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In this paper, we present an accurate and efficient algorithm to generate constant mean curvature
surfaces with volume constraint using a phase-field model. We implement our proposed algorithm using
an unconditionally gradient stable nonlinear splitting scheme. Starting from the periodic nodal surface
approximation to minimal surfaces, we can generate various constant mean curvature surfaces with given
volume fractions. We generate and study the Schwarz primitive (P), Schwarz diamond (D), and Schoen
gyroid (G) surfaces with various volume fractions. This technique for generating constant mean curvature
surfaces can be used to design biomedical scaffolds with optimal mechanical and biomorphic properties.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A minimal surface is a surface for which the mean curvature H
is zero at every point [4]. A remarkable class of minimal surfaces
are triply periodic (i.e., periodic in three directions). The Schwarz
primitive (P), the Schwarz diamond (D), and the Schoen gyroid (G)
minimal surfaces partition space into two disjoint but congruent
regions, hence the volume fraction of each phase is 1/2 (see Fig. 1).

Triply periodic minimal surfaces [20–22] offer great attractions
to physical scientists, biologists, and mathematicians. In forming
an equilibrium structure, such a material may separate into dis-
tinct phases, creating domains of component A and component B.
Lipid–water systems are known to display cubic phases that are
bicontinuous; i.e., the entire aqueous region is divided by the lipid
bilayer into two disconnected regions that are simultaneously con-
tinuous. The bilayer has been shown to be an infinite periodic
minimal surface [16]. Cell membranes resembling periodic mini-
mal surfaces have been observed in cytoplasmic organelles such as
mitochondria and chloroplasts [24]. It has been suggested that in
certain invertebrates the endoplasmic reticulum (a system of inter-
connecting membranes inside the cell) may exhibit gyroid (spiral)
cubic structures. The geometry of triply periodic minimal surfaces
strongly influences the physical properties of the material and they
have been proposed as candidates for microstructural models in a
variety of physical and biological systems. Dominant factors in the
determination of the domain morphology are area-minimization of
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interface and a triply-periodic condition, subject to fixed volume
fraction.

Recently, it was shown that triply periodic minimal surfaces can
be generated as the local minima of the scalar order parameter
Landau–Ginzburg functional for describing ordering phenomena in
microemulsion. This Landau–Ginzburg free energy functional can
be utilized to calculate numerically a discretization of a potential
φ(x) such that φ(x) > 1/2 for points in phase 1 and φ(x) < 1/2
for points in phase 2. At the phase interface, φ(x) = 1/2, which
in this case is the Schwarz P, Schwarz D, or Schoen G minimal
surface. Moreover, the minimal surfaces can be approximated by
the periodic nodal surface (PNS) of a sum defined in terms of the
Fourier series, because any periodic surface can be expressed as
the sum of an infinite number Fourier terms [10].

There are many approaches to generate discrete triply periodic
minimal surfaces. In [17], Jung, Chu, and Torquato explored triply
periodic surfaces with minimal surface area under a constraint in
the volume fraction of the phases that the surface separates us-
ing the level set method [1,26,27,32]. In [23], Mackay constructed
periodic minimal surfaces using the concept of nodal and Fermi
surfaces. Brakke [2] developed the Surface Evolver and the Sur-
face Evolver is a computer program that minimizes the energy of
a surface subject to constraints. The authors in [13,28,33] stud-
ied triply periodic minimal surfaces using the Surface Evolver. In
the fields of CAD, Wang [36] proposed a periodic surface model-
ing scheme that can approximate triply periodic minimal surfaces
and Xu and Zhang [37] solved surface modeling problems using
sixth-order nonlinear geometric flow.

In this paper, we generate triply periodic constant mean cur-
vature surfaces with various volume fractions using a phase-field
model. Our proposed algorithm allows us to generate a phase-field
whose zero level set is a constant mean curvature surface. Like the
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Fig. 1. Three different minimal surfaces: (a) Schwarz P (primitive), (b) Schwarz D
(diamond), and (c) Schoen G (gyroid) surface.

Fig. 2. Variable porosity structure.

level set method, a phase-field can express two phases. Generated
phase-field can be applied to a wide range of problems: design-
ing biomedical scaffolds [9] (see Fig. 2), solving numerically partial
differential equations on surfaces [12], analyzing fluid flow with
surfaces [18].

This paper is organized as follows. In Section 2, we present of
the phase-field formulation for surface area minimization in the
presence of a volume fraction constraint. In Section 3, an uncondi-
tionally gradient stable numerical scheme described. In Section 4,
numerical results are presented. We give some concluding remarks
in Section 5. In Appendix A, the fully discrete nonlinearly gradient
stable scheme and its multigrid solver are given.

2. Phase-field formulation

2.1. The variational problem

Our exploration of triply periodic surfaces that are local minima
of the total interfacial area subject to a volume constraint is based
on a phase-field model. Following the usual methodology, we rep-
resent a surface as the one-half level set of an embedding function,
φ(x, y, z), defined throughout the three-dimensional domain and
use variational calculus to derive the relationship between φ and
global geometric properties of the surface.

