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Abstract

Herein, we present a phase-field model and its efficient numerical method for incompressible single and binary fluid flows
on arbitrarily curved surfaces in a three-dimensional (3D) space. An incompressible single fluid flow is governed by the
Navier–Stokes (NS) equation and the binary fluid flow is governed by the two-phase Navier–Stokes–Cahn–Hilliard (NSCH)
system. In the proposed method, we use a narrow band domain to embed the arbitrarily curved surface and extend the NSCH
system and apply a pseudo-Neumann boundary condition that enforces constancy of the dependent variables along the normal
direction of the points on the surface. Therefore, we can use the standard discrete Laplace operator instead of the discrete
Laplace–Beltrami operator. Within the narrow band domain, the Chorin’s projection method is applied to solve the NS equation,
and a convex splitting method is employed to solve the Cahn–Hilliard equation with an advection term. To keep the velocity field
tangential to the surface, a velocity correction procedure is applied. An effective mass correction step is adopted to preserve
the phase concentration. Computational results such as convergence test, Kevin–Helmholtz instability, and Rayleigh–Taylor
instability on curved surfaces demonstrate the accuracy and efficiency of the proposed method.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Two-phase fluid flow; Cahn–Hilliard equation; Kevin–Helmholtz instability; Rayleigh–Taylor instability

1. Introduction

The Navier–Stokes (NS) equation is a well-known mathematical model used to describe the dynamics of
incompressible fluid flows. However, the existence of the nonlinear advection term typically results in difficulties
in the analytical study of the NS equation. Therefore, the NS equation must be solved using numerical methods.
To overcome the difficulty arising from a coupling of the pressure and velocity, a projection method [1,2] was
developed. Based on the classical projection method, Shen [3] proposed a pressure correction approach to improve
the accuracy of the pressure on the boundary. To efficiently solve problems with a large density ratio, a pressure
stabilized method [4] was developed. In addition, various computational approaches for solving the NS equation
have been proposed [5–12].

Compared with a single fluid flow, a binary (two-phase) fluid flow is more important because several physical
problems contain more than one component. During the past 20 years, the phase-field method has become
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an effective technique for modeling multi-phase problems because a topological change in the interface can be
implicitly captured by solving the equation. The most well-known phase-field model for multi-phase flow problems
is the Navier–Stokes–Cahn–Hilliard (NSCH) equation. Previous publications have reported the applications of the
NSCH equations in multi-component fluid flows [13–24]. Although many computational methods work well for the
NSCH equations in two- and three-dimensional spaces, most of them are limited to rectangular or cuboid domains.

The evolution of a dynamic system on an arbitrarily curved 3D surface is an important problem. Various practical
numerical schemes have been developed for solving the partial differential equations with scalar variables, such as
the Cahn–Hilliard (CH) [25–29], Allen–Cahn (AC) [30,31], phase-field crystal (PFC) [32,33], and Ohta–Kawasaki
(OK) equations [34]. However, there have been few numerical simulations of fluid flows on arbitrarily curved
3D surfaces. At present, the discrete exterior calculus (DEC) method and surface finite element method are two
effective methods for solving the NS equation on a curved surface. A conservative scheme for the incompressible
NS equation on surfaces was proposed by Mohamed et al. [35]. The proposed scheme has a second- and first-order
accuracy for structured and unstructured meshes, respectively. Nitschke et al. [36] applied the DEC method to solve
the fluid equation with a vorticity-stream function on curved surfaces. Using the surface finite element, Reuther
and Voigt [37] solved the incompressible NS equation on curved surfaces. Recently, Yang et al. [38] developed a
practical numerical scheme for simulating the NS equation on a curved surface. In their study, the velocity field and
pressure are both defined at the cell corners. Ambrus et al. [39] used the lattice Boltzmann method to investigate
the two-phase hydrodynamic phase separation on a torus. Nitschke et al. [40] investigated the phase separation and
buoyancy-driven flow on a sphere and torus by applying the finite element approach. In the present study, a staggered
marker-and-cell (MAC) [41] mesh is applied, i.e., the velocities are stored at the cell edges, and the pressure and
phase variable are stored at the cell centers. To the best of our knowledge, this is the first study focusing on single
and two-phase incompressible fluid flows on a curved 3D surface by using the finite difference method and MAC
mesh.

We use a projection method [1] to solve the incompressible NS equation. Using a velocity correction step, we
keep the velocity field tangential to the surface. The convex splitting method [42] is used to solve the CH equation
and an effective mass correction algorithm is adopted to preserve the mass conservation. The proposed scheme is
simple to implement because the standard seven-point finite difference Laplace operator is used.

The remainder of this paper is organized as follows. In Section 2, we describe the incompressible NSCH model
in a narrow band domain in a 3D space. In Section 3, we provide the numerical solutions for the NS equation and
the convective CH equation. Various numerical experiments are presented in Section 4. Finally, some concluding
remarks are provided in Section 5.

2. Incompressible NSCH system on a narrow band domain

We briefly review the following dimensionless incompressible NSCH system on a curved surface S in a 3D
space R3. For x ∈ S, t > 0,

ρ(φ(x, t))
(
∂u(x, t)
∂t

+ u(x, t) · ∇su(x, t)
)

= −∇s p(x, t) +
1

BoCn
µ(x, t)∇sφ(x, t)

+
1

Re
∇s ·

[
η(φ(x, t))(∇su(x, t) + ∇su(x, t)T )

]
+
ρ(φ(x, t))

Fr2 g, (1)

∇s · u(x, t) = 0, (2)
∂φ(x, t)
∂t

+ ∇s · [φ(x, t)u(x, t)] =
1

Pe
∆sµ(x, t), (3)

µ(x, t) = F ′(φ(x, t)) − Cn2∆sφ(x, t). (4)

ote that p(x, t) = p̂(x, t) +
1

BoCnφ(x, t)µ(x, t) is a modified pressure field and p̂(x, t) is the original pressure
eld. In addition, u(x, t) = (u(x, t), v(x, t), w(x, t)), φ(x, t), and µ(x, t) are the velocity field, phase variable, and
hemical potential, respectively. In addition, F(φ(x, t)) = F(φ) = 0.25(φ2

− 1)2 is the fourth-order polynomial
otential functional and F ′(φ(x, t)) = F ′(φ) = φ3

−φ is the derivative of F(φ) with respect to φ. Note that ∇s = P∇

nd ∆s = ∇·(P∇) indicate the surface gradient operator and surface Laplace–Beltrami operator, respectively, where
= I − (∇d)T

∇d [32,43,44]. Here, d : R3
→ R is a signed distance function and S = {x ∈ R3

| d(x) = 0}. Let

δ = {y| y = x + θn(x) for |θ | < δ, x ∈ S} be the δ-neighborhood narrow band of S, where n(x) is a unit normal
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Fig. 1. Schematic illustration of Ωδ , ∂Ωδ , S, and cp(x).

