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We consider a numerical method, the so-called an unconditionally gradient stable adaptive mesh
refinement scheme, for solving the Cahn-Hilliard equation representing a model of phase separation
in a binary mixture. The continuous problem has a decreasing total energy. We show the same
property for the corresponding discrete problem by using eigenvalues of the Hessian matrix of the
energy functional. An unconditionally gradient stable time discretization is used to remove the
high-order time-step constraints. An adaptive mesh refinement is used to highly resolve narrow
interfacial layers.
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I. INTRODUCTION

The Cahn-Hilliard (CH) equation [1] was originally in-
troduced as a phenomenological model of phase separa-
tion in a binary alloy. It is a leading model in theoretical
materials science and it has been applied to a wide range
of problems. Examples of its applications are phase sep-
aration [2], multiphase fluid flow [3–6], flow visualiza-
tion [7], image processing [8], a morphological instability
caused by elastic non-equilibrium [9] and the formation
of the quantum dots [10] (see Refs. [11,12,27–29] for the
physics of quantum dots). Therefore, an efficient and
accurate numerical solution of the equation is needed to
understand its dynamics. We consider an uncondition-
ally gradient stable adaptive mesh refinement algorithm
for the CH equation:

∂c(x, t)
∂t

= M∆µ(c(x, t)), x ∈ Ω, 0 < t ≤ T, (1)

µ(c(x, t)) = F ′(c(x, t))− ε2∆c(x, t), (2)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain. The quan-
tity c(x, t) is defined to be the difference between the
respective concentrations of the two mixtures’ compo-
nents. The coefficient M is a constant mobility and we
take M ≡ 1 for convenience. The function F (c) is the
bulk free energy of a homogeneous solution. The small
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constant ε is the gradient energy coefficient, which is re-
lated to the interfacial energy. The boundary conditions
on ∂Ω are

∂c

∂n
=
∂µ

∂n
= 0 on ∂Ω, (3)

where n is the unit vector normal to ∂Ω and ∂
∂n denotes

the normal derivative on ∂Ω. The physical meaning of
the first condition is that the total free energy of the
mixture decreases in time. The meaning of the second
one is that none of the mixture can pass through the walls
of the container and is equivalent to ∂∆c

∂n = 0. The CH
equation arises from the Ginzburg-Landau free energy

E(c) :=
∫

Ω

[
F (c) +

ε2

2
|∇c|2

]
dx. (4)

We consider the bulk free energy as a double well po-
tential of the form F (c) = 1

4 (c2− 1)2 as in Ref. [13]. We
differentiate the energy E and the total mass

∫
Ω
cdx in

the sense of Gâteaux to get
d

dt
E(c) =

∫

Ω

(F ′(c)ct + ε2∇c · ∇ct)dx

=
∫

Ω

µctdx =
∫

Ω

µ∆µdx (5)

=
∫

∂Ω

µ
∂µ

∂n
ds−

∫

Ω

∇µ · ∇µdx = −
∫

Ω

|∇µ|2dx ≤ 0

and
d

dt

∫

Ω

cdx =
∫

Ω

ctdx =
∫

Ω

∆µdx =
∫

∂Ω

∂µ

∂n
ds = 0,(6)
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where we have used the boundary conditions in Eq. (3).
Therefore, the total energy is non-increasing in time;
that is, the total energy is a Lyapunov functional for
solutions of the Cahn-Hilliard equation. Furthermore,
the total mass is conserved,
∫

Ω

c(x, t)dx = constant. (7)

Numerical simulations of the Cahn-Hilliard equation
are difficult on a normal computer in a reasonable time
because both the biharmonic operator and the nonlinear
operator impose severe time-step restrictions on using
explicit methods (∆t ∼ h4), so implicit methods must
be used. Additionally, across the spatial interfaces, the
solution undergoes an O(1) change over an O(ε) interval.
If these interfaces are to be accurately resolved, a fine dis-
cretization of space is required. Therefore, an adaptive
mesh refinement of the space is necessary. Ideally, one
would like to use a stable integration algorithm which
would allow accuracy requirements rather than stability
limitations to determine the integration step size. Then,
very small time step sizes, which cause huge computa-
tional costs and make the calculation inefficient, are re-
quired in order to use a reasonable time step size, Eyre
introduced a concept “unconditionally gradient stable
scheme,” in Refs. [14,15].