In this section, we present a detailed discussion of the phase-
field formulation for surface area minimization in the presence of
a volume fraction constraint. In the present discussion, we derive
Fig. 3. A double well potential, W (φ) = 0.25φ2(1 − φ)2.

formulas for the area and volume of a triply periodic surface and
the variations of these quantities with respect to φ.

For the triply periodic problems that we are interested in, the
domain Ω is taken to be a unit cube and the surface of interest is
represented by the one-half level set of φ. That is,

Ω = [0,1]3 and Γ =
{
(x, y, z) ∈ Ω: φ(x, y, z) = 1

2

}
.

Then Γ divides the unit cell into two distinct phases. Without
loss of generality, we define the region where φ(x) > 1/2 to be
phase 1. In terms of the embedding function, φ, our minimization
problem may be stated as

minimize A(φ) subject to V (φ) = V 1
2
,

where A(φ) is the total surface area of the one-half level set and
V (φ) is the volume fraction of phase 1, i.e.,

V (φ) := volume of the region with φ > 1/2

total volume of the region
(1)

and V 1/2 is the desired volume fraction for phase 1.

2.2. The Cahn–Hilliard equation

Our exploration of triply-periodic surfaces that are local minima
of the total interfacial area subject to a volume constraint is based
on ideas underlying the application of the phase-field method
to spinodal decomposition. Important features of the phase-field
method for these studies are that fast solvers exist for the numer-
ical integration of the Cahn–Hilliard equation and time accurate
intermediate solutions are obtained.

We start with the free energy functional written in terms of the
local volume fraction φ as

F (φ) = 6
√

2
∫
Ω

[
1

ε
W (φ) + ε

2
|∇φ|2

]
dx, (2)

where W (φ) = 0.25φ2(1 − φ)2 is the double well potential as
shown in Fig. 3.

The coefficient ε is a small positive constant. The time-
evolution equation with volume fraction conservation for φ is
given by [8].

∂φ

∂t
= M�μ, (3)

where M is a mobility and
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Fig. 4. (a) The spheres, cylinders, and planes profile in Ω . (b) The spheres–cylinders–planes profile in Ω .
μ := δF
δφ

= 6
√

2

[
1

ε
W ′(φ) − ε�φ

]

= 6
√

2

[
1

ε

(
φ3 − 3

2
φ2 + 1

2
φ

)
− ε�φ

]
.

By differentiation of the energy F (φ) and the total mass∫
Ω

φ dx, we see that

(1) the total energy is non-increasing and
(2) the total mass is conserved, i.e.,

dF
dt

= 6
√

2
∫
Ω

[
1

ε
W ′(φ)φt + ε∇φ · ∇φt

]
dx

=
∫
Ω

μφt dx =
∫
Ω

μM�μdx

= −M

∫
Ω

|∇μ|2 dx � 0

and

d

dt

∫
Ω

φ dx =
∫
Ω

φt dx =
∫
Ω

M�μdx =
∫

∂Ω

M
∂μ

∂n
ds = 0,

where we have used the triply periodic boundary conditions. We
define

A(φ) :=
∫
Ω

6
√

2ε|∇φ|2 dx,

which is related to F (φ) by A(φ) ∼ F (φ) when the phase-field φ

is in equilibrium, i.e., when W (φ) = ε2

2 |∇φ|2. F (φ) approaches the
surface area when ε → 0+. So a critical point of F (φ) is expected
to approach a critical point of the area functional as ε → 0+. For
later use we record that for any v such that

∫
Ω

v dx = 0,

dF (φ + ηv)

dη

∣∣∣∣
η=0

= d

dη
6
√

2
∫
Ω

[
1

ε
W (φ + ηv) + ε

2

∣∣∇(φ + ηv)
∣∣2

]
dx

∣∣∣∣
η=0

= 6
√

2
∫
Ω

[
1

ε
W ′(φ)v + ε∇φ · ∇v

]
dx
= 6
√

2
∫
Ω

[
1

ε
W ′(φ) − ε�φ

]
v dx + 6

√
2

∫
∂Ω

εv
∂φ

∂n
ds

=
∫
Ω

μv dx. (4)

2.3. Periodic isoperimetric problem for different volume fraction

A full result characterizing all global minimizers of the periodic
isoperimetric problem in R

n (n � 3) for different volume fraction
remains an open problem in classical geometry [5]. However, in
triply periodic surfaces, the conjecture is well accepted and well
tested [14,29]. Conjecture: global minimizers of triply periodic sur-
faces are either a sphere, a cylinder, or two parallel planes for a
cubic flat torus T

3.
We define the spheres–cylinders–planes profile (scp profile) of

Ω as the function Iscp : (0,π/6) → R
+ which gives the least area

among spheres, cylinders, and pairs of parallel planes enclosing
a volume V [14]. From the graphs (Fig. 4(a)), we have that (see
Fig. 4(b)).