vector at x. The dimensionless parameters used are as follows: the Reynolds number Re = ρc LcUc/ηc, the Cahn
number Cn = ϵ/Lc, the Bone number Bo = W e/Fr2, where W e = ρcU 2

c Lc/σ is the Weber number, Froude
number Fr = Uc/

√
gLc, and Peclet number Pe = Uc Lc/(Mµc). Here, ρc and ηc are the characteristic density and

viscosity, respectively. In addition, Lc, Uc, σ , g, M , and µc are the characteristic length, characteristic velocity,
surface tension coefficient, gravitational acceleration, mobility, and characteristic chemical, respectively, and ϵ is a
small positive parameter related to the width of a diffusive interface. The density and viscosity of the whole system
is defined as ρ(φ(x, t)) = ρ1(1 + φ(x, t))/2 + ρ2(1 − φ(x, t))/2, η(φ(x, t)) = η1(1 + φ(x, t))/2 + η2(1 − φ(x, t))/2,

here ρ1 and ρ2 are the densities of fluid 1 and fluid 2, and η1 and η2 are the viscosities of fluid 1 and fluid 2,
espectively. More details on various dimensionless parameters are provided in [45]. If δ is small, then p, φ, and µ
ave constant values in the direction normal to S. Thus, P = I is approximately satisfied, and the Laplace–Beltrami
perator can be replaced by the standard Laplace operator [46]. Next, we extend Eqs. (1)–(4) to the narrow band
omain Ωδ:

ρ(φ(x, t))
(
∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t)
)

= −∇ p(x, t) +
1

BoCn
µ(x, t)∇φ(x, t)

+
1

Re
∇ ·

[
η(φ(x, t))(∇u(x, t) + ∇u(x, t)t )

]
+
ρ(φ(x, t))

Fr2 g, (5)

∇ · u(x, t) = 0, (6)
∂φ(x, t)
∂t

+ ∇ · [φ(x, t)u(x, t)] =
1

Pe
∆µ(x, t), (7)

µ(x, t) = F ′(φ(x, t)) − Cn2∆φ(x, t), (8)

here x ∈ Ωδ and t > 0. We use pseudo-Neumann boundary conditions for p, φ, and µ:

p(x, t) = p(cp(x), t), φ(x, t) = φ(cp(x), t), µ(x, t) = µ(cp(x), t) on ∂Ωδ, (9)

here cp(x) ∈ S for x ∈ ∂Ωδ [47] (see Fig. 1). A detailed discussion of the boundary conditions of the velocity
eld is provided in Section 3.

. Numerical solutions

In this section, we present the numerical solutions for the NSCH system. The NSCH system is discretized in
= (a, b)×(c, d)×(e, f ) embedding Ωδ∪Uδ∪Vδ∪Wδ . Let Nx , Ny , and Nz be positive integers, h = (b−a)/Nx =

d − c)/Ny = ( f − e)/Nz be the space step, and Ω h
= {xi jk = (xi , y j , zk) = (a + (i − 0.5)h, c + ( j − 0.5)h, e +

k − 0.5)h)| 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} be the set of cell centers. The sets of cell edges are defined as
h

= {xi+ 1
2 , jk = (xi+ 1

2
, y j , zk) = (a + ih, c + ( j − 0.5)h, e + (k − 0.5)h)| 0 ≤ i ≤ Nx , 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz},

V h
= {xi, j+ 1

2 ,k
= (xi , y j+ 1

2
, zk) = (a + (i − 0.5)h, c + jh, e + (k − 0.5)h)| 1 ≤ i ≤ Nx , 0 ≤ j ≤ Ny, 1 ≤ k ≤ Nz},

W h
= {x 1 = (x , y , z 1 ) = (a + (i − 0.5)h, c + ( j − 0.5)h, e + kh)| 1 ≤ i ≤ N , 1 ≤ j ≤ N , 0 ≤ k ≤ N }.
i j,k+ 2

i j k+ 2
x y z
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In this study, the discrete pressure p, phase variable φ, and chemical potential µ are stored at the cell centers,
and the discrete velocities u, v, and w are stored at the cell edges. Let un

i+ 1
2 , jk

, vn
i, j+ 1

2 ,k
, wn

i j,k+
1
2
, pn

i jk , φn
i jk , and

µn
i jk be discrete approximations of u(xi+ 1

2 , jk, n∆t), v(xi, j+ 1
2 ,k
, n∆t), w(xi j,k+

1
2
, n∆t), p(xi jk, n∆t), φ(xi jk, n∆t),

and µ(xi jk, n∆t), respectively, where ∆t is the time step. Let d : R3
→ R be the signed distance function and

S = {x ∈ R3
| d(x) = 0}. Let Ω h

δ = {xi jk | |di jk | < δ|∇hdi jk |} be the discrete narrow band domain, where ∇hdi jk =

(di+1, jk−di−1, jk, di, j+1,k−di, j−1,k, di j,k+1−di j,k−1)/(2h) and δ >
√

3h. The discrete narrow band domains containing
alues at cell edges are defined as U h

δ = {xi+ 1
2 , jk, xi− 1

2 , jk | xi jk ∈ Ω h
δ }, V h

δ = {xi, j+ 1
2 ,k
, xi, j− 1

2 ,k
| xi jk ∈ Ω h

δ },
W h
δ = {xi j,k+

1
2
, xi j,k−

1
2
| xi jk ∈ Ω h

δ }, respectively. Let ∂Ω h
δ = {xi jk | Ii jk |∇h Ii jk | ̸= 0} be the discrete boundary for

he cell centers. Here, Ii jk = 0 if xi jk ∈ Ω h
δ ; otherwise Ii jk = 1. The discrete boundary for the cell edges ∂U h

δ , ∂V h
δ ,

nd ∂W h
δ can be easily defined in the same way. We first define the temporal discretization of the NSCH system

s follows:

ρn un+1
− un

∆t
= −ρnun

· ∇un
− ∇ pn+1

+
1

BoCn
µn

∇φn

+
1

Re
∇ ·

[
ηn(∇u + ∇uT )n]

+
ρn

Fr2 g, (10)

∇ · un+1
= 0, (11)

φn+1
− φn

∆t
= −∇ · (φu)n

+
1

Pe
∆µn+1, (12)

µn+1
= (φn+1)3

− φn
− Cn2∆φn+1, (13)

here ρn
= ρ(φn), ηn

= η(φn), and g = (0, 0,−1). Here, the temporally first-order accurate, semi-implicit scheme
s used for Eqs. (10)–(13). The surface tension, gravity, and velocity components on the right-hand side of Eq. (10)
re treated explicitly, and the pressure gradient is treated implicitly. In Eqs. (12) and (13), all Laplacian parts are
reated implicitly, and the convection term is treated explicitly. Following the idea of a convex splitting method, in
q. (13), we treat the nonlinear convex and concave parts implicitly and explicitly.

.1. Navier–Stokes solver

In this section, we solve the NS equation in the fully discrete space U h
δ ∪ V h

δ ∪ W h
δ using the following steps:

Step 1. Define the divergence-free initial discrete velocities u0
i+ 1

2 , jk
, v0

i, j+ 1
2 ,k

, w0
i j,k+

1
2
, and the initial discrete

phase variable φ0
i jk .