We use an unconditionally gradient stable scheme with
an adaptive mesh refinement to solve the resulting dis-
crete equations accurately and efficiently. In Eyre’s pa-
pers [14,15], he provided the idea and the theory of the
scheme a little vaguely. We here provide mathematical
reasoning for the scheme. We emphasize that while the
methods will allow us to take arbitrarily large time steps,
the accuracy of the numerical solution depends on choos-
ing a small enough time step to resolve the dynamics [15].

This paper is organized as follows: In Section II, we
briefly review a derivation of the Cahn-Hilliard equation.
This derivation is based on constrained gradient dynam-
ics for a physically motivated functional. In Section III,
we describe the discrete scheme and its properties, such
as mass conservation and total energy, decrease. We
present the numerical results in Section IV. Section V
contains a discussion.

II. THE CAHN-HILLIARD EQUATION

In this section, we review the Cahn-Hilliard equation.
We follow the analysis in Refs. [16,17]. When a binary
alloy is rapidly quenched from a melt to a low temper-
ature, the homogeneous mixture usually becomes unsta-
ble. A pattern of domain formation, called spinodal de-
composition, takes places as the two metals within the
alloy separate out. From the initial phase of spinodal
decomposition, the mixture quickly becomes inhomoge-
neous, forming a fine-grained structure that exhibits a

characteristic length scale. After that, a slow coarsen-
ing process can be observed while the above-mentioned
characteristic length scale grows.

In a series of papers [1,18,19], Cahn and Hilliard an-
alyzed these processes mentioned above and they pro-
posed the Cahn-Hilliard equation. The derivative of
the bulk free energy F ′(c) = c(c2 − 1) has zeros c0 =
0, c1 = −1 and c2 = 1. F ′′(c) has zeroes c∗1 = − 1√

3
and

c∗2 = 1√
3
. F ′′(c) > 0 for c < c∗1 or c > c∗2, F ′′(c) < 0 for

c∗1 < c < c∗2. The intervals (c1, c∗1), (c∗1, c
∗
2) and (c∗2, c2)

are called metastable interval 1, the spinodal interval,
and metastable interval 2, respectively [17].

Constant functions c = cm are equilibria for Eq. (1).
These functions model the homogeneous mixture. Such
functions are unstable if cm is in the spinodal interval,
that is, if F ′′(cm) < 0. Such uniform mixture c = cm is
then very unstable and the growth of instabilities results
in phase separation, which is called spinodal decomposi-
tion.

Now, we review a derivation of the Cahn-Hilliard equa-
tion as a gradient flow. It is natural to seek a law of
evolution in the form

∂c

∂t
= −grad0E(c). (8)

The symbol “grad0” here denotes the gradient on the
manifold, in the sense of the Gâteaux derivative in a
Hilbert space, defined by Eq. (7). Let the domain D of
the functional E be the set of smooth enough functions
c defined in Ω and satisfying ∂c

∂n = 0. Let M0 be the
linear manifold in D of functions c satisfying

∫
Ω
cdx = 0.

Given any c ∈ D, define Mc = c+M0. Because of Eq. (7)
and considering c−(c)Ω, we may consider functions with
zero average. Here, (c)Ω = 1

|Ω|
∫

Ω
c means the average of

c over Ω.
For any Hilbert space H, we denote H∗ as its dual

space. Denote by Ḣ−1 the zero-average subspace of the
dual (H1)∗ of the usual Hilbert space H1 = W 1,2(Ω).
Let Ḣ1 be the zero-average subspace of H1, with norm
‖∇u‖L2 and inner product (u, v)Ḣ1 ≡ (∇u,∇v)L2 for
u, v ∈ Ḣ1. The inner product of u, v ∈ Ḣ−1 is defined
by

(u, v)Ḣ−1 ≡ (∇φu,∇φv)L2 ,

where φu, φv ∈ Ḣ1 are the associates of u, v. For example
[20–22], φu satisfy

∆φu = u in Ω,
∂φu
∂n

= 0 on ∂Ω,
∫

Ω

φudx = 0.

