr2

g


.

Owing to the treatment of pressure on the boundary, we can per-
form long-time evolutions resulting in an equilibrium state [42].

3. Numerical solution

Let the computational domain be partitioned into a uniform
mesh with mesh spacing h. The center of each cell, Ωij, is located
at (xi, yj) = ((i − 0.5)h, (j − 0.5)h) for i = 1, . . . ,Nx and j =

1, . . . ,Ny. Nx and Ny denote the number of cells in the x- and y-
directions, respectively. Cell vertices are located at (xi+ 1

2
, yj+ 1

2
) =

(ih, jh). In this paper, the fluid variables are defined on a staggered
grid [43]; pressures and vector-valued phase-fields are stored at
the cell centers and velocities at cell faces.

To solve the modified Navier–Stokes equation, we apply the
projection method [27], which decouples the solution of the mo-
mentum equations from the solution of the continuity equation.
Let 1t be the time step and n be the time step index. At the begin-
ning of each time step, given un and cn, we want to find un+1, cn+1,
and pn+1 that solve the following temporal discretization of
Eqs. (5)–(8):

ρn u
n+1

− un

1t
= −∇dpn+1

+
1
Re

∇d ·

ηn(∇dun

+ (∇dun)T )


+ SFn +
ρn

Fr2
g − ρn(u · ∇du)n,

∇d · un+1
= 0,
ckn+1
− ckn

1t
=

1
Pe

∆dµk
n+1

− ∇d · (cku)n,

for k = 1, 2, . . . ,N − 1, (9)

µk
n+1

= ϕ(ckn+1) − 0.25ckn − ϵ2∆dckn+1
+ βk

n, (10)

where ρn
= ρ(cn), ηn

= η(cn), SFn = SF(cn), and ϕ(ck) = f (ck)
+0.25ck is a nonlinear function. Note thatwe need only solve these
equations for c1, c2, . . . , cN−1, as cN = 1 −

N−1
k=1 ck. An outline of

the main procedures in each time step is as follows.
Step 1. Initialize u0 to be the divergence-free velocity field and

ck0 for k = 1, 2, . . . ,N − 1.
Step 2. Solve an intermediate velocity field, ũ:

ũ − un

1t
=

1
ρnRe

∇d ·

ηn(∇dun

+ (∇dun)T )

+

1
ρn

SFn

+
1
Fr2

g − (u · ∇du)n,

where the convective term, (u · ∇du)n, is computed using an up-
wind scheme [42]. We then solve the following equations for the
advanced pressure field at (n + 1) time step:

un+1
− ũ

1t
= −

1
ρn

∇dpn+1, (11)

∇d · un+1
= 0.

Apply the divergence operator to Eq. (11) and get a Poisson equa-
tion for pn+1:

∇d ·


1
ρn

∇dpn+1


=
1

1t
∇d · ũ. (12)

The resulting linear system of Eq. (12) is solved by a fast solver,
such as a linear multigrid method [44]. The divergence-free veloc-
ities are then defined by

un+1
= ũ −

1t
ρn

∇dpn+1.

Step 3. Update the phase-field ckn to ckn+1 for k = 1, 2, . . . ,N −

1. In order to solve the N-component Cahn–Hilliard system (9)
and (10) in a decoupled way and reduce the CPU time and
memory requirements, we use the recently developed practically
unconditionally stable scheme [26]. For mass conservation, we use
a conservative discretization of the convective part of the phase-
field Eq. (9):
(cku)x + (ckv)y

n
ij

=

un
i+ 1

2 ,j
(ck,ni+1,j + ck,nij) − un

i− 1
2 ,j

(ck,nij + ck,ni−1,j)

2h

+

vn
i,j+ 1

2
(ck,ni,j+1 + ck,nij) − vn

i,j− 1
2
(ck,nij + ck,ni,j−1)

2h
.

This completes the single time-step process.