Step 2. The intermediate velocities u∗

i+ 1
2 , jk

, v∗

i, j+ 1
2 ,k

, and w∗

i j,k+
1
2

are calculated as follows:

u∗

i+ 1
2 , jk

= un
i+ 1

2 , jk
− ∆t(un

· ∇hun)i+ 1
2 , jk +

∆t
Reρi+ 1

2 , jk
Du(un)i+ 1

2 , jk

+

∆tµn
i+ 1

2 , jk

BoCnρn
i+ 1

2 , jk

(
φn

i+1, jk − φn
i jk

h

)
(14)

v∗

i, j+ 1
2 ,k

= vn
i, j+ 1

2 ,k
− ∆t(un

· ∇hv
n)i, j+ 1

2 ,k
+

∆t
Reρi, j+ 1

2 ,k
Dv(un)i, j+ 1

2 ,k

+ +

∆tµn
i, j+ 1

2 ,k

BoCnρn
i, j+ 1

2 ,k

(
φn

i, j+1,k − φn
i jk

h

)
(15)

w∗

i j,k+
1
2

= wn
i j,k+

1
2

− ∆t(un
· ∇hw

n)i j,k+
1
2

∆t
Reρi j,k+

1
2

Dw(un)i j,k+
1
2

+

∆tµn
i j,k+

1
2

BoCnρn
1

(
φn

i j,k+1 − φn
i jk

h

)
−

∆t
Fr2 g, (16)
i j,k+ 2
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where ρn
i+ 1

2 , jk
= 0.5(ρn

i+1, jk +ρ
n
i jk), ρn

i, j+ 1
2 ,k

= 0.5(ρn
i, j+1,k +ρ

n
i jk), and ρn

i j,k+
1
2

= 0.5(ρn
i j,k+1+ρ

n
i jk). For the advection

erm, the first-order upwind scheme is simple and stable [48,49]. To achieve a second-order spatial accuracy, the
entral difference has been widely used in some previous studies [50,51]. However, the classical central difference
cheme suffers from a stability problem. In our approach, we use a second-order essentially non-oscillatory (ENO)
cheme [52,53] to discretize the advection terms in Eqs. (14)–(16). For example, the advection term in Eq. (14) is
iscretized as follows:

(u · ∇hu)i+ 1
2 , jk =

ui+ 1
2 , jk

h

(
ūi+1, jk − ūi jk

)
+

vi, j− 1
2 ,k

+ vi+1, j− 1
2 ,k

+ vi, j+ 1
2 ,k

+ vi+1, j+ 1
2 ,k

4h

(
ūi+ 1

2 , j+ 1
2 ,k

− ūi+ 1
2 , j− 1

2 ,k

)
+

wi j,k−
1
2

+ wi+1, j,k−
1
2

+ wi j,k+
1
2

+ wi+1, j,k+
1
2

4h

(
ūi+ 1

2 , j,k+
1
2

− ūi+ 1
2 , j,k−

1
2

)
.

he algorithm for calculating ūi+1, jk is given as

ūi+1, jk = ul jk +
h
2
γ (1 − 2(l − (i +

1
2

))),

l =

{
i +

1
2 if ui+1, jk > 0,

i +
3
2 otherwise,

α =
ul jk − ul−1, jk

h
, β =

ul+1, jk − ul jk

h
, γ =

{
α if |α| ≤ |β|,

β otherwise,

where ui+1, jk = 0.5
(

ui+ 3
2 , jk + ui+ 1

2 , jk

)
. The other quantities are calculated in a similar manner. The discrete

dvection terms for v and w are presented in Appendix. The spatial discretization for the viscosity term in Eq. (14)
is defined as

Du(u)i+ 1
2 , jk =

2
(
η(φi+1, jk)(ui+ 3

2 , jk − ui+ 1
2 , jk) − η(φi jk)(ui+ 1

2 , jk − ui− 1
2 , jk)

)
h2

+

ηa(ui+ 1
2 , j+1,k − ui+ 1

2 , jk) − ηb(ui+ 1
2 , jk − ui+ 1

2 , j−1,k)

h2

+

ηa(vi+1, j+ 1
2 ,k

− vi, j+ 1
2 ,k

) − ηb(vi+1, j− 1
2 ,k

− vi, j− 1
2 ,k

)

h2

+

ηc(ui+ 1
2 , j,k+1 − ui+ 1

2 , jk) − ηd (ui+ 1
2 , jk − ui+ 1

2 , j,k−1)

h2

+

ηc(wi+1, j,k+
1
2

− wi j,k+
1
2
) − ηd (wi+1, j,k−

1
2

− wi j,k−
1
2
)

h2 ,

here the ηa , ηb, ηc, and ηd are defined as follows:

ηa = 0.25
(
η(φi jk) + η(φi+1, jk) + η(φi, j+1,k) + η(φi+1, j+1,k)

)
,

ηb = 0.25
(
η(φi jk) + η(φi+1, jk) + η(φi, j−1,k) + η(φi+1, j−1,k)

)
,

ηc = 0.25
(
η(φi jk) + η(φi+1, jk) + η(φi+1, j,k+1) + η(φi j,k+1)

)
,

ηd = 0.25
(
η(φi jk) + η(φi+1, j K ) + η(φi+1, j,k−1) + η(φi j,k−1)

)
.

he similar definitions are used for computing Dv(u)i, j+ 1
2 ,k

and Dw(u)i jk+
1
2
.

Step 3. We solve Eqs. (17) and (18)

un+1,1
− u∗

∆t
= −

1
ρn

∇h pn+1, (17)

∇ · un+1,1
= 0. (18)
h i jk
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Taking the discrete divergence operation to Eq. (17) and using Eq. (18), we obtain the following:

∇h ·

(
1
ρn

∇h pn+1
)

=
1
∆t

∇h · u∗, (19)

here

∇h ·

(
1
ρn

∇h pn+1
i jk

)

=

⎡⎣ pn+1
i+1, jk

ρn
i+ 1

2 , jk

+
pn+1

i−1, jk

ρn
i− 1

2 , jk

+
pn+1

i, j+1,k

ρn
i, j+ 1

2 ,k

+
pn+1

i, j−1,k

ρn
i, j− 1

2 ,k

+
pn+1

i j,k+1

ρn
i j,k+

1
2

+
pn+1

i j,k−1

ρn
i j,k−

1
2

−

⎛⎝ 1
ρn

i+ 1
2 , jk

+
1

ρn
i− 1

2 , jk

+
1

ρn
i, j+ 1

2 ,k

+
1

ρn
i, j− 1

2 ,k

+
1

ρn
i j,k+

1
2

+
1

ρn
i j,k−

1
2

⎞⎠ pn+1
i jk

⎤⎦ /h2,

∇h · u∗

i jk =

u∗

i+ 1
2 , jk

− u∗

i− 1
2 , jk

h
+

v∗

i, j+ 1
2 ,k

− v∗

i, j− 1
2 ,k

h
+

w∗

i j,k+
1
2

− w∗

i j,k−
1
2

h
.