Then, grad0 is defined in the following way: Let
Ċ∞0 (Ω) be the set of smooth functions with compact sup-
port and with zero average. Then, Ċ∞0 is dense in Ḣ−1.
Let c be sufficiently smooth and satisfy ∂c

∂n = ∂∆c
∂n = 0

on ∂Ω. Then, we have that for all v ∈ Ċ∞0 ,

(grad0E(c), v)Ḣ−1 =
d

dθ
E(c+ θv)

∣∣
θ=0
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= lim
θ→0

1
θ

(E(c+ θv)− E(c)
)

=
∫

Ω

(
F ′(c)− ε2∆c

)
vdx. (9)

Put ∆φv in place of v in Eq. (9). An integration by
parts then yields∫

Ω

[F ′(c)− ε2∆c]∆φvdx

= −
∫

Ω

∇[F ′(c)− ε2∆c] · ∇φvdx (10)

= (−∇[F ′(c)− ε2∆c],∇φv)L2 (11)
= (−∇ · ∇[F ′(c)− ε2∆c],∇ · ∇φv)Ḣ−1 (12)

= (−∆[F ′(c)− ε2∆c], v)Ḣ−1 (13)

because ∇φv has zero normal component on ∂Ω. On the
space Ḣ−1, the Ginzburg-Landau free energy E is defined
by Eq. (4). We identify

grad0E(c) ≡ −∆[F ′(c)− ε2∆c] (14)

and specify its domain as those functions in D that sat-
isfy Eq. (3) [17].

III. NUMERICAL ANALYSIS

In this section, we present a fully discrete scheme for
the solution of the CH equation. In addition, we prove
discrete versions of mass conservation and energy dis-
sipation, which immediately imply the stability of the
numerical scheme. We consider an unconditionally gra-
dient stable scheme for time discretization introduced in
Eyre [14,15] and show that the discrete total free energy
is nonincreasing for any time step size ∆t. For simplicity
of exposition, we shall discretize the CH equation, Eqs.
(1) and (2), in one-dimensional space, i.e., Ω = (a, b).
Two and three-dimensional discretizations are defined
analogously.

Let N be a positive even integer, h = (b−a)/N be the
uniform mesh size and Ωh = {xi = (i−0.5)h, 1 ≤ i ≤ N}
be the set of cell-centers. Let cni and µni be approxima-
tions of c(xi, n∆t) and µ(xi, n∆t), respectively, where ∆t
is the time step. We first implement the zero Neumann
boundary condition, Eq. (3), by requiring that for each
n,

∇hcn1
2

= ∇hcnN+ 1
2

= ∇hµn1
2

= ∇hµnN+ 1
2

= 0, (15)

where the discrete differentiation operator is ∇hcni+ 1
2

=
(cni+1 − cni )/h. We then define a discrete Laplacian by
∆hdi = (∇hdi+ 1

2
−∇hdi− 1

2
)/h and discrete l2 inner prod-

uct by

〈d, e〉h = h

N∑

i=1

diei and

(∇hd,∇he)h = h

N∑

i=0

∇hdi+ 1
2
∇hei+ 1

2
,

where d = (d1, d2, · · · , dN ), e = (e1, · · · , eN ) and ∇hd =
(∇hd 1

2
,∇hd 3

2
, · · · , ∇hdN+ 1

2
). We also define the discrete

norm as ||c||2h = 〈c, c〉h. Then, using the boundary con-
dition Eq. (15), we have

〈∆hd, e〉h = 〈d,∆he〉h = −(∇hd,∇he)h. (16)

For dissipative dynamics such as the CH equation, a dis-
crete time stepping algorithm is defined to be uncondi-
tionally gradient stable if the discrete total free energy is
nonincreasing for any size of a time step ∆t.