Iscp(V ) =

⎧⎪⎪⎨
⎪⎪⎩

(36π V 2)1/3 if 0 < V � 4π
81 ,

2
√

π V if 4π
81 � V � 1

π ,

2 if 1
π � V .

2.4. Local minimization of the functional

In order to find a local minima of the functional equation (2)
we calculate an equilibrium solution φ to Eq. (3). Suppose φ is an
equilibrium solution to Eq. (3). Then using the fact that �μ = 0
and that μ is periodic in all three directions, we have∫
Ω

|∇μ|2 dx =
∫

∂Ω

μ
∂μ

∂n
ds −

∫
Ω

μ�μdx = 0.

Therefore, ∇μ = (0,0,0), hence μ is constant. Therefore, we see
from Eq. (4) that for any v such that

∫
Ω

v dx = 0,

dF (φ + ηv)

dη

∣∣∣∣
η=0

= μ

∫
Ω

v dx = 0.

Thus, φ is a critical point of F (φ). Conversely, suppose that φ is a
critical point of F (φ). Then from Eq. (4)∫

μv dx = dF (φ + ηv)

dη

∣∣∣∣
η=0

= 0
Ω
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for any
∫
Ω

v dx = 0. Let α = ∫
Ω

μdx/
∫
Ω

dx be the average of μ
over the domain, Ω . Next we choose v = μ − α, then

∫
Ω

v dx = 0,
hence

0 =
∫
Ω

μv dx =
∫
Ω

(μ − α)v dx =
∫
Ω

(μ − α)2 dx.

Therefore, μ = α is constant, and, since φ satisfies Eq. (3) from the
beginning, φ is an equilibrium solution to Eq. (3).

2.5. The mean curvature of the level set

Given φ : R
3 → R, suppose that the level set Γ = {(x, y, z) ∈ R

3:
φ(x, y, z) = 1

2 } is a C2 surface. Then, the mean curvature of the
surface is

H = −1

2
∇ · n

where ∇ = (∂x, ∂y, ∂z) and n = ∇φ
|∇φ| [25].

Now suppose that φ : Ω → R which is an equilibrium solution
of Eq. (2) and that the level surface Γ = {(x, y, z): φ(x, y, z) = 0}
of the phase-field function is a C2 surface. We further assume that
for all x ∈ Ω

φ(x) = q

(
d(x)

2
√

2ε

)
+ g(x), where q : R → R and

q(t) := 1

2
(1 + tanh t),

d : Ω → R is the signed distance between x and Γ , positive in
one side and negative in the other side, and ‖∇k g‖Linf = o(ε) for
k = 0, . . . ,4 [6]. Note that Γ now coincides with the zero level set
of d. From

q′ = 2q(1 − q), q′′ = 4q(1 − q)(1 − 2q), |∇d| = 1,

∇φ ∼ q′

2
√

2ε
∇d, �φ ∼ q′′

8ε2
+ q′

2
√

2ε
�d,

we have

−2H = ∇ ·
( ∇d

|∇d|
)

= �d ∼ 2
√

2ε

q′

(
�φ − q′′

8ε2

)

=
√

2ε

q(1 − q)

[
�φ − q(1 − q)(1 − 2q)

2ε2

]

=
√

2ε

φ(1 − φ)

[
�φ − φ(1 − φ)(1 − 2φ)

2ε2

]

= − 1

6φ(1 − φ)
μ,

which results in H ∼ μ/3 on the one-half level set Γ of a local
equilibrium solution φ. Since μ is constant on the one-half level
set of φ, we conclude that the mean curvature is constant on Γ as
ε → 0+.

3. Unconditionally gradient stable numerical scheme

Since we want to calculate long time evolution, we use an un-
conditionally gradient stable scheme [7,8,19,35]. In the rest of this
article, we fix the mobility 6

√
2M/ε to be 1. The resulting time-

stepping is:

φn+1
i jk − φn

i jk

�t
= �dν

n+1
i jk − 1

4
�dφ

n
i jk, (5)

νn+1 = f
(
φn+1) − ε2�dφ

n+1, (6)
i jk i jk i jk
Fig. 5. The evolution of an initial random distribution of concentration, c(x,0) =
0.5 + 0.01 rand(x). The concentration profile is shown at t = 0 (‘∗’), 0.3 (‘·’), and
10 (‘◦’).

where the nonlinear function f (φ) = φ3 − 3
2 φ2 + 3

4 φ. All structures
we have investigated are periodic. Thus periodicity had to be in-
corporated into Eqs. (5) and (6). It was done by periodic boundary
conditions

φ0 jk = φN jk, φN+1, jk = φ1 jk, φi0k = φiNk,

φi,N+1,k = φi1k, φi j0 = φi jN , φi j,N+1 = φi j1

and similarly with ν . The above discrete system is solved by a
nonlinear multigrid method. Numerical solution is described in Ap-
pendix A. We define a discrete l2-norm as follow

‖φ‖ =

√√√√√ 1

N3

N∑
i, j,k=1

φ2
i jk.