4. Numerical experiments

In this section, we describe a number of numerical experi-
ments for two- and four-component fluids in two-dimensional
tilted channels. We consider the long-time evolution of two-
component fluids, compare the results with those obtained by a
lattice Boltzmann method, and study the effects of Péclet num-
ber, density ratio, tilt angle, Reynolds number,Weber number, and
channel aspect ratio.We also compare themixing of two- and four-
component fluids with the same maximum density contrast, and
investigate the mixing of initially partly stable configurations for
four-component fluids. For each experiment, the fluid viscosities
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Fig. 2. Long-time evolution of two-component fluids in a two-dimensional tilted
channel of aspect ratio 1 : 10 for ρ1/ρ2 = 3, θ = 30°, Re = 3000, and We = ∞.
The heavier and lighter fluids are represented by gray andwhite colors, respectively.
The times are t = 0, 3, 7, 12, 18, 25, 40, 50, 60, and 90 (from left to right).

are matched. In the case of four-component fluids, we take the
same value (We) for all Weber numbers, i.e., Weij = We. Through-
out the rest of this section, we use the notation We = ∞ for the
zero surface tension case and take the filled contour of the 0.5 level
of each phase-field to capture the fluid interfaces.

4.1. Buoyancy-driven mixing of two-component fluids in two-dimen-
sional tilted channels

4.1.1. Long-time evolution of two-component fluids in a two-dimen-
sional tilted channel

We validate our code by simulating the long-time evolution of
two-component fluids in a two-dimensional tilted channel. The
initial conditions are

c(x, y, 0) =
1
2


1 + tanh


x − 5

2
√
2ϵ


,

u(x, y, 0) = v(x, y, 0) = 0

on the domain Ω = [0, 10]× [0, 1]. Here, we use h = 1/64, 1t =

0.128h, ϵ = 0.01
√
2, and Pe = 1/ϵ. The remaining parameter

values are ρ1/ρ2 = 3, θ = 30°, Re = 3000, andWe = ∞. We con-
tinue the simulation until the solution becomes numerically sta-
tionary. Fig. 2 shows the evolution of the phase-field; the heavier
and lighter fluids are represented by gray andwhite colors, respec-
tively. As we can see in Fig. 2, the heavier and lighter fluids move
along the lower (y = 0) and upper (y = 1) walls, respectively, due
to the gravitational force. Rayleigh–Taylor-type instabilities occur
in both the x- and y-directions, because the gravitational force has
x- and y-components that are proportional to g cos θ and g sin θ ,
respectively. With time, the development of instabilities produces
a wavy interface between the two fluids, leading to the formation
of vortical patterns. Finally, after t = 90, the system reaches an
equilibrium state: the heavier fluid is completely below the lighter
fluid, and the interface is flat and perpendicular to the gravitational
direction.
Fig. 4. Variation in front velocity of the heavier fluid for At = 0.004, 0.006, 0.01,
0.05, and 0.1. θ = 30°, Re = 558.6, and We = ∞ are used. The dashed line in this
plot corresponds to 0.44

√
gHAt .

4.1.2. Comparison with lattice Boltzmann results
To compare the results of our phase-field simulationwith those

obtained by a lattice Boltzmann method [15], we first consider the
following initial data:

c(x, y, 0) =
1
2


1 + tanh


x − 20

2
√
2ϵ


, (13)

u(x, y, 0) = v(x, y, 0) = 0 (14)

on the domainΩ = [0, 40]×[0, 1], with h = 1/64, 1t = 0.128h,
ϵ = 0.01

√
2, and Pe = 100/ϵ. The remaining parameter values

are ρ1/ρ2 = 1.2, θ = 60°, Re = 558.6, andWe = ∞. Fig. 3 shows
the evolution of the phase-field obtained by a phase-field method
and the density contour obtained by a lattice Boltzmannmethod at
t = 10 and 20. The heavier and lighter fluids are shown as red and
blue, respectively. As we can see, these results are in good qualita-
tive agreement for a typical set of parameters.

