
Computer Physics Communications 183 (2012) 2107–2115
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

An efficient and accurate numerical algorithm for the vector-valued
Allen–Cahn equations
Hyun Geun Lee, Junseok Kim ∗

Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 7 February 2012
Received in revised form
11 May 2012
Accepted 13 May 2012
Available online 19 May 2012

Keywords:
Vector-valued Allen–Cahn equations
Operator splitting
Linear geometric multigrid
Grain growth
Multiple crystals growth

a b s t r a c t

In this paper, we consider the vector-valued Allen–Cahn equations which model phase separation
in N-component systems. The considerations of solving numerically the vector-valued Allen–Cahn
equations are as follows: (1) the use of a small time step is appropriate to obtain a stable solution and (2) a
sufficient number of phase-field variables is required to capture the correct dynamics. However, stability
restrictions on the time step and a large number of phase-field variables cause huge computational costs
andmake the calculation very inefficient. To overcome this problem, we present an efficient and accurate
numerical algorithm which is based on an operator splitting technique and is solved by a fast solver such
as a linear geometric multigrid method. The algorithm allows us to convert the vector-valued Allen–Cahn
equations with N components into a system of N − 1 binary Allen–Cahn equations and drastically
reduces the required computational time and memory. We demonstrate the efficiency and accuracy of
the algorithm with various numerical experiments. Furthermore, using our algorithm, we can simulate
the growth of multiple crystals with different orientation angles and fold numbers on a single domain.
Finally, the efficiency of our algorithm is validated with an example that includes the growth of multiple
crystals with consideration of randomness effects.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Allen–Cahn (AC) equation was originally introduced as a
phenomenological model for antiphase domain coarsening in a
binary alloy [1]. The AC equation and its various modified forms
have been applied to a wide range of problems, such as phase
transitions [1], image analysis [2,3], motion by mean curvature
[4–10], two-phase fluid flows [11], crystal growth [12–14], and
grain growth [15–19]. Several techniques have been developed,
including boundary integral [20,21], cellular automata [22,23],
front-tracking [24,25], level-set [26–28], and phase-field [28–33]
methods to solve numerically the AC equation and its various
modified forms. Among these various methods, the phase-field
method is popular andwidely used since it does not require explicit
tracking of the interface.

An important class of phase-field models is the multi-phase
field model [34,35], in which several phase-field variables are
used to describe components. In this paper, we employ a
multi-phase field model to solve numerically the vector-valued
formulation of the AC equation. The vector-valued AC equations
were introduced in Garcke et al. [34] and have been extensively

∗ Corresponding author. Tel.: +82 2 3290 3077; fax: +82 2 929 8562.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: http://math.korea.ac.kr/∼cfdkim/ (J. Kim).

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.05.013
used [36–38], allowing us to consider an arbitrary number
of components. In multi-phase field simulations, one has the
following considerations: (1) the use of a small time step in a
numerical algorithm is appropriate to obtain a stable solution;
(2) the grid resolution must be fine enough to accurately resolve
the interfaces; and (3) for a problem such as grain growth, a
sufficient number of phase-field variables is required to represent
discretized grain orientations. However, stability restrictions on
the time step and a large number of phase-field variables
cause huge computational costs and make the calculation very
inefficient.

In many previous papers, implicit Euler’s or unconditionally
gradient stable (given by Eyre [39]) methods are used to obtain
a sufficiently large time step. However, Eyre [39] showed that
an implicit Euler’s method suffers from instability if a large time
step is used. Also, in [40], the authors addressed the unconditional
stability of Eyre’s scheme and showed that the equivalent time
step is bounded by a small value. Moreover, except for an explicit
Euler’s method, we need to solve nonlinear systems with a large
number of phase-field variables and the systems become bigger
and bigger for an increasing number of phase-field variables. To
overcome this problem, a variety of numerical approaches have
been developed, including adaptive mesh refinement [41–45],
parallel computing [46,47], and moving meshes [48]. However,
such approaches can be difficult to implement or handle only a few
phase-field variables.

http://dx.doi.org/10.1016/j.cpc.2012.05.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/~cfdkim/
http://math.korea.ac.kr/~cfdkim/
http://math.korea.ac.kr/~cfdkim/
http://math.korea.ac.kr/~cfdkim/
http://math.korea.ac.kr/~cfdkim/
http://math.korea.ac.kr/~cfdkim/
http://dx.doi.org/10.1016/j.cpc.2012.05.013

2108 H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115
In this paper, we present an efficient and accurate numerical
algorithm, which is based on an operator splitting technique
and is solved by a fast solver such as the linear geometric
multigrid method. The algorithm allows us to convert the vector-
valued Allen–Cahn equations with N components into a system
of N − 1 binary Allen–Cahn equations and drastically reduces
the computational time and memory requirements. Further, the
convergence rate of the computing time of our algorithm is linear
with respect to the number of phase-field variables.