We will compare our results from a phase-field method with
ones from the level set method.

4. Numerical results

In this section, we present numerical results showing efficiency
and accuracy of the proposed method. In particular, we describe
the algorithm to generate constant mean curvature surfaces with
volume constraint using a phase-field model.

4.1. The relation between the ε value and the width of the transition
layer

In our first numerical experiment, we consider the relation be-
tween the ε value and the width of the transition layer. From our
choice of the total energy density and an equilibrium profile c(x) =
tanh(x/(2

√
2ε)) on the infinite domain, the concentration field

varies from 0.1 to 0.9 over a distance of about 4
√

2ε tanh−1(0.9).
Therefore, if we want this value to be about m grid points, then

εm = hm

4
√

2 tanh−1(0.9)
.

To confirm this, we ran a simulation with the initial condition
c(x,0) = 0.5 + 0.01 rand(x) on the unit domain Ω = (0,1) with
h = 1/128, �t = 0.05, and ε4 (see the line with stars in Fig. 5).
Here, rand(x) is a random number between −1 and 1. In Fig. 5,
we see that the transition layer (from c = 0.1 to c = 0.9) is about
4 grid points at time t = 10.
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Fig. 6. Evolution of a cube surface to the locally optimal sphere surface.

Table 1
Convergence results – surface area and total mean curvature with r = 0.25.

Mesh 323 Rate 643 Rate 1283 Rate 2563

Surface area 0.42403 1.56 0.66323 1.35 0.73742 1.56 0.76923
Total mean curvature 2.25072 1.87 2.89797 1.74 3.06842 3.71 3.13601
4.2. Verification of numerical optimization algorithm

To verify our numerical optimization algorithm, we tested its
ability to accurately compute a structure whose local optimality is
easily verified. The test case is the sphere. It is a locally optimal
surface. In this test, we started the optimization algorithm with a
cube as the initial surface.

φ0(x, y, z) =
{

1 if 0.25 � x, y, z � 0.75,

0 otherwise.

Fig. 6 shows that the cube evolves to the sphere, as ex-
pected. This result was computed on the computational domain
Ω = (0,1)× (0,1)× (0,1) with a mesh 643, h = 1/64, �t = h, and
ε = 0.015.

4.3. Convergence test

To check the convergence of the scheme, we perform a number
of simulations on increasingly finer grids. The initial state for this
convergence test on a domain, Ω = (0,1) × (0,1) × (0,1), is

φ0(x, y, z)

= 1

2

(
1 + tanh

(0.25 −
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

2
√

2ε

))
.

The numerical solutions are computed on the uniform grids, h =
1/2n for n = 5,6,7, and 8. For each case, the calculation is run
with �t = h and ε = 0.0073 × 64/2n . We stop the numerical com-
putations when the discrete l2-norm of the difference between
(n+1)th and nth time step solutions becomes less than 10−5. That
is ‖φn+1 − φn‖ � 10−5. We define the error eh to be the difference
between theoretical and numerical values. The rate of convergence
is defined as: log2(eh/eh/2). The results and rates of convergence
are given in Table 1. The results suggest that the scheme is first
and higher order accurate.

4.4. Algorithm for generating constant mean curvature surfaces

There are many known ways to compute the Schwarz P,
Schwarz D, and Schoen G triply periodic minimal surfaces. They
can be characterized exactly using the Enneper–Weierstrass rep-
resentation [25], generated as the local minima of the scalar
order parameter Landau–Ginzburg functional used to describe or-
dering phenomena in microemulsions [11], and approximated by
Fourier series using the periodic nodal surface (PNS) expansion
[10,22,30,31].

In this section, we examine three families of surfaces with
the symmetry and topology as the Schwarz P, Schwarz D, and
Schoen G surfaces but with different values for the volume frac-
tion of phase 1. The minimization procedure requires an initial
configuration. We generated initial configurations with the desired
symmetry, topology, and volume fractions by taking the following
PNS approximations of the Schwarz P, Schwarz D, and Schoen G
surfaces [10]:

P (x, y, z) = cos 2πx + cos 2π y + cos 2π z + 0.5, (7)

D(x, y, z) = cos 2πx cos 2π y cos 2π z

− sin 2πx sin 2π y sin 2π z + 0.5, (8)

G(x, y, z) = sin 2πx cos 2π y + sin 2π z cos 2πx

+ sin 2π y cos 2π z + 0.5. (9)

Note that the leading term only PNS equations (7)–(9) are nei-
ther minimal nor constant mean curvature surfaces [23]. Now,
we describe our new algorithm for generating constant mean
curvature surfaces. For clarity of exposition, let us consider one-
dimensional version of the Schwarz P surface,

φ
step 1
i = cos 2πxi + 0.5 for i = 1, . . . , N. (10)

In Fig. 7, the solid line represents φstep 1 in Eq. (10).
Next, truncate non-physical values such as negative and greater

than one values. For i = 1, . . . , N ,

φ
step 2
i =

⎧⎪⎪⎨
⎪⎪⎩

1 if φ
step 1
i > 1,

0 if φ
step 1
i < 0,

φ
step 1
i otherwise.