We next examine the Atwood number (At = (ρ1 − ρ2)/(ρ1
+ ρ2)) dependence of the front velocity of the heavier fluid for
the problem presented in Section 4.1 of Ref. [15]. We take the ini-
tial data given in Eqs. (13) and (14), and choose h = 1/64, 1t =

0.128h, ϵ = 0.01
√
2, Pe = 100/ϵ, θ = 30°, Re = 558.6, and

We = ∞. The variation in front velocity of the heavier fluid for
At = 0.004, 0.006, 0.01, 0.05, and 0.1 is shown in Fig. 4. Note
that, in [15], the authors found that the front velocity of the heav-
ier fluid increases as a function of

√
gHAt (the constant of pro-

portionality is 0.38) for Atwood numbers less than 0.06. However,
for Atwood numbers greater than 0.06, no dependence on

√
gHAt

was observed, and instead a smaller growth rate appeared. The
authors believed this may be due to the increased nonlinearities
causing an enhanced diffusion of the density interface. This in turn
reduces the driving potential for the finger velocities, thus reducing
the generated slope. However, in our simulation, we see a

√
gHAt

dependence for all given Atwood numbers, with a constant of pro-
portionality of 0.44.
Fig. 3. Comparison with lattice Boltzmann results. Bottom: phase-field obtained by a phase-field method for a channel of aspect ratio 1 : 40. The remaining parameter
values are ρ1/ρ2 = 1.2, θ = 60°, Re = 558.6, and We = ∞. The heavier and lighter fluids are shown in red and blue, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Source: Top: Reprinted from [15], with permission from Elsevier.
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a b c d

Fig. 5. Effect of Péclet number on the evolution of the interface. (a) Shows the initial configuration. (b), (c), and (d) are snapshots of the interface profile at t = 4 for
Pe = 0.01/ϵ, 1/ϵ, and 100/ϵ, respectively. Next to each figure, the magnification shows the contour lines of the phase-field c2 at levels 0.1, 0.2, . . . , 0.9. θ = 30°, ρ1 : ρ2 :

ρ3 : ρ4 = 4 : 3 : 2 : 1, Re = 3000, and We = ∞ are used. Fluids 1, 2, 3, and 4 are represented by black, dark gray, gray, and white, respectively.
a

b

c

Fig. 6. Effect of density ratio on the evolution of four-component fluids. The density
ratio between the fluids is taken to be ρ1 : ρ2 : ρ3 : ρ4 = (1 + 3m) : (1 + 2m) :

(1+m) : 1 for the parameterm. (a), (b), and (c) are the results form = 0.1, 0.5, and
1, respectively. The other parameters are θ = 30°, Re = 3000, and We = ∞. The
times are t = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 (from left to right). Fluids 1, 2, 3, and 4
are represented by black, dark gray, gray, and white, respectively.
Fig. 7. Front velocities V tip
1 , V tip

2 , and V tip
3 as a function of the parameter m for

θ = 30°, Re = 3000, and We = ∞.

4.2. Buoyancy-driven mixing of four-component fluids in two-
dimensional tilted channels

Unless otherwise specified, we take the initial data as

c1(x, y, 0) =
1
2


1 + tanh


x − 7.5

2
√
2ϵ


,

c2(x, y, 0) =
1
2


tanh


x − 5

2
√
2ϵ


− tanh


x − 7.5

2
√
2ϵ


,

c3(x, y, 0) =
1
2


tanh


x − 2.5

2
√
2ϵ


− tanh


x − 5

2
√
2ϵ


,

u(x, y, 0) = v(x, y, 0) = 0

on the domain Ω = [0, 10] × [0, 1], and use h = 1/64, 1t =

0.128h, and ϵ = 0.006
√
2. We define V tip

k as the front velocity of
fluid k for k = 1, 2, 3.