The Jacobi-type iteration is used to solve Eq. (19). To obtain a unique solution, we take the following pressure
correction step after each Jacobi-type iteration:

pn+1,m+1
i jk = pn+1,m+1

i jk −
1

#Ω h
δ

∑
xi jk∈Ωh

δ

pn+1,m+1
i jk ,

where #Ω h
δ is the total number of points in Ω h

δ containing cell centers. The Jacobi-type iteration is applied until the
following condition is satisfied with a given tolerance,

∥pn+1,m+1
− pn+1,m

∥L2(Ωh
δ ) < tol,

where pn+1,m+1 and pn+1,m are the solutions after the (m + 1)th and mth iterations. Then, let pn+1
= pn+1,m+1.

Step 4. Finally, compute the updated velocity field.

un+1
= u∗

−
∆t
ρn

∇h pn+1. (20)

.1.1. Boundary conditions for pressure and velocity field
When we solve the pressure Poisson equation in a regular domain, the zero-Neumann boundary condition

p · n = 0 is appropriate. In our study, a simple and effective pseudo-Neumann boundary condition is used for the
ressure at the ghost points and is defined as

pi jk = p(cp(xi jk)) for xi jk ∈ ∂Ω h
δ ,

here

cp(xi jk) = xi jk −
∇hdi jk

|∇hdi jk |
2 di jk . (21)

Because cp(xi jk) is generally not a grid point, the boundary value p(cp(xi jk)) is obtained using the trilinear
interpolation method. Although our spatial discretization is second-order accurate, the boundary value obtained
by a trilinear interpolation is not a strict zero-Neumann boundary, and the computational accuracy may be slightly
affected (see the numerical results in Section 4.4). For each xi jk ∈ ∂Ω h

δ , we compute cp(xi jk) using Eq. (21) and
find the cube cell, [xl , xl+1)×[ym, ym+1)×[zn, zn+1) containing the point cp(xi jk). Let (α1, α2, α3) = cp(xi jk)−xlmn;
hen,

p(cp(xi jk)) =
[
(h − α1)(h − α2)(h − α3)plmn + α1(h − α2)(h − α3)pl+1,mn

+ (h − α1)α2(h − α3)pl,m+1,n + α1α2(h − α3)pl+1,m+1,n

+ (h − α1)(h − α2)α3 plm,n+1 + α1(h − α2)α3 pl+1,m,n+1

+ (h − α )α α p + α α α p
]
/h3. (22)
1 2 3 l,m+1,n+1 1 2 3 l+1,m+1,n+1
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Fig. 2. Schematic illustrations of trilinear interpolation for the boundary values in (a) two- and (b) three-dimensional spaces.

chematic illustrations of the interpolation in two- and three-dimensional spaces are shown in Figs. 2(a) and (b),
espectively. Note that this type of pseudo-Neumann boundary condition has been successfully applied to various
calar-valued functions on curved surfaces [30,32].

To define the values of the velocity field at ghost points, we consider the following three approaches:
pproach 1. Based on the closest point method, the boundary values of velocities u, v, and w are directly defined

by using a similar idea as the pseudo-Neumann boundary condition in Eq. (22) (see Fig. 2), where ui+ 1
2 , jk =

(cpu(xi+ 1
2 , jk)) for xi+ 1

2 , jk ∈ ∂U h
δ , vi, j+ 1

2 ,k
= v(cpv(xi, j+ 1

2 ,k
)) for xi, j+ 1

2 ,k
∈ ∂V h

δ , and wi j,k+
1
2

= w(cpw(xi j,k+
1
2
))

or xi j,k+
1
2

∈ ∂W h
δ . The definitions of u(cpu(xi+ 1

2 , jk)), v(cpv(xi, j+ 1
2 ,k

)), and w(cpw(xi j,k+
1
2
)) are as follows:

u(cpu(xi+ 1
2 , jk)) = xi+ 1

2 , jk −

∇hUdi+ 1
2 , jk

|∇hUdi+ 1
2 , jk |

2 Udi+ 1
2 , jk,

v(cpv(xi, j+ 1
2 ,k

)) = xi, j+ 1
2 ,k

−

∇h V di, j+ 1
2 ,k

|∇h V di, j+ 1
2 ,k

|
2 V di, j+ 1

2 ,k
,

w(cpw(xi j,k+
1
2
)) = xi j,k+

1
2

−

∇h W di j,k+
1
2

|∇h W di j,k+
1
2
|
2 W di j,k+

1
2
,

here Udi+ 1
2 , jk = 0.5(di+1, jk + di jk), V di, j+ 1

2 ,k
= 0.5(di, j+1,k + di jk), and W di j,k+

1
2

= 0.5(di j,k+1 + di jk).

Approach 2. From the viewpoint of a Helmholtz–Hodge decomposition, the divergence-free velocity field u
btained should satisfy u · n = 0 at the boundary. It is evident that Approach 1 does not satisfy this condition.
nstead of directly computing u(cpu(xi+ 1

2 , jk)), v(cpv(xi, j+ 1
2 ,k

)), and w(cpw(xi j,k+
1
2
)) from the interpolations of u,

v, and w, we compute the values of u(cpu(xi+ 1
2 , jk)), v(cpv(xi, j+ 1

2 ,k
)) w(cpw(xi j,k+

1
2
)) by using the corrected values

ũ, ṽ, and w̃, i.e.,

ũ = u − (u · m)m. (23)

here ũ = (ũ, ṽ, w̃) and u = (u, v, w). The basic idea of this approach is that the velocity field at each ghost
oint is corrected to be the tangential direction of the curved surface. By using this approach, the boundary velocity
ormal to the surface is suppressed. The derivation of Eq. (23) is discussed in Approach 3.

pproach 3. When the NS equation is solved on a curved surface, it is desirable to keep the updated velocity field
angential to the surface. Although the velocity field at each ghost point is corrected in Approach 2, the velocity
eld in the entire narrow band domain is still arbitrarily distributed. To resolve this problem, a correction algorithm

n+1 ∗∗ n+1
or the complete velocity field is used: First, obtain the updated velocity field u in Step 4 and let u = u .
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φ

Fig. 3. Schematic illustration of velocity correction step.

Then, let m be the unit vector normal to S and λm be the normal component of u∗∗, i.e., (u∗∗
−λm) ·m = 0, which

implies λ = u∗∗
· m. The final corrected velocity field is defined as

un+1
= u∗∗

− (u∗∗
· m)m. (24)

Fig. 3 shows a schematic illustration of the velocity correction steps. Note that this approach works as an
augmented projection step after Step 4. In each time cycle, Approach 3 corrects the entire velocity field and makes
the component of the velocity field normal to the surface almost zero. Owing to this correction, the boundary value
of the velocity field can be easily computed using the method in Approach 1, and the condition u · n = 0 is
approximately satisfied at the curved boundary. The numerical test in Section 4 shows that Approach 3 results in
the best divergence-free condition among the three approaches.