(11)

In Fig. 7, the dashed line shows φstep 2 in Eq. (11). Then we
evolve φstep 2 with 5ε by solving Eqs. (5) and (6) to get φstep 3.
Typically, we take five time step iterations. In Fig. 7, the line with
the symbol ‘◦’ shows the evolved φstep 3.

Given a phase-field φ, a volume fraction α, and a parameter β ,
we define the average volume fraction V ave(φ,α,β) as
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Fig. 7. φstep 1 (‘—’), φstep 2 (‘- -’), and φstep 3 (‘-◦-’).

V ave(φ,α,β) = 1

N

N∑
i=1

φ̃i,

where in the case of α > 0.5, φ̃i = 1 if φi > β and φ̃i = φi oth-
erwise, and in the case of α � 0.5, φ̃i = 0 if φi < β and φ̃i = φi
otherwise.

Taking different β values, we can generate various average vol-
ume fractions within a prescribed tolerance. To find an approxi-
mate solution to V ave(φ,α,β) = α with a given volume fraction α
on the interval [0,1] with tolerance tol and maximum number of
iteration max_it , we take the following bisection algorithm [3].

Begin algorithm
Let f (x) = V ave(φ,α, x) − α, β1 = 0, and f a = f (β1).
if | f a| < tol, then return β1
else

set k = 2, a = 0, b = 1
while (k � max_it) do

βk = a + (b − a)/2 and f p = f (βk)

if | f p| < tol or (b − a)/2 < tol, then return βk and
exit while loop

else
set k = k + 1
If f a · f p > 0, then set a = βk and f a = f p
else set b = βk .
end if

end if
end while

end if
End algorithm

We define the phase-field φstep 4 with the returned value of βk;
i.e., in the case α > 0.5,

φ
step 4
i =

{
1 if φ

step 3
i > βk,

φ
step 3
i otherwise,

and in the case of α � 0.5,

φ
step 4
i =

{
0 if φ

step 3
i < βk,

φ
step 3
i otherwise.

In Fig. 8, the evolutions by the method described in the above bi-
section algorithm are shown and the converged result is φstep 4. In
Fig. 9(a), lines with the symbols, ‘◦’ and ‘�’, denote V ave(φ,0.7, βk)

and βk at each iteration of the above algorithm, respectively.
Fig. 8. The evolution of the phase-field by the bisection algorithm is illustrated.

Since V ave(φ,α,βk) is equal to α within the tolerance we adjust
volume fraction by shifting φ

step 4
i .

φ
step 5
i = φ

step 4
i + α − 1

N

N∑
k=1

φ
step 4
k for i = 1, . . . , N.

Finally, we evolve φstep 5 with ε by solving Eqs. (5) and (6) to
get φstep 6 (see Fig. 9(b)). The above procedures are summarized as
follows:

PNS
(
φstep 1) truncation−−−−→φstep 2 relax with 5ε−−−−−−→φstep 3

bisection−−−−→φstep 4 shifting−−−−→φstep 5 relax with ε−−−−−−→φstep 6.

We can apply the same approach to three-dimensional cases
and to other surfaces such as D(x, y, z) and G(x, y, z) with a
straightforward procedure. In Fig. 10, (a) φstep 3 and (b) φstep 6

of P (top), D (middle), and G (bottom) surfaces are shown. Vol-
ume fractions of (a) and (b) are α = 0.5 and α = 0.7, respectively.
The gray, dark gray, and black iso-surfaces represent level surfaces
at φ = 0.3, 0.5, and 0.7, respectively.

4.5. Local equilibrium surfaces of the Schwarz P, Schwarz D, and
Schoen G surfaces families

In this section, we perform the procedures described in Sec-
tion 4.4 for the following volume fractions: 0.25, 0.3, 0.35, 0.4,
0.45, 0.5, 0.55, 0.6, 0.65, 0.7, and 0.75. For these calculations, we
employed the computational domain Ω = (0,1) × (0,1) × (0,1)

with a mesh 2563, h = 1/256, �t = 0.5h, and ε = 0.01. We
stop the numerical computations when the difference between
(n + 1)th and nth time step areas becomes less than 10−6. That
is |A(φn+1) − A(φn)| � 10−6. Fig. 11 shows results of our pro-
posed algorithm with those obtained by Y. Jung et al. [17] using
the level set method. In Fig. 11, (a) mean curvature versus vol-
ume fraction and (b) total surface area per unit cell versus volume
fraction for local equilibrium surfaces of P, D, and G surfaces fam-
ilies are shown. For these calculations, the computational times,
reaching the stopping criterion for P, D, and G surfaces, took ap-
proximately 10, 12, and 7 h on a single computer, respectively.
The results from phase-field model show excellent agreement with
the results of Y. Jung et al. And although we used the higher grid
resolution than that of the calculations by Y. Jung et al. and sim-
ulated on a single computer (cf. in [17], simulations were run for
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Fig. 9. (a) Lines with the symbols, ‘◦’ and ‘�’, denote V ave(φ,0.7, βk) and βk at each iteration of the bisection method, respectively. (b) The final numerical solution, φstep 6.
Fig. 10. (a) φstep 3 and (b) φstep 6 of P (top), D (middle), and G (bottom) surfaces.
Volume fractions of (a) and (b) are α = 0.5 and α = 0.7, respectively. The gray, dark
gray, and black iso-surfaces represent level surfaces at φ = 0.3, 0.5, and 0.7, respec-
tively.