Figs. 5, 6, 8, 10, 12 and 13 were created using the ‘‘contourf’’
command in MATLAB. In these figures, fluids 1, 2, 3, and 4 are
represented by black, dark gray, gray, and white, respectively. To
obtain the color contrast of each fluid, we shift the value of the
phase-field variable by adding a constant, and take the contour of
each different level. The followingMATLAB codewas used to create
the figures:hold all;contourf(C1,[0.5 0.5]);contourf
(C2+1,[1.5 1.5]);contourf(C3+2,[2.5 2.5]);
contourf(C4+3,[3.5 3.5]);colormap gray.
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a

b c

Fig. 8. Effect of tilt angle on the evolution of four-component fluids for (a) θ = 5°, (b) θ = 60°, and (c) θ = 85°. The other parameters arem = 1, Re = 3000, andWe = ∞.
The times are t = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 (in (a), from left to right and, in (b) and (c), from top to bottom). Fluids 1, 2, 3, and 4 are represented by black, dark gray, gray,
and white, respectively.
4.2.1. Effect of Péclet number
The Péclet number is the ratio between convective and diffusive

mass transport. In order to examine the effect of the Péclet number
on the interface profile, we consider the evolution of the interface
with different Péclet numbers. The initial configuration is shown
in Fig. 5(a), where θ = 30°, ρ1 : ρ2 : ρ3 : ρ4 = 4 : 3 : 2 : 1, Re =

3000, and We = ∞. Fig. 5(b)–(d) show snapshots of the interface
profile at t = 4 for Pe = 0.01/ϵ, 1/ϵ, and 100/ϵ, respectively.
Next to each figure, the magnification shows the contour lines of
the phase-field c2 at levels 0.1, 0.2, . . . , 0.9.

Pe = 0.01/ϵ is small, and the diffusion term in the phase-
field equation is dominant (Fig. 5(b)). Ideally, wewant tominimize
the diffusion effect of the phase-field, because we are primarily
interested in the hydrodynamics of the multiphase system. Next,
let us consider the other extreme case. Pe = 100/ϵ is relatively
large, and the advection term in the phase-field equation is domi-
nant. This implies that the interfaces are locally out of equilibrium.
In Fig. 5(d), it can clearly be observed that the interfacial transi-
tion region is not smooth. The interface evolution is sensitive to
the value of the Péclet number. Increasing the Péclet number re-
sults in a non-smooth concentration profile, whereas decreasing
the Péclet number results in toomuch diffusion. On the other hand,
if an appropriate Péclet number (Pe = 1/ϵ) is taken, as in Fig. 5(c),
we have both a smooth interfacial transition and complex interface
profile according to the flow field. Unless otherwise stated, we use
Pe = 1/ϵ throughout the rest of this paper.
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Fig. 9. Variation of V tip
1 , V tip

2 , and V tip
3 with θ = 5°, 30°, 45°, 60°, 70°, 75°, 80°, and

85° form = 1, Re = 3000, and We = ∞.

4.2.2. Effect of density ratio
In this section, we investigate the effect of the density ratio on

the mixing dynamics for θ = 30°, Re = 3000, and We = ∞. We
take the density ratio between the four-component fluids to beρ1 :

ρ2 : ρ3 : ρ4 = (1+3m) : (1+2m) : (1+m) : 1 for someparameter
m. The buoyancy force is proportional to the density, ρ(c) =4

k=1 ρkck/ρ4 = 3mc1+2mc2+mc3+1. Therefore, asm increases
(decreases), the buoyancy force acts more strongly (weakly).

Fig. 6(a)–(c) show the evolution of four-component fluids for
m = 0.1, 0.5, and 1, respectively. The front velocities V tip

1 , V tip
2 , and

V tip
3 for m = 0.01, 0.05, 0.1, 0.5, and 1 are shown in Fig. 7. At m =

0.01, V tip
1 (=0.0089), V tip

2 (=0.009), and V tip
3 (= 0.0091) are al-

most the same. As a result, the fronts of fluids 1, 2, and 3 move
with an almost identical shape, and the interfaces are relatively
simple. However, as the parameter m increases, the difference
between V tip

1 , V tip
2 , and V tip

3 increases, and thus the formation of
Kelvin–Helmholtz (KH) instabilities and small-scale structures in-
creases. These instabilities and ‘‘roll-up’’ phenomenapromotemix-
ing in the four-component fluids. These trends are in agreement
with the previous experiments of Séon et al. [7–11] and the com-
putations of Sahu and Vanka [15].