Although the interaction between multiple crystals has been
demonstrated in many studies [26,49–51], the randomness of
crystal orientation and fold number on a single domain has not,
to our knowledge, been considered. However, using our algorithm,
we can simulate the growth of multiple crystals with different
orientation angles and fold numbers on a single domain.

This paper is organized as follows. In Section 2, we briefly
review a derivation of the vector-valued AC equations. In Section 3,
we present an efficient and accurate numerical algorithm for the
vector-valued AC equations and its computational advantage is
explained. The phase-field model of multiple crystals growth is
summarized in Section 4. Numerical experiments showing the
efficiency and accuracy of the algorithm are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. The vector-valued Allen–Cahn equations

We consider the evolution of multi-component systems on a
polygonal (polyhedral) domain Ω ⊂ Rd, d = 1, 2, 3. Let c =

(c1, . . . , cN) be a vector-valued phase-field. The components ci for
i = 1, . . . ,N represent mole fractions of different components in
the system. Clearly the total mole fractions must sum to 1, i.e.,

c1 + · · · + cN = 1, (1)

so that admissible states will belong to the Gibbs N-simplex

G :=

c ∈ RN

 N
i=1

ci = 1, 0 ≤ ci ≤ 1

.

Without loss of generality, we postulate that the free energy can
be written as follows:

F (c) =

Ω

F(c)
ϵ2

+
1
2

N
i=1

|∇ci|2

dx,

where F(c) = 0.25
N

i=1 c
2
i (1 − ci)2 and ϵ > 0 is the gradient

energy coefficient. The natural boundary condition for the vector-
valued AC equations is the zero Neumann boundary condition:

∇ci · n = 0 on ∂Ω, (2)

where n is the unit normal vector to ∂Ω .
Now we review a derivation of the vector-valued AC equations

as a gradient flow under the additional constraint (1), which has to
hold everywhere at any time. It is natural to seek a law of evolution
in the form

∂c
∂t

= −gradF (c). (3)

The symbol ‘‘grad’’ here denotes the gradient on the manifold in L2
space.

There are two main approaches in which the constraint
(1) can be ensured, either by the use of a variable Lagrange
multiplier [32,34,52,53] or by specifying explicitly how the
phases vary with respect to one another [16,54,55]. In recent
work [56], Bollada et al. proposed two multi-phase formula-
tions that have no N dependence and do not generate spu-
rious additional phases at binary interfaces. Here, in order to
ensure the constraint (1), we use a variable Lagrange multi-
plier β(c) [34] and set ∂F

∂c = (∂F
∂c1
, ∂F
∂c2
, . . . , ∂F

∂cN
) = f(c) =

(f (c1), f (c2), . . . , f (cN)), where f (c) = c(c − 0.5)(c − 1). Let
1 = (1, . . . , 1) ∈ RN . Using a general smooth vector-valued func-
tion ξ, we set

d = (d1, d2, . . . , dN) = ξ −
1
N

N
i=1

ξi1, then
N
i=1

di = 0.

Let β(c) = (−1/N)
N

i=1 f (ci). Then we have the following:

(gradF (c), d)L2 =
d
dη

F (c + ηd)

η=0

=
d
dη

Ω

N
i=1

1

4ϵ2
(ci + ηdi)2(1 − (ci + ηdi))2

+
1
2

|∇(ci + ηdi)|2

dx

η=0

=

Ω

N
i=1

1
ϵ2

dif (ci)+ ∇di · ∇ci

dx

=

Ω

1
ϵ2

f(c) · ξ − f(c) ·

1
N

N
i=1

ξi1

+

N
i=1

∇

ξi −

1
N

N
j=1

ξj

· ∇ci

dx

=

Ω

1
ϵ2
(f(c) · ξ + β(c)1 · ξ)

+

N
i=1

∇ξi · ∇ci −

1
N

∇

N
j=1

ξj · ∇ci

dx

=

Ω

1
ϵ2
(f(c)+ β(c)1) · ξ dx

+

N
i=1

∂Ω

ξi∇ci −

1
N

N
j=1

ξj∇ci

· n ds

−

Ω

ξi∆ci −

1
N

N
j=1

ξj∆ci

dx

=

Ω

1
ϵ2
(f(c)+ β(c)1) · ξ dx

−

Ω

N
i=1

ξi∆ci −

1
N

N
j=1

ξj∆ci

dx

=

Ω

1
ϵ2
(f(c)+ β(c)1)−∆c

· ξ dx

=

Ω

1
ϵ2
(f(c)+ β(c)1)−∆c

·

d +

1
N

N
i=1

ξi1

dx

=

Ω

1
ϵ2
(f(c)+ β(c)1)−∆c

· d dx

+

1
N

N
i=1

ξi

Ω

1
ϵ2

N
i=1

(f (ci)+ β(c))−

N
i=1

∆ci

dx

=

Ω

1
ϵ2
(f(c)+ β(c)1)−∆c

· d dx

=

1
ϵ2
(f(c)+ β(c)1)−∆c, d

L2
,

H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115 2109
where we have used the boundary condition (2). We identify
gradF (c) = (f(c)+ β(c)1) /ϵ2 − ∆c, then Eq. (3) becomes the
vector-valued AC equations