a 4 node parallel calculation on the Opteron cluster), we reached
the stopping criterion faster than Y. Jung et al. (see Table 2).
Note that the P, D, and G minimal surfaces are globally not of
absolute minimum area; in fact, minimal surfaces of P, D, and
G are of local maximum areas within their families as shown in
Fig. 11(b) [15].
Table 2
Comparison of the performance of phase-field and level-set methods.

Case TPMS Phase-field Level-set

Tolerance of the
stopping criterion

P surface 10−6 10−6

D surface 10−6 10−5

G surface 10−6 N/A

Hardware that
used for
calculations

All surfaces Single computer 4 node parallel
calculations on the
Opteron cluster

Mesh size P surface 256 × 256 × 256 200 × 200 × 200
D surface 256 × 256 × 256 250 × 250 × 250
G surface 256 × 256 × 256 200 × 200 × 200

Computational
time

P surface 10 h 29 h
D surface 12 h 30 h
G surface 7 h N/A

5. Conclusions

In this paper, we presented an accurate and efficient algo-
rithm to generate constant mean curvature surfaces with volume
constraint using a phase-field model. Starting from the periodic
nodal surface approximation to minimal surfaces, we could gen-
erate the Schwarz primitive (P), Schwarz diamond (D), and Schoen
gyroid (G) surfaces with various volume fractions. We compared
the results from our proposed algorithm with the results from the
level set method and found excellent agreement. This technique for
generating constant mean curvature surfaces has a potential to be
used for designing biomedical scaffolds with optimal mechanical
and biomorphic properties. In the future work, we will investigate
the Allen–Cahn equation with a penalty to generate constant mean
curvature surfaces with volume constraint.
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Fig. 11. (a) Mean curvature versus volume fraction and (b) total surface area per unit cell versus volume fraction for local equilibrium surfaces of the Schwarz P, Schwarz D,
and Schoen G surfaces families.
Appendix A. Numerical solution

In this section, we develop a nonlinear Full Approximation
Storage (FAS) multigrid method to solve the nonlinear discrete
system (5) and (6) at the implicit time level. The nonlinearity
is treated using one step of Newton’s iteration and a pointwise
Gauss–Seidel relaxation scheme is used as the smoother in the
multigrid method. See the reference text [34] for additional details
and background. The algorithm of the nonlinear multigrid method
for solving the discrete CH system is: First, let us rewrite Eqs. (5)
and (6) as follows.

NSO
(
φn+1, νn+1) = (

ϕn,ψn),
where

NSO
(
φn+1, νn+1)

=
(

φn+1

�t
− �dν

n+1,− f
(
φn+1) + ε2�dφ

n+1 + νn+1
)

and the source term is (ϕn,ψn) = (φn/�t − 0.25�dφ
n,0).

In the following description of one FAS cycle, we assume a se-
quence of grids Ωl (Ωl−1 is coarser than Ωl by factor 2). Given the
number β of pre- and post-smoothing relaxation sweeps, an iter-
ation step for the nonlinear multigrid method using the V-cycle is
formally written as follows [34]:

FAS multigrid cycle{
φm+1

l , νm+1
l

} = FAScycle
(
l, φm

l , νm
l ,NSOl,ϕ

n
l ,ψn

l , β
)
.

That is, {φm
l , νm

l } and {φm+1
l , νm+1

l } are the approximations of
φn+1(xi, y j, zk) and νn+1(xi, y j, zk) before and after an FAScycle.
Now, define the FAScycle.

1) Presmoothing{
φ̄m

l , ν̄m
l

} = SMOOTHβ
(
φm

l , νm
l ,NSOl,ϕ

n
l ,ψn

l

)
,

which means performing β smoothing steps with the initial ap-
proximations φm

l , νm
l , source terms ϕn

l ,ψn
l , and SMOOTH relaxation

operator to get the approximations φ̄m
l , ν̄m

l . One SMOOTH relax-
ation operator step consists of solving the system (A.3) and (A.4)
given below by 2 × 2 matrix inversion for each i, j, and k. Here,
we derive the smoothing operator in three dimensions. Rewriting
Eq. (5), we get
φn+1
i jk

�t
+ 6νn+1

i jk

h2
= ϕn

i jk + (
νn+1

i+1, j,k + νn+1
i−1, j,k + νn+1

i, j+1,k + νn+1
i, j−1,k

+ νn+1
i, j,k+1 + νn+1

i, j,k−1

)
/h2. (A.1)

Since f (φn+1
i jk ) is nonlinear with respect to φn+1

i jk , we linearize

f (φn+1
i jk ) at φm

ijk , i.e.,

f
(
φn+1

i jk

) ≈ f
(
φm

ijk

) + df (φm
ijk)

dφ

(
φn+1

i jk − φm
ijk

)
.