3.2. Advective Cahn–Hilliard solver

For xi jk ∈ Ω h
δ , the fully discrete forms of Eqs. (12) and (13) are written as follows:

φn+1
i jk − φn

i jk

∆t
+ ∇h · (uφ)n

i jk = ∆hµ
n+1
i jk ,

µn+1
i jk = (φn+1

i jk )3
− φn

i jk − Cn2∆hφ
n+1
i jk , (25)

where the standard seven-point Laplace operator for φ is defined as ∆hφi jk = (φi+1, jk +φi−1, jk +φi, j+1,k +φi, j−1,k +

φi j,k+1 +φi j,k−1 − 6φi jk)/h2. The conservative scheme of the advection term in Eq. (25) is defined as follows [54]:

∇h · (φu)i jk = ((φu)x + (φv)y + (φw)z)i jk

=

ui+ 1
2 , jk(φi+1, jk + φi jk) − ui− 1

2 , jk(φi jk + φi−1, jk)

2h

+

vi, j+ 1
2 ,k

(φi, j+1,k + φi jk) − vi, j− 1
2 ,k

(φi jk + φi, j−1,k)

2h

+

wi j,k+
1
2
(φi j,k+1 + φi jk) − wi j,k−

1
2
(φi jk + φi j,k−1)

2h
.

The pseudo-Neumann boundary conditions are used for φ and µ. For the given values φn
i jk and µn

i jk , we compute
n+1
i jk and µn+1

i jk by iterating the following Eqs. (26) and (27) until the stopping criterion is satisfied, i.e., ∥φn+1,m+1
−

φn+1,m
∥L2(Ωh

δ ) < tol. Because (φn+1
i jk )3 is nonlinear with respect to φn

i jk , the following Newtonian-type linearization
is used in the iterations:

n+1,m+1 3 n+1,m 3 n+1,m 2 n+1,m+1 n+1,m
(φi jk ) ≈ (φi jk ) + 3(φi jk ) (φi jk − φi jk ),
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where φn+1,m and φn+1,m+1 are the results after the mth and (m + 1)th rounds of Jacobi-type iterations.

φ
n+1,m+1
i jk

∆t
+

6µn+1,m+1
i jk

Peh2 =
φn

i jk

∆t
− ∇h · (φu)n

i jk

+
µ

n+1,m
i+1, jk + µ

n+1,m
i−1, jk + µ

n+1,m
i, j+1,k + µ

n+1,m
i, j−1,k + µ

n+1,m
i j,k+1 + µ

n+1,m
i j,k−1

Peh2 , (26)

−

[
3(φn+1,m

i jk )2
+

6Cn2

h2

]
φ

n+1,m+1
i jk + µ

n+1,m+1
i jk = −φn

i jk − 2(φn+1,m
i jk )3

−
Cn2

h2

(
φ

n+1,m
i+1, jk + φ

n+1,m
i−1, jk + φ

n+1,m
i, j+1,k + φ

n+1,m
i, j−1,k + φ

n+1,m
i j,k+1 + φ

n+1,m
i j,k−1

)
. (27)

.2.1. Mass correction step
The mass conservation is a basic property of the CH model. However, because it is not a strict zero-Neumann

oundary condition in a finite difference framework, the pseudo-Neumann boundary condition may cause a
onphysical mass loss. To correct the mass loss, an effective mass correction algorithm [55] is used, which is
riefly described in the method as follows. For the conservative CH model, we require

1
#Ω h

δ

∑
xi jk∈ Ωh

δ

φn+1
i jk =

1
#Ω h

δ

∑
xi jk∈ Ωh

δ

φn
i jk = · · · =

1
#Ω h

δ

∑
xi jk∈ Ωh

δ

φ0
i jk . (28)

If the converged solution of Eqs. (26) and (27) is φ̃n+1
i jk , then let φn+1

i jk = φ̃n+1
i jk +L

√
F(φ̃n+1

i jk ). The auxiliary multiplier
an be calculated as follows to satisfy Eq. (28):

L =

∑
xi jk∈ Ωh

δ

(
φ0

i jk − φ̃n+1
i jk

)
/

∑
xi jk∈ Ωh

δ

√
F(φ̃n+1

i jk ). (29)

hus, the corrected phase variable is expressed as follows:

φn+1
i jk = φ̃n+1

i jk +

∑
xi jk∈ Ωh

δ

(
φ0

i jk − φ̃n+1
i jk

)
∑

xi jk∈ Ωh
δ

√
F(φ̃n+1

i jk )

√
F(φ̃n+1

i jk ). (30)

urther details on this technique can be found in [55].

emarks. In our approach, an effective pseudo-Neumann boundary condition is used. The boundary values are
alculated from the interpolation technique. Although this technique is easy and practical for defining the boundary
alues, the pseudo-Neumann boundary condition is not a strict zero-Neumann boundary condition, and thus it is
ifficult to analytically prove the energy stability of the entire system. However, the numerical results in Section 4
how that the discrete energy dissipation can still be obtained for various complex 3D surfaces. Furthermore, we
nly focus on the implementation of our method for the fluid flows on various curved surfaces. For convenience, a
rst-order temporal discretization is used and the classical projection method is adopted for solving the NS equation.
ote that the second-order temporal schemes and the recently developed fluid model with large density ratios [4,21]
ay be more interesting, and our proposed method can be directly applied to these schemes and models. However,

his will be covered in a future study.

. Numerical experiments

We conduct various numerical tests to show the effectiveness and accuracy of the proposed method. The single
uid flows on a sphere and torus surfaces are considered to show the divergence-free condition and effectiveness.
hen, standard two-phase fluid flows, such as the Kelvin–Helmholtz instability, hydrodynamic coarsening, and
ayleigh–Taylor instability, are investigated on various 3D surfaces. In all simulations, the initial velocity field
nd phase variable are defined in the narrow band domains Uδ ∪ Vδ ∪ Wδ and Ωδ , respectively. Unless otherwise

pecified, the viscosity-matched condition, i.e., η1 : η2 = 1 : 1 is used.
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Fig. 4. Circulation flow on the sphere with respect to Approaches (a) 1, (b) 2, and (c) 3. The images are taken at t = 2.67.

Table 1
Values of Div obtained by Approach 3 at some specific moments.

Time Div Time Div Time Div

t = 0.27 2.20e−3 t = 1.20 1.90e−3 t = 1.93 1.60e−3
t = 0.53 2.10e−3 t = 1.33 1.80e−3 t = 2.00 1.60e−3
t = 0.67 2.10e−3 t = 1.47 1.80e−3 t = 2.13 1.60e−3
t = 0.87 2.00e−3 t = 1.60 1.70e−3 t = 2.33 1.50e−3
t = 1.00 1.90e−3 t = 1.80 1.70e−3 t = 2.67 1.40e−3

4.1. Divergence-free test

A divergence-free condition is an important property of an incompressible NS equation. It is well known that the
classical projection method based on the Helmholtz–Hodge decomposition can satisfy the divergence-free condition
in theory. However, in actual computations, improper boundary conditions of the velocity field can significantly
affect the numerical results of an intermediate velocity field and pressure Poisson equation, and can then violate
the discrete divergence-free condition. In Section 3.1.1, we proposed three types of approaches for defining the
velocity boundary conditions. To test the practicability of those three approaches, we consider the circulation flow
on a sphere in the domain Ω = (−1, 1)3. The signed distance function is d(x, y, z) =