4.2.3. Effect of tilt angle
At a fixed density ratio, the buoyancy force depends on the

tilt angle, θ , of the channel. The axial component of the buoyancy
force (proportional to cos θ ) induces an axial interpenetration of
the fluids. On the other hand, the transverse component of the
buoyancy force (proportional to sin θ ) acts to segregate the fluids.
Therefore, the tilt angle plays a crucial role in determining the
flow pattern and front velocity. In [8,9], Séon et al. found that, for
θ between approximately 0° and 60°, the KH instabilities grow
along the interface between the two-component fluids, enabling
a strong transverse mixing.When the tilt angle was set to between
Fig. 11. Plot of the front velocities V tip
1 , V tip

2 , and V tip
3 against Re = 100, 300, 600,

800, 1000, 1500, and 3000. θ = 60°,m = 1, andWe = ∞ are used.

approximately 60° and 80°, the transverse component of the
buoyancy force started to act, increasing the segregation effects.
We simulate tilt angles of θ = 5°, 30°, 45°, 60°, 70°, 75°, 80°, and
85°.

For m = 1, Re = 3000, and We = ∞, Fig. 8(a)–(c) show the
evolution of four-component fluids for θ = 5°, 60°, and 85°, res-
pectively. At low angles, the axial buoyancy force acts more
strongly than the transverse buoyancy force. Thus, the KH
instabilities develop along the interfaces, resulting in transverse in-
terpenetration of the fluids. At high angles (including a nearly hori-
zontal position), the transverse buoyancy force acts more strongly
than the axial buoyancy force. This induces segregation between
the four-component fluids, and interpenetration in the transverse
direction decreases (Fig. 8(c)). The four-component fluids move
parallel to each other, and the lighter (heavier) fluids move prefer-
entially toward the upper (lower) part of the channel. The variation
of V tip

1 , V tip
2 , and V tip

3 for θ = 5°, 30°, 45°, 60°, 70°, 75°, 80°, and 85°
is shown in Fig. 9. For fluid 1 and fluid 3, V tip

1 and V tip
3 increase with

θ until they attain their maximum values, and then decrease grad-
ually. However, in the case of fluid 2, V tip

2 decreases sharply after
reaching its maximum value.

4.2.4. Effect of Reynolds number
Next, we study the effect of the Reynolds number on the mix-

ing dynamics. Numerical experiments are carried out at several
Reynolds numbers with θ = 60°,m = 1, and We = ∞. Fig. 10
shows a snapshot of the interface profile of four-component fluids
at t = 6 for Re = 100, 300, 600, 800, 1000, 1500, and 3000 (from
second left to right) together with the initial configuration (left).

The results indicate that, as the Reynolds number increases
(i.e., as the fluid viscosity decreases), the KH instabilities develop
rapidly, mixing the four-component fluids transversally and lead-
ing to complex flowpatterns. The front velocities V tip

1 , V tip
2 , and V tip

3
at Re = 100, 300, 600, 800, 1000, 1500, and 3000 are shown in
Fig. 10. Left is the initial configuration. Snapshots of the interface profile of four-component fluids at t = 6 for Re = 100, 300, 600, 800, 1000, 1500, and 3000 (from second
left to right). θ = 60°,m = 1, and We = ∞ are used. Fluids 1, 2, 3, and 4 are represented by black, dark gray, gray, and white, respectively.



44 H. Geun Lee, J. Kim / European Journal of Mechanics B/Fluids 42 (2013) 37–46
Fig. 12. Left is the initial configuration. Snapshots of the interface profile of four-
component fluids at t = 6 forWe = ∞, 100, 50, 20, 10, 7, and 5 (from second left to
right). θ = 30°,m = 1, and Re = 3000 are used. Fluids 1, 2, 3, and 4 are represented
by black, dark gray, gray, and white, respectively.