Eyre’s theorem [15] shows that an unconditionally gra-
dient stable algorithm results for the CH equation if we
can split the free energy appropriately into contractive
and expansive parts,

E(c) =
∫ b

a

[
F (c) +

ε2

2
c2x

]
dx (17)

=
∫ b

a

[
c4 + 1

4
+
ε2

2
c2x

]
dx−

∫ b

a

c2

2
dx

= Ec(c)− Ee(c),
and then treat the contractive part Ec(c) implicitly and
the expansive part −Ee(c) explicitly. We use the nonlin-
early stabilized splitting scheme [15] that involves a semi-
implicit time and centered difference space discretiza-
tions of Eqs. (1) and (2):

cn+1
i − cni

∆t
= ∆hµ

n+ 1
2

i for i = 1, · · · , N, (18)

µ
n+ 1

2
i = νn+1

i − cni , (19)

νn+1
i = (cn+1

i )3 − ε2∆hc
n+1
i . (20)

The main purpose of this section is to show that the
scheme in Eqs. (18)-(20) inherits the characteristic prop-
erties, has a decrease in the total energy and maintains
the conservation of mass corresponding to Eqs. (6) and
(6). Let cn = (cn1 , c

n
2 , · · · , cnN ) and µn = (µn1 , µ

n
2 , · · · , µnN )

and 1 = (1, 1, · · · , 1); then, the second assertion follows
by using a discrete summation by parts and the bound-
ary condition Eq. (15):

〈cn+1,1〉h = 〈cn,1〉h + ∆t〈∆hµ
n+ 1

2 ,1〉h
= 〈cn,1〉h −∆t(∇hµn+ 1

2 ,∇h1)h = 〈cn,1〉h. (21)

To show the decrease in the discrete total energy, first
we define a discrete Lyapunov functional,

Eh(cn) =
h

4

N∑

i=1

((cni )2 − 1)2 +
ε2h

2

N∑

i=0

|∇hcni+ 1
2
|2. (22)

for each n. It is useful to break Eh(cn) into three parts:

E(1)(cn) = −h
2

N∑

i=1

(cni )2,

E(2)(cn) =
ε2h

2

N∑

i=0

∣∣∇hcni+ 1
2

∣∣2, and
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E(3)(cn) =
h

4

N∑

i=1

(
(cni )4 + 1

)
.

We define a decomposition of Eh(cn) as Ehc (cn) =
E(2)(cn) + E(3)(cn) and Ehe (cn) = −E(1)(cn). We define
gradh as the minus of the Laplacian of the variational
derivative with respect cni ; i.e.,

gradhEh(cn)i = −∆h
δEh(cn)
δcni

= −∆h((cni )3 − cni − ε2∆hc
n
i )

= −∆h(cni )3 + ∆hc
n
i + ε2∆2

hc
n
i , (23)

where the discrete biharmonic operator ∆2
hci is defined

as ∆h(∆hci). We can rewrite the numerical scheme in
Eqs. (18)-(20) in terms of a gradient of the discrete total
energy; i.e.,

cn+1
i − cni

∆t
= −gradhEhc (cn+1)i + gradhEhe (cn)i,

for i = 1, · · · , N. (24)

The Hessian of E(1)(c), denoted by H(1), is the Jacobian
of gradhE(1)(c) and is thus given by

H(1) = JgradhE(1)(c)

=
1
h2




−1 1 0
1 −2 1

. . . . . . . . .
1 −2 1

0 1 −1



,

the Hessian matrix of E(2)(c) is given as

H(2) = JgradhE(2)(c)

=
ε2

h4




2 −3 1 0
−3 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −3

0 1 −3 2




,

and the Hessian matrix of E(3)(c) is given as

H(3) = JgradhE(3)(c)

=
3
h2




c21 −c22 0
−c21 2c22 −c23

. . . . . . . . .
−c2N−2 2c2N−1 −c2N

0 −c2N−1 c2N




= −3H(1)




c21 0 0
0 c22 0

. . . . . . . . .
0 c2N−1 0

0 0 c2N



,

where we have used the boundary condition in Eq. (15).
The eigenvalues of H(1), H(2) and H(3) are

λ
(1)
k = − 4

h2
sin2 (k − 1)π

2N
, k = 1, 2, · · · , N, (25)

λ
(2)
k = ε2(λ(1)

k )2 =
16ε2

h4
sin4 (k − 1)π

2N
, (26)