√
x2 + y2 + z2 − 0.6. The

initial velocity fields are defined as

u(x, y, z, 0) = −y, v(x, y, z, 0) = x, w(x, y, z, 0) = 0. (31)

he parameters applied are as follows: h = 0.033, ∆t = 0.2h2, Re = 50, and tol = 10−3. The images at t = 2.67
re shown in Figs. 4(a), (b), and (c) with respect to Approaches 1, 2, and 3, respectively. It is evident that Approach
causes a nonphysical evolution of the velocity field. Both Approaches 2 and 3 lead to the desired circulation flow

n the surface. To quantitatively investigate the divergence-free condition, we define the average discrete divergence
s follows:

Div =
1

#Ω h
δ

∑
xi jk∈ Ωh

δ

⏐⏐⏐⏐⏐ui+ 1
2 , jk − ui− 1

2 , jk

h
+

vi, j+ 1
2 , j − vi, j− 1

2 ,k

h
+

wi j,k+
1
2

− wi j,k−
1
2

h

⏐⏐⏐⏐⏐ ,
where Ω h

δ is the discrete narrow band domain containing all cell centers and #Ω h
δ is the total number of points in

h
δ . In Fig. 5, we plot the temporal evolutions of Div with respect to the three approaches. Table 1 lists the values
f Div obtained by Approach 3 at some specific moments. As we can see, Approach 3 approximately satisfies the

discrete divergence-free condition in a lengthy simulation. Thus, Approach 3 is used in the numerical calculation
of the NS equation.

4.2. Tolerance test

In all simulations, the stopping tolerance of the iterations for the pressure Poisson equation is set as tol = 10−3.
To verify whether this tolerance is sufficiently small in the present study, we chose three different tolerances:
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Fig. 5. Temporal evolutions of discrete divergence with respect to the three approaches.

Fig. 6. Temporal evolutions of discrete kinetic energy with respect to different tolerances.

tol = 10−3, 10−4, and 10−5 to test the dissipation of the total kinetic energy, which is a basic property of the
NS equation. The initial conditions and computational domain were set to be the same as those in Section 4.1. The
discrete total kinetic energy is defined as follows:

Ek =
ρ

2

⎡⎢⎣1
2

∑
xi jk∈ Ωh

δ

(
u2

i+ 1
2 , jk

+ u2
i− 1

2 , jk

)
+

1
2

∑
xi jk∈ Ωh

δ

(
v2

i, j+ 1
2 ,k

+ v2
i, j− 1

2 ,k

)

+
1
2

∑
xi jk∈ Ωh

δ

(
w2

i j,k+
1
2

+ w2
i j,k−

1
2

)⎤⎥⎦ h3, (32)

here ρ = 1 is used. Note that the above weighted summations have been extensively used in previous
tudies [21,56]. In Fig. 6, we plot the temporal evolution of Ek with respect to different tolerances and almost
he same results can be observed, which indicates that tol = 10−3 is sufficiently small to obtain accurate solutions.
hus, in the following tests, tol = 10−3 is used, unless otherwise specified.
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Fig. 7. Single fluid flow on a torus.

Table 2
Comparison with the previous results [36,37]. Here, |u|min and |u|max
are the minimum and maximum magnitudes of the velocity field,
respectively.

Previous Present

|u|min 0.02 0.0203
|u|max 0.12 0.1232

4.3. Flow on a torus

To verify the practicability of the proposed method, we consider the fluid flow on a torus embedded in

Ω = (−4, 4)3. The signed distance function of a torus is d(x, y, z) =

√
(
√

x2 + y2 − 2)2 + z2 − 0.5. The initial
velocity field is given by

u(x, y, z, 0) =
y − 2xz

8(x2 + y2)
, v(x, y, z, 0) =

−x − 2yz
8(x2 + y2)

, w(x, y, z, 0) =

√
x + y − 2

4(
√

x2 + y2)
.

The following numerical parameters are used: h = 0.067, ∆t = 0.25h2, and Re = 50. We show the images
t different computational moments in Fig. 7, and can see that the initial velocity field evolves into a circulation
ow over time. Note that similar phenomena were observed in the previous studies [36,37], in which the authors

nvestigated the minimum and maximum magnitudes of the velocity field on a torus. Table 2 indicates that the
revious and present results are in good agreement.

.4. Accuracy test for two-phase system

To estimate the spatial and temporal convergence rates, we consider the two-phase fluid system on a sphere with
he following signed distance function d(x, y, z) =

√
x2 + y2 + z2 − 0.8. The full domain is Ω = (−2, 2)3. The

nitial conditions are defined as

φ(x, y, z, 0) = tanh

(
0.5 −

√
(x − 0.8)2 + y2 + z2

√
2ϵ

)
,

u(x, y, z, 0) = −y, v(x, y, z, 0) = x, w(x, y, z, 0) = 0.

he simulations are performed by varying h = 0.44, 0.22, 0.11, and 0.055. The time step is ∆t = 0.001h2 and the
ther numerical parameters are as follows: Re = 10, ϵ = 0.24, Cn = ϵ, and Pe = 1. The effects of the surface
ension and gravity are ignored. The successive error for φ between two different mesh sizes is defined as follows:

eφi jk = φ
h,∆t
i jk −

1
8

(
φ

h/2,∆t/4
2i,2 j,2k + φ

h/2,∆t/4
2i−1,2 j,2k + φ

h/2,∆t/4
2i,2 j−1,2k + φ

h/2,∆t/4
2i,2 j,2k−1

+ φ
h/2,∆t/4
2i−1,2 j−1,2k + φ

h/2,∆t/4
2i,2 j−1,2k−1 + φ

h/2,∆t/4
2i−1,2 j,2k−1 + φ

h/2,∆t/4
2i−1,2 j−1,2k−1

)
.

In addition, the successive errors for u, v, and w between two different mesh sizes are defined as follows:

eu
1 = uh,∆t

1 −
1
(

uh/2,∆t/4
1 + uh/2,∆t/4

1 + uh/2,∆t/4
1 + uh/2,∆t/4

1

)
,

i+ 2 , jk i+ 2 , jk 4 2i+ 2 ,2 j,2k 2i+ 2 ,2 j−1,2k 2i+ 2 ,2 j,2k−1 2i+ 2 ,2 j−1,2k−1
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Table 3
Errors and convergence rates with different mesh sizes at t = 3.95e-4.

h 0.44 − 0.22 0.22 − 0.11 0.11 − 0.055

L2-error: φ 0.865 0.243 0.066
rate: 1.832 1.880

L2-error: u 1.808 0.412 0.131
rate: 2.134 1.653

L2-error: v 1.975 0.496 0.133
rate: 1.993 1.899

L2-error: w 5.5e−3 1.6e−3 3.390e−4
rate: 1.781 2.239

ev
i, j+ 1

2 ,k
= v

h,∆t
i, j+ 1

2 ,k
−

1
4

(
v

h/2,∆t/4
2i,2 j+ 1

2 ,2k
+ v

h/2,∆t/4
2i−1,2 j+ 1

2 ,2k
+ v

h/2,∆t/4
2i,2 j+ 1

2 ,2k−1
+ v

h/2,∆t/4
2i−1,2 j+ 1

2 ,2k−1

)
,

ew
i j,k+

1
2

= w
h,∆t
i j,k+

1
2

−
1
4

(
w

h/2,∆t/4
2i,2 j,2k+

1
2

+ w
h/2,∆t/4
2i−1,2 j,2k+

1
2

+ w
h/2,∆t/4
2i,2 j−1,2k+

1
2

+ w
h/2,∆t/4
2i−1,2 j−1,2k+

1
2

)
.