Fig. 11. An increase in the Reynolds number causes V tip
1 , V tip

2 , and
V tip
3 to increase. Note that Sahu and Vanka [15] did not observe this

at the high Atwood number (At = (ρh−ρl)/(ρh+ρl), whereρh and
ρl are the densities of the heavier and lighter fluids, respectively)
studied in their simulations.

4.2.5. Effect of Weber number
We examine the effect of the Weber number on the mixing dy-

namics. Numerical experiments are carried out at several Weber
numbers with θ = 30°,m = 1, and Re = 3000. Fig. 12 shows
snapshots of the interface profile of four-component fluids at t = 6
for We = ∞, 100, 50, 20, 10, 7, and 5 (from second left to right),
together with the initial configuration (left).

In the absence of surface tension (We = ∞), the waves of
smaller wavelength grow with time and, as a result, the mixing
of the four-component fluids becomes more vigorous. Note that,
in the case of Newtonian fluids, the growth rate of the waves of
smaller wavelength is small compared with the stabilizing effect
of surface tension [45]. As we can see in Fig. 12, the stabilizing in-
fluence increases as the Weber number decreases (as the surface
tension coefficient increases). It can be seen that surface tension
stabilizes short-wavelength disturbances.

4.2.6. Effect of the aspect ratio of a tilted channel
In order to examine the effect of the channel aspect ratio on the

mixing dynamics, we consider the evolution of the interface with
different channel aspect ratios with θ = 30°,m = 1, Re = 3000,
and We = ∞. Fig. 13(a), (b) and (c) show the evolution of four-
component fluids for H : L = 1 : 10, 2 : 10, and 4 : 10, re-
spectively. In a horizontal narrow channel (smallH), thewall effect
becomes more significant. In our simulations, we impose the no-
slip boundary condition (u = 0 on ∂Ω) for velocities at the walls.
At small H (=1), velocities on the inside of the tilted channel are
more affected by the no-slip boundary condition. As a result, we
can see relatively slow four-component fluid flows (Fig. 13(a)). In
contrast, at large H (=4), relatively fast velocity fields are formed,
causing the fluids to move to the left wall (x = 0) within a shorter
time (Fig. 13(c)).

4.2.7. Comparison between the mixing of two- and four-component
fluids with the same maximum density contrast

We now compare the buoyancy-driven mixing of two- and
four-component fluids with the same maximum density contrast.
For the two- and four-component fluids, we respectively take the
initial data as

c(x, y, 0) =
1
2


1 + tanh


x − 20

2
√
2ϵ


and

c1(x, y, 0) =
1
2


1 + tanh


x − 30

2
√
2ϵ


,

a

b

c

Fig. 13. Effect of channel aspect ratio on the evolution of four-component fluids for (a) H : L = 1 : 10, (b) H : L = 2 : 10, and (c) H : L = 4 : 10. The other parameters are
θ = 30°,m = 1, Re = 3000, andWe = ∞. The times are t = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 (from left to right). Fluids 1, 2, 3, and 4 are represented by black, dark gray,
gray, and white, respectively.
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a b

Fig. 14. Comparison between the mixing of (a) two- and (b) four-component fluids with the samemaximum density contrast. In these tests, the maximum density contrast
is 1.2. In both cases, θ = 60°, Re = 558.6, andWe = ∞. The top, middle, and bottom rows show the results at t = 0, 10, and 20, respectively.
a b

Fig. 15. Contours of the phase-fields on [16, 24] × [0, 1] at (a) t = 10 and (b) t = 20. In each figure, the solid line and open circles show the contours of the phase-fields
for two- and four-component fluids, respectively.
Fig. 16. Buoyancy-driven mixing of initially partly stable configurations. The
computational domain is Ω = [0, 10] × [0, 1], and h = 1/64, 1t = 0.128h, ϵ =

0.006
√
2, Pe = 0.1/ϵ, θ = 30°, ρ1 : ρ2 : ρ3 : ρ4 = 4 : 1 : 2 : 3, Re = 3000,

and We = ∞. The times are t = 0, 5, 10, 15, 20, 30, 35, 40, 50, and 100 (from left
to right). Fluids 1, 2, 3, and 4 are represented by black, white, gray, and dark gray,
respectively.

c2(x, y, 0) =
1
2


tanh


x − 20

2
√
2ϵ


− tanh


x − 30

2
√
2ϵ


,

c3(x, y, 0) =
1
2


tanh


x − 10

2
√
2ϵ


− tanh


x − 20

2
√
2ϵ


.