0 ≤ λ(3)
k ≤

12
h2

sin2 (N − 1)π
2N

max
1≤i≤N

c2i . (27)

Note that λ(1)
k is non-positive and that λ(2)

k and λ
(3)
k

are non-negative. Let vi for i = 1, · · · , N be common
orthonormal eigenvectors of H(1) and H(2) correspond-
ing to the eigenvalues, λ(1)

i and λ
(2)
i , respectively. Let

λe1, λ
e
2, . . . , λ

e
N be eigenvalues of J(gradhEhe ) = −H(1);

i.e.,

λek = −λ(1)
k =

4
h2

sin2 (k − 1)π
2N

, k = 1, 2, · · · , N. (28)

We can expand cn+1 − cn in the basis of eigenvalues vi
as follows.

cn+1 − cn =
N∑

k=1

αkvk. (29)

The decrease of the discrete energy functional is estab-
lished in the following theorem: If cn+1 is the solution
of Eqs. (18) - (20) with given cn, then

Eh(cn+1) ≤ Eh(cn). (30)

Next, we prove Eq. (30). With an exact Taylor expan-
sion of Eh(cn) about cn+1 up to second order, we have

Eh(cn) = Eh(cn+1) + 〈gradhEh(cn+1), cn − cn+1〉h
+
〈
J(gradhEh)(ξ)

2
(cn − cn+1), cn − cn+1

〉

h

,

where ξ = θcn + (1 − θ)cn+1, 0 ≤ θ ≤ 1. Rearranging
the terms and using Eh = E(1) + E(2) + E(3), Eq. (29),
Eq. (24) and the mean value theorem, we have

Eh(cn+1)− Eh(cn)

=
〈
gradhEh(cn+1)− J(gradhEh)(ξ)

2
×(cn+1 − cn), cn+1 − cn

〉
h

≤ 〈gradhEh(cn+1)− 1
2

(H(1) + H(2))

×(cn+1 − cn), cn+1 − cn〉h
=
〈
gradhEh(cn+1), cn+1 − cn

〉
h

−
N∑

j,k=1

〈1
2

(H(1) + H(2))αjvj , αkvk
〉
h

=
〈

gradhEhc (cn+1)− gradhEhe (cn+1)

− 1
∆t

(cn+1 − cn)− gradhEhc (cn+1)
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(d) t = 39.06

Fig. 1. Evolution of the concentration c(x, y, t) with an average concentration cm = −0.4. The times are shown below each
figure. The effective fine grid resolution for 2 levels of adaptivity is 256 × 256.

+gradhEhe (cn), cn+1 − cn
〉
h

−
N∑

j,k=1

〈1
2

(λ(1)
j + λ

(2)
j )αjvj , αkvk

〉
h

= −
〈

gradhEhe (cn+1)− gradhEhe (cn), cn+1 − cn
〉
h

− 1
∆t
‖cn+1 − cn‖2h

−
N∑

j,k=1

〈1
2

(λ(1)
j + λ

(2)
j )αjvj , αkvk

〉
h

= −
N∑

j,k=1

〈[
J(gradhEhe ) +

1
2

(λ(1)
j + λ

(2)
j )I

]

×αjvj , αkvk
〉
h
− 1

∆t
‖cn+1 − cn‖2h

= −
N∑

k=1

1
2
(
λek + λ

(2)
k

)
α2
k −

1
∆t
‖cn+1 − cn‖2h ≤ 0,

where we have used the fact that λek and λ
(2)
k are both

non-negative. Therefore, we have proven the decrease of
the discrete total energy. This completes the proof. The

theorem holds for any time step ∆t; hence, the method
is unconditionally gradient stable.