e define the L2-error for φ as

∥φh,∆t
− φh/2,∆t/4

∥L2(Ωh
δ ) =

√ ∑
xi jk∈ Ωh

δ

(eφi jk)2h3.

n addition, the weighted L2-errors for u, v, and w are defined as

∥uh,∆t
− uh/2,∆t/4

∥L2(Ωh
δ ) =

√ ∑
xi jk∈ Ωh

δ

1
2

(
(eu

i+ 1
2 , jk

)2 + (eu
i− 1

2 , jk
)2

)
h3,

∥vh,∆t
− vh/2,∆t/4

∥L2(Ωh
δ ) =

√ ∑
xi jk∈ Ωh

δ

1
2

(
(ev

i, j+ 1
2 ,k

)2 + (ev
i, j− 1

2 ,k
)2

)
h3,

∥wh,∆t
− wh/2,∆t/4

∥L2(Ωh
δ ) =

√ ∑
xi jk∈ Ωh

δ

1
2

(
(ew

i j,k+
1
2
)2 + (ew

i j,k−
1
2
)2

)
h3.

he convergence rate for φ is defined as

rate = log2

(
∥φh,∆t

− φh/2,∆t/4
∥L2(Ωh

δ )

∥φh/2,∆t/4 − φh/4,∆t/16∥
L2(Ωh/2

δ )

)
.

The convergence rates for u, v, and w are similarly defined. The simulations are performed until t = 3.95e-4.
We list the errors and convergence rates in Table 3. The results show that the proposed scheme has approximately
second-order accuracy in space and first-order accuracy in time. Note that we used the pseudo-Neumann boundary
condition and computed the boundary values by interpolations, and the accuracy of the numerical results may be
slightly affected by this implementation.

4.5. Kelvin–Helmholtz instability on a sphere

The Kelvin–Helmholtz instability is a typical example of two-phase fluid flow [57]. When a difference in velocity
exists at the interface of two different fluids, a small disturbance develops there over time and the interface rolls up
to form a vortex shape. This well-known fluid instability can be used to describe the formations of various natural

phenomena, such as a billow cloud. To investigate the formation of the Kelvin–Helmholtz instability on a sphere,
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Fig. 8. Kelvin–Helmholtz instability on a sphere. The colorbars reflect the value of φ. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

Fig. 9. Temporal evolution of average concentration of Kelvin–Helmholtz instability. The insets are images corresponding to the specific
computational moments.

we consider the following initial conditions:

φ(x, y, z, 0) = tanh
(

−Rθ + 0.5Rπ + 0.06 cos(5ψ)
√

2ϵ

)
,

u(x, y, z, 0) = φ(x, y, z, 0)y, v(x, y, z, 0) = −φ(x, y, z, 0)x, w(x, y, z, 0) = 0,

here R = 0.8 is the radius of a sphere, θ = cos−1(z/r ), ψ = tan−1(y, x) with x ̸= 0, and r =
√

x2 + y2 + z2.
The signed distance function d(x, y, z) =

√
x2 + y2 + z2 − R is defined in Ω = (−1, 1)3. During the simulation,

e consider h = 0.025, ∆t = 0.4h2, Re = 5000, ϵ = 0.024, Cn = ϵ, and Pe = 1/ϵ. The effects of the surface
ension and gravity are omitted. We display the images at different computational moments in Fig. 8.

For a two-phase incompressible flow, mass conservation is an important issue. We plot the temporal evolution
f the average concentration φ̄ =

1
#Ωh

δ

∑
xi jk∈ Ωh

δ
φn

i jk in Fig. 9. As evident from the figure, the mass conservation

is well satisfied by our proposed method.
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Fig. 10. Images of the Kelvin–Helmholtz instability with respect to different Reynolds numbers: (a) Re = 50, (b) Re = 500, and (c)
Re = 5000. The images from left to right in each row are taken at t = 0.75, 1.15, and 1.5, respectively. The colorbars reflect the value of

. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The Reynolds number Re plays an important role in fluid dynamics, and we will now briefly investigate the
ffect of Re on the dynamics of a two-phase Kelvin–Helmholtz instability. Three different values of Reynolds
umber, Re = 50, 500, and 5000, are considered in the simulations. The evolutions with respect to different Re
re displayed in Fig. 10. We can see that the roll-up is further developed with the increase in Re. When Re is
mall, the effect of the fluid viscosity is dominant, which significantly suppresses the evolution of the interface.

.6. Effect of viscosity ratio

To show the effect of the viscosity ratio on the dynamics of a two-phase flow on a curved surface, we consider
he Kelvin–Helmholtz instability on a sphere with the same initial conditions and parameters as in Section 4.5.
igs. 11(a), (b), and (c) display the images of the Kelvin–Helmholtz instability with respect to different viscosity
atios: η1 : η2 = 1 : 1, 1 : 5, and 1 : 10, respectively. With an increase in the viscosity of fluid 2, the interfacial
ynamics are suppressed.

.7. Coarsening dynamics

To demonstrate the dissipation of the total energy of the NSCH model, we consider the coarsening dynamics on
D surfaces in the presence of a fluid flow. The domain is Ω = (−2, 2)3, and a signed distance function, d1(x, y, z) =

x2 + y2 + z2 −1.6 and a scalar function, d2(x, y, z) = (x2
+ y2

−1)2
+ (x2

+ z2
−1)2

+ (y2
+ z2

−1)2
+ (x2

−1)2
+

y2
−1)2

+(z2
−1)2

−2 are used. The initial phase variable is defined randomly, i.e., φ(x, y, z, 0) = 0.5rand(x, y, z),
here rand (x, y, z) is a random number between −1 and 1. The initial velocity field is set to zero. We use h = 0.067

s the spatial step. The following parameters are used: ∆t = 0.2h2, Re = 100, ϵ = 0.064, Pe = 1, Cn = ϵ, and

Bo = 1/Cn. The effect of gravity is not considered. The results at different computational moments are shown in
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Fig. 11. Images of Kelvin–Helmholtz instability with respect to different viscosity ratios: (a) η1 : η2 = 1 : 1, (b) η1 : η2 = 1 : 5, and (c)
1 : η2 = 1 : 10. The images from the left to right in each row are taken at t = 0.75, 1.15, and 1.5. The colorbars reflect the value of φ.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ig. 12, and we can see that the phase separates over time. We define the discrete total energy Et as follows:

Et =

∑
xi jk∈ Ωh

δ

[
Cn2

2

(
(φi+1, jk − φi jk)2

h2 +
(φi, j+1,k − φi jk)2

h2

+
(φi j,k+1 − φi jk)2

h2

)
+ F(φi jk)

]
h3

+ Ek,

here Ek is the total discrete kinetic energy defined in Section 4.2. The temporal evolutions of the discrete total
nergy on Ω1 and Ω2 are shown in Figs. 13(a) and (b), respectively, and we can see that the energy is non-increasing

on a 3D surface.