In both cases, the initial velocity is zero, the computational domain
is Ω = [0, 40] × [0, 1], and we choose h = 1/64, 1t = 0.128h,
θ = 60°, Re = 558.6, and We = ∞. For the two-component
fluids, the other parameters are ϵ = 0.01

√
2, Pe = 100/ϵ, and

ρ1/ρ2 = 1.2, and for the four-component fluids we select param-
eter values of ϵ = 0.006

√
2, Pe = 100/ϵ, and ρ1 : ρ2 : ρ3 :

ρ4 = 1.2 : 1.2 : 1 : 1. We match the maximum density con-
trast for both cases. Fig. 14(a) and (b) show the evolution of two-
and four-component fluids at the same times, respectively. The top,
middle, and bottom rows show the results at t = 0, 10, and 20,
respectively. The contours of the phase-fields on [16, 24] × [0, 1]
at t = 10 and 20 are shown in Fig. 15(a) and (b), respectively. In
each figure, the solid line and open circles show the contours for
the two- and four-component fluids, respectively. Initially, for both
cases, the densities in the left and right halves of the domain are 1
and 1.2, respectively. Thus, the velocity fields in each half of the
domain are the same in both cases, and the phase-fields in each
half of the domain are convected by the same velocity. As a result,
both the two- and four-component fluidswith the samemaximum
density contrast yield nearly identical phase-field evolutions.

4.2.8. Mixing of initially partly stable four-component fluids
We now investigate the buoyancy-driven mixing of initially

partly stable configurations with both stable and unstable strati-
fications. The initial configuration is shown on the left of Fig. 16.
Fluids 1, 2, 3, and 4 are represented by black, white, gray, and dark
gray, respectively. The computational domain is Ω = [0, 10] ×

[0, 1], and h = 1/64, 1t = 0.128h, ϵ = 0.006
√
2, Pe = 0.1/ϵ,

θ = 30°, ρ1 : ρ2 : ρ3 : ρ4 = 4 : 1 : 2 : 3, Re = 3000,
and We = ∞. Fig. 16 shows the evolution of four-component flu-
ids. Due to the given density contrast, fluids 2, 3, and 4 form sta-
ble layers, and thus there is almost no change in position between
these fluids. However, the heaviest fluid (fluid 1) is on top of the
other fluids and, in turn, moves to the bottom of other fluids due
to the gravitational force. After t = 20, 40, and 60, fluid 1 (shown
in black) is below fluid 2 (in white), fluid 3 (in gray), and fluid 4 (in
dark gray), respectively. Finally, after t = 100, the system reaches
an equilibrium state: heavier fluids lie below lighter fluids, and the
interfaces are flat and perpendicular to the gravitational direction.

5. Conclusions

The buoyancy-driven mixing of multi-component incompress-
ible immiscible fluids in two-dimensional tilted channels was
studied numerically using a phase-field model. The mixing dy-
namics are governed by themodified Navier–Stokes equations and
the multi-component convective Cahn–Hilliard equations. A finite
difference method was used to solve the governing system. To
solve the equations efficiently and accurately, we employed the
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Chorin’s projection method for the modified Navier–Stokes equa-
tions, and the recently developed practically unconditionally sta-
ble method for the multi-component Cahn–Hilliard equations. We
numerically investigated the effects of various density ratios, tilt
angles, Reynolds numbers, and Weber numbers on the interface
structures and front velocities. The trends observed in simulations
withmulti-component fluidswere consistentwith previous exper-
imental and numerical results with two-component fluids.
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