After substitution of this into Eq. (6), we get

−
(df (φm

ijk)

dφ
+ 6ε2

h2

)
φn+1

i jk + νn+1
i jk

= ψn
i jk + f

(
φm

ijk

) − df (φm
ijk)

dφ
φm

ijk

− ε2

h2

(
φn+1

i+1, j,k + φn+1
i−1, j,k + φn+1

i, j+1,k + φn+1
i, j−1,k

+ φn+1
i, j,k+1 + φn+1

i, j,k−1

)
. (A.2)

Next, we replace φn+1
ii, j j,kk and νn+1

ii, j j,kk in Eqs. (A.1) and (A.2) with

φ̄m
ii, j j,kk and ν̄m

ii, j j,kk if ii � i, j j � j, and kk � k, otherwise with
φm

ii, j j,kk and νm
ii, j j,kk , i.e.,

φ̄m
ijk

�t
+ 6ν̄m

ijk

h2
= ϕn

i jk + (
νm

i+1, j,k + ν̄m
i−1, j,k + νm

i, j+1,k

+ ν̄m
i, j−1,k + νm

i, j,k+1 + ν̄m
i, j,k−1

)
/h2, (A.3)

−
(df (φm

ijk)

dφ
+ 6ε2

h2

)
φ̄m

ijk + ν̄m
ijk

= ψn
i jk + f

(
φm

ijk

) − df (φm
ijk)

dφ
φm

ijk

− ε2

h2

(
φm

i+1, j,k + φ̄m
i−1, j,k + φm

i, j+1,k + φ̄m
i, j−1,k

+ φm
i, j,k+1 + φ̄m

i, j,k−1

)
. (A.4)

2) Compute the defect(
d̄m

l, d̄m
l
) = (

ϕn,ψn) − NSOl
(
φ̄m, ν̄m)

.
1 2 l l l l
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3) Restrict the defect and {φ̄m
l , ν̄m

l }(
d̄m

1 l−1, d̄m
2 l−1

) = Il−1
l

(
d̄m

1 l, d̄m
2 l

)
,(

φ̄m
l−1, ν̄

m
l−1

) = Il−1
l

(
φ̄m

l , ν̄m
l

)
.

The restriction operator Il−1
l maps l-level functions to (l − 1)-level

functions.

dl−1(xi, y j, zk)

= Il−1
l dl(xi, y j, zk)

= 1

8

[
dl(xi− 1

2
, y j− 1

2
, zk− 1

2
) + dl(xi− 1

2
, y j− 1

2
, zk+ 1

2
)

+ dl(xi− 1
2
, y j+ 1

2
, zk− 1

2
) + dl(xi− 1

2
, y j+ 1

2
, zk+ 1

2
)

+ dl(xi+ 1
2
, y j− 1

2
, zk− 1

2
) + dl(xi+ 1

2
, y j− 1

2
, zk+ 1

2
)

+ dl(xi+ 1
2
, y j+ 1

2
, zk− 1

2
) + dl(xi+ 1

2
, y j+ 1

2
, zk+ 1

2
)
]
.

4) Compute the right-hand side(
ϕn

l−1,ψ
n
l−1

) = (
d̄m

1 l−1, d̄m
2 l−1

) + NSOl−1
(
φ̄m

l−1, ν̄
m
l−1

)
.

5) Compute an approximate solution {φ̂m
l−1, ν̂

m
l−1} of the coarse grid

equation on Ωl−1 , i.e.

NSOl−1
(
φm

l−1, ν
m
l−1

) = (
ϕn

l−1,ψ
n
l−1

)
. (A.5)

If l = 1, we apply the smoothing procedure in 1) to obtain the
approximate solution. If l > 1, we solve Eq. (A.5) by performing an
FAS l-grid cycle using {φ̄m

l−1, ν̄
m
l−1} as an initial approximation:{

φ̂m
l−1, ν̂

m
l−1

}
= FAScycle

(
l − 1, φ̄m

l−1, ν̄
m
l−1,NSOl−1,ϕ

n
l−1,ψ

n
l−1, β

)
.

6) Compute the coarse grid correction (CGC):

v̂m
1l−1 = φ̂m

l−1 − φ̄m
l−1, v̂m

2l−1 = ν̂m
l−1 − ν̄m

l−1.

7) Interpolate the correction: v̂m
1l = Il

l−1 v̂m
1l−1, v̂m

2l = Il
l−1 v̂m

2l−1.
Here, the coarse values are simply transferred to the eight

nearby fine grid points, i.e., vl(xi, y j, zk) = Il
l−1 vl−1(xi, y j, zk) =

vl−1(xi+ 1
2
, y j+ 1

2
, zk+ 1

2
) for i, j, and k odd-numbered integers.