4.8. Rayleigh–Taylor instability on a sphere

When a heavier fluid is located above another lighter fluid, a small disturbance on the interface will cause
the heavier fluid to roll and fall, forming a spike structure, whereas the lighter fluid floats up to form a bubble.
This phenomenon is called the Rayleigh–Taylor instability [15,54], which is an important buoyancy-driven two-
phase flow problem appearing in various scientific and industrial fields. In a three-dimensional space, we know that
the direction of gravitation force g = (0, 0,−1) is always downward. To consider the gravitational effect on the
rbitrarily curved surface, we use the same correction step as in Section 3.1.1 to treat the gravity field, i.e.,

g∗
= g − (g · m)m,

here m is the unit vector normal to the surface, and g∗ is an effective gravity field tangential to the surface. The
igned distance function is d(x, y, z) =

√
x2 + y2 + z2 − 0.8. The same initial conditions as in Section 4.5 are

sed. The numerical parameters are as follows: h = 0.025, ∆t = 4h2, Re = 3000, ϵ = 0.024, Pe = 1/ϵ, Cn =

, ρ1 : ρ2 = 3 : 1, and Fr = 0.58. The surface tension is ignored, i.e., Bo = ∞. From the results in Fig. 14, the
oll-up of a heavier fluid can be clearly observed.
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Fig. 12. Coarsening dynamics on curved surfaces. The colorbars reflect the value of φ. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Temporal evolutions of the discrete total energy on a curved surface.

.9. Buoyancy-driven flow on a bunny surface

To verify that the proposed method can be used to simulate a two-phase fluid flow on a more complex surface,
e consider the buoyancy-driven flow on a bunny surface embedded in Ω = (0, 69)3. The initial conditions are
efined as follows:

φ(x, y, z, 0) = tanh
(

z − 34.5 + 0.06rand(x, y, z)
√

2ϵ

)
, (33)

u(x, y, z, 0) = v(x, y, z, 0) = w(x, y, z, 0) = 0. (34)

he following numerical parameters are used: h = 0.5, ∆t = 0.1h2, Re = 3000, ϵ = 0.48, Pe = 0.42, Cn =

, ρ1 : ρ2 = 3 : 1, and Fr = 0.58. We do not consider the effect of the surface tension. The numerical results
hown in Fig. 15 indicate that the proposed method can be effectively used for simulating a two-phase flow with
ravitational force on a complex surface.

. Conclusions

In this paper, we presented a phase-field model and its efficient numerical method for the incompressible single
nd binary fluid flows on arbitrarily curved surfaces in a three-dimensional space. The incompressible two-phase

uid flow is governed by the NSCH system. In the proposed method, we used a narrow band domain to embed the
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t

Fig. 14. The Rayleigh–Taylor instability on a sphere. The colorbars reflect the value of φ. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Fig. 15. The buoyancy-driven flow on a bunny surface. The colorbars reflect the value of φ. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

arbitrarily curved surface and extended the NSCH system to the narrow band domain. We used a pseudo-Neumann
boundary condition on the boundary of the narrow band domain, which enforces the dependent variables to be
constant along the normal direction of the points on the surface. We can therefore use the standard discrete Laplace
operator instead of the discrete Laplace–Beltrami operator. The Chorin’s projection method was applied to solve
the NS equation and a convex splitting method was employed to solve the CH equation with an advection term.
To make the velocity field tangential to the surface, a velocity correction procedure was applied. An effective mass
correction step was adopted to preserve the phase concentration. Computational results such as a convergence test,
Kevin–Helmholtz instability, and Rayleigh–Taylor instability on curved surfaces demonstrated the accuracy and

efficiency of the proposed method. Note that the proposed method can be used to study arbitrary N -component



J. Yang and J. Kim / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113382 19

(
F

D

h

A

s
b
a

A

f

w

N ≥ 3) incompressible fluid flows or a hydrodynamically coupled surfactant system on 3D curved surfaces.
urthermore, our method will be extended to simulate multi-phase flow phenomena on the surfaces of planets.
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ppendix

We briefly describe the discrete advection terms for v and w. We discretize the advection term in Eq. (15) as
ollows:

(u · ∇hv)i, j+ 1
2 ,k

=

ui+ 1
2 , jk + ui− 1

2 , jk + ui+ 1
2 , j+1,k + ui− 1

2 , j+1,k

4h

(
v̄i+ 1

2 , j+ 1
2 ,k

− v̄i− 1
2 , j+ 1

2 ,k

)
+

vi, j+ 1
2 ,k

h

(
v̄i, j+1,k − v̄i jk

)
+

wi j,k+
1
2

+ wi j,k−
1
2

+ wi, j+1,k+
1
2

+ wi, j+1,k−
1
2

4h

(
v̄i, j+ 1

2 ,k+
1
2

− v̄i, j+ 1
2 ,k−

1
2

)
.

The algorithm for calculating v̄i, j+1,k is given as

v̄i, j+1,k = vilk +
h
2
γv(1 − 2(l − ( j +

1
2

))),

l =

{
j +

1
2 if vi, j+1,k > 0,

j +
3
2 otherwise,

αv =
vilk − vi,l−1,k

h
, βv =

vi,l+1,k − vilk

h
, γv =

{
αv if |αv| ≤ |βv|,

βv otherwise,

here vi, j+1,k = 0.5(vi, j+ 3
2 ,k

+ vi, j+ 1
2 ,k

). The other quantities are similarly computed. We then discretize the
advection term in Eq. (16) as follows:

(u · ∇hw)i j,k+
1
2

=

ui+ 1
2 , jk + ui− 1

2 , jk + ui+ 1
2 , j,k+1 + ui− 1

2 , j,k+1

4h

(
w̄i+ 1

2 , j,k+
1
2

− w̄i− 1
2 , j,k+

1
2

)
+

vi, j+ 1
2 ,k

+ vi, j− 1
2 ,k

+ vi, j+ 1
2 ,k+1 + vi, j− 1

2 ,k+1

4h

(
w̄i, j+ 1

2 ,k+
1
2

− w̄i, j− 1
2 ,k+

1
2

)
+

wi j,k+
1
2

h

(
w̄i j,k+1 − w̄i jk

)
.

The algorithm for calculating w̄i j,k+1 is given as

w̄i j,k+1 = wi jl +
h
2
γw(1 − 2(l − (k +

1
2

))),

l =

{
k +

1
2 if wi j,k+1 > 0,

k +
3
2 otherwise,

αw =
wi jl − wi j,l−1

h
, βw =

wi j,l+1 − wi jl

h
, γw =

{
αw if |αw| ≤ |βw|,

βw otherwise,

where w = 0.5(w 3 + w 1 ). The other quantities are similarly computed.
i j,k+1 i j,k+ 2 i j,k+ 2
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