There are many authors (for example, see Refs. [13,23,
24]) who cited Ref. [14]. Note that the proof in Ref. [14]
is vague even though the theorem itself is true. There
are a lot of counter examples for which the claim, “all
of the eigenvalues of J(gradhEhe ) dominate the largest
eigenvalues of −J(gradhEh)” does not hold. For exam-
ple, let us consider N = 10, h = 1/N , ε = 2h and c = 0;
then, the eigenvalues of J(gradhEhe ) are 4

h2 sin2 (k−1)π
20

for k = 1, 2, · · · , 10. In particular, when k = 1, an
eigenvalue is zero. On the other hand, the eigenvalues
of −J(gradhEh) are 4

h2 sin2 (k−1)π
20 − 16ε2

h4 sin4 (k−1)π
20 for

k = 1, 2, · · · , 10. When k = 2, one of eigenvalues of
−J(gradhEh) is 4

h2 sin2 π
20− 16ε2

h4 sin4 π
20 ≈ 5.95595, which

is greater than zero.

IV. NUMERICAL EXAMPLES

We validate our method via spinodal decomposition,
mass conservation and an energy decrease. We imple-
ment the unconditionally gradient stable scheme in Eqs.
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(d) t = 39.06

Fig. 2. Evolution of the concentration c(x, y, t) with an average concentration cm = 0. The times are shown below each
figure. The effective fine grid resolution for 2 levels of adaptivity is 256 × 256.

(18)-(20) with the recently developed adaptive mesh re-
finement methodology. For a detailed description of the
numerical method used in solving these equations, please
refer to Refs. [25,26].

1. Spinodal Decomposition

The initial state is taken to be c(x, y, 0) = cm +
0.05rand(x,y) on the computational domain Ω = [0, 1]×
[0, 1]. The average concentration is cm and rand(x,y) is
a random number between −1 and 1. We use the simula-
tion parameters ε = 0.005 and ∆t = 1/256. It should be
emphasized that while the methods will allow us to take
arbitrarily large time steps, the accuracy of the numerical
solution depends on choosing a small enough time step
to resolve the fast-time-scale dynamics. We also use a
base 64× 64 mesh with two levels of refinement. There-
fore, the effective fine mesh size is 256 × 256. For the
sharp interface limit on a unit square domain and dou-
ble periodic boundary conditions, it can be shown that if
|cm| > 1−2/π, then the minimum energy is achieved by a
single circular domain. If |cm| < 1 − 2/π, the minimum

energy configuration consists of two straight interfaces
parallel to either the x or the y axis. Figure 1 shows an
evolution of the concentration c(x, y, t) with an average
concentration cm = −0.4 at times t = 0.39, 2.34, 7.42
and 39.06. Figure 2 shows the evolution of the concen-
tration c(x, y, t) with an average concentration cm = 0
at times t = 0.39, 1.56, 5.47 and 39.06. We note that
in the limit of the sharp interface, figure 1(d) and figure
2(d) are the global minimizers of the total free energy
for the average concentrations cm = −0.4 and cm = 0,
respectively.

2. The Decrease of the Total Energy and Con-
servation of Mass

In Figure 3, the time evolution of the non-dimensional
discrete total energy Eh(cn)/Eh(c0) (solid line: cm =
−0.4 and dashed-dot line: cm = 0) and the average con-
centrations (diamond: cm = −0.4 and circle: cm = 0)
of the previous numerical experiments are shown. Also,
the inscribed small figures are the concentration fields at
indicated times. The energies are non-increasing and the
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Fig. 3. Non-dimensional discrete total energy Eh(cn)/Eh(c0) (solid line: cm = −0.4 and dashed-dot line: cm = 0) and the
average concentrations (diamond: cm = −0.4 and circle: cm = 0) of the numerical solutions.

average concentrations are conserved. These numerical
results agree well with the total energy dissipation prop-
erty in Eq. (30) and the conservation property in Eq.
(21).

V. CONCLUSIONS

In this paper, we briefly reviewed the Cahn-Hilliard
equation and by using eigenvalues of the Hessian ma-
trix of the energy functional, we showed explicitly that
the scheme in Eqs. (18)-(20) is an unconditionally gra-
dient stable scheme. Thus, we clarified the details of
the proof. In particular, there are a few equations in
Ref. [15] that lack factors of vector norms. More sub-
stantively, we found that the proof of Eyre’s theorem
as originally presented was slightly ambiguous and ab-
stractive to follow. An adaptive mesh methodology was
used to focus the computational effort to regions near
the interfacial transition zone.
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