8) Compute the corrected approximation on Ωl

φ
m,after CGC
l = φ̄m

l + v̂1
m
l , νm,after CGC

l = ν̄m
l + v̂2

m
l .

9) Postsmoothing{
φm+1

l , νm+1
l

}
= SMOOTHβ

(
φ

m,after CGC
l , νm,after CGC

l ,NSOl,ϕ
n
l ,ψn

l

)
.

This completes the description of a nonlinear FAScycle.

Appendix B. Discretization of the surface area and the surface
averaged total curvature

In this section, we derive discretizations of the surface area and
the surface averaged total curvature.

Vertex-centered normal vectors are obtained by differentiating
the phase-field in the eight surrounding cells. For example, the
normal vector at the top right back vertex of cell Ωi jk is given
by

mi+ 1
2 , j+ 1

2 ,k+ 1
2

= (
mx

i+ 1
2 , j+ 1

2 ,k+ 1
2
,my

i+ 1
2 , j+ 1

2 ,k+ 1
2
,mz

i+ 1
2 , j+ 1

2 ,k+ 1
2

)
,

where
mx
i+ 1

2 , j+ 1
2 ,k+ 1

2
= φi+1, j,k + φi+1, j,k+1 + φi+1, j+1,k + φi+1, j+1,k+1

4h

− φi jk + φi, j,k+1 + φi, j+1,k + φi, j+1,k+1

4h

and other terms are defined similarly. The curvature is calculated
at cell centers from the vertex-centered normals and is given by

κ(φi jk) = ∇d ·
(

m

|m|
)

i jk

= 1

4h

(mx
i+ 1

2 , j+ 1
2 ,k+ 1

2
+ my

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ mz
i+ 1

2 , j+ 1
2 ,k+ 1

2

|mi+ 1
2 , j+ 1

2 ,k+ 1
2
|

+
mx

i+ 1
2 , j+ 1

2 ,k− 1
2

+ my

i+ 1
2 , j+ 1

2 ,k− 1
2

− mz
i+ 1

2 , j+ 1
2 ,k− 1

2

|mi+ 1
2 , j+ 1

2 ,k− 1
2
|

+
mx

i+ 1
2 , j− 1

2 ,k+ 1
2

− my

i+ 1
2 , j− 1

2 ,k+ 1
2

+ mz
i+ 1

2 , j− 1
2 ,k+ 1

2

|mi+ 1
2 , j− 1

2 ,k+ 1
2
|

+
mx

i+ 1
2 , j− 1

2 ,k− 1
2

− my

i+ 1
2 , j− 1

2 ,k− 1
2

− mz
i+ 1

2 , j− 1
2 ,k− 1

2

|mi+ 1
2 , j− 1

2 ,k− 1
2
|

−
mx

i− 1
2 , j+ 1

2 ,k+ 1
2

− my

i− 1
2 , j+ 1

2 ,k+ 1
2

− mz
i− 1

2 , j+ 1
2 ,k+ 1

2

|mi− 1
2 , j+ 1

2 ,k+ 1
2
|

−
mx

i− 1
2 , j+ 1

2 ,k− 1
2

− my

i− 1
2 , j+ 1

2 ,k− 1
2

+ mz
i− 1

2 , j+ 1
2 ,k− 1

2

|mi− 1
2 , j+ 1

2 ,k− 1
2
|

−
mx

i− 1
2 , j− 1

2 ,k+ 1
2

+ my

i− 1
2 , j− 1

2 ,k+ 1
2

− mz
i− 1

2 , j− 1
2 ,k+ 1

2

|mi− 1
2 , j− 1

2 ,k+ 1
2
|

−
mx

i− 1
2 , j− 1

2 ,k− 1
2

+ my

i− 1
2 , j− 1

2 ,k− 1
2

+ mz
i− 1

2 , j− 1
2 ,k− 1

2

|mi− 1
2 , j− 1

2 ,k− 1
2
|

)
,

where ∇d· is a finite difference approximation to the divergence
operator. And the cell-centered normal is the average of vertex nor-
mals,

∇dφi jk =
(

φi−2, j,k − 8φi−1, j,k + 8φi+1, j,k − φi+2, j,k

12h
,

φi, j−2,k − 8φi, j−1,k + 8φi, j+1,k − φi, j+2,k

12h
,

φi, j,k−2 − 8φi, j,k−1 + 8φi, j,k+1 − φi, j,k+2

12h

)
,

where ∇d is a finite difference approximation to the gradient op-
erator. Therefore, the discretization of the surface area A is

A(φ) =
N∑

i, j,k=1

6
√

2ε|∇dφi jk|2h3

and the surface averaged total curvature is

κ̄(φ) = −
∑N

i, j,k=1 6
√

2εκ(φi jk)|∇dφi jk|2h3

A(φ)
.

And therefore the surface averaged mean curvature is

H̄(φ) = −1

2
κ̄(φ).
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