∂c
∂t

= −

f(c)+ β(c)1

ϵ2
−∆c

. (4)

3. Numerical algorithm

In this section, we describe an operator splitting algorithm for
solving the vector-valued AC equations. For simplicity and clarity
of exposition, we shall discretize the vector-valued AC equations
in one-dimensional space, i.e., Ω = (a, b). Two- and three-
dimensional discretizations are defined analogously. Note that we
only need to solve equations with c1, c2, . . . , cN−1, since cN =

1 − c1 − c2 − · · · − cN−1. Let c = (c1, c2, . . . , cN−1).
Let Nx be a positive even integer, h = (b − a)/Nx be a uniform

grid size, and Ωh = {xi = (i − 0.5)h, 1 ≤ i ≤ Nx} be the set
of cell-centers. Let cni be the approximations of c(xi, n∆t), where
∆t = T/Nt is the time step, T is the final time, and Nt is the total
number of time steps. The zero Neumann boundary condition (2)
is first implemented by requiring that for each n,

∇hcn1
2

= ∇hcnNx+
1
2

= 0,

where the discrete differentiation operator is ∇hcni+ 1
2

= (cni+1 −

cni)/h. We then define the discrete Laplacian as∆hcni = (∇hcni+ 1
2
−

∇hcni− 1
2
)/h and the discrete L2 inner product as

(c, d)h = h
N−1
k=1

Nx
i=1

ckidki. (5)

We also define a discrete norm associated with (5) as ∥c∥2
=

(c, c)h. We redefine f(c) and 1 to f(c) = (f (c1), f (c2), . . . , f (cN−1))

and 1 = (1, 1, . . . , 1) ∈ RN−1. We discretize Eq. (4) in time by an
operator splitting algorithm:

c∗

i − cni
∆t

= ∆hc∗

i −
β(cni)1
ϵ2

, (6)

cn+1
i − c∗

i

∆t
= −

f(cn+1
i)

ϵ2
. (7)

Eq. (6) is an implicit Euler’s method for ct = ∆c −
β(c)1
ϵ2

with an initial condition cn. The resulting implicit discrete
system of equations can be solved by a fast solver, such as
the linear geometric multigrid method [57,58]. Also, a pointwise
Gauss–Seidel relaxation scheme is used as the smoother in the
multigrid method. Eq. (7) can be considered as an approximation
of the equation

ct = −
f(c)
ϵ2

(8)

by an implicit Euler’s method with an initial condition c∗. We
can solve Eq. (8) analytically by the method of separation of
variables [59]. The solution is given as follows:

ckn+1
i = 0.5 +

ck∗

i − 0.5
e

−∆t
2ϵ2 + (2ck∗

i − 1)2(1 − e
−∆t
2ϵ2)

for k = 1, 2, . . . ,N − 1.
Fig. 1. Computational algorithm for solving the vector-valued AC equations.

The numerical algorithm is shown schematically in Fig. 1.
In Eq. (6), the variable Lagrange multiplier β(c) is determined

by the solutions at time level n. By treating β(c) explicitly, there is
no relation between the solutions at time level ∗. Thus the vector-
valued AC equations can be solved in a decoupled way, i.e.,

ck∗

i − ckni
∆t

= ∆hck∗

i −
β(cni)
ϵ2

,

ckn+1
i = 0.5 +

ck∗

i − 0.5
e

−∆t
2ϵ2 + (2ck∗

i − 1)2

1 − e

−∆t
2ϵ2

for k = 1, 2, . . . ,N − 1.

Thismeans thatweonly solve the binaryAC equationN−1 times to
solve the vector-valued AC equations. Our algorithm is accurate to
second order in space and first order in time (thiswill be confirmed
numerically in Section 5.1). The accuracy in time can be improved
by using high-order multistep methods [60–64].

4. The growth of multiple dendrites with k-fold symmetry

One of applications of the vector-valued AC equations is the
growth of multiple dendrites. Extending the algorithm presented
in Section 3,we can simulate the growth ofmultiple dendriteswith
different orientation angles and fold numbers on a single domain.
In this section, the phase-field model for the growth of multiple
dendrites is summarized and the numerical solution is presented.

4.1. The phase-field model

A two-dimensional phase-field model for the growth of
multiple k-fold symmetric dendrites is as follows:

ϵ2(ci)
∂ci
∂t

= ∇ · (ϵ2(ci)∇ci)

+ [ci − 0.5 − λUci(1 − ci)]ci(1 − ci)

+

|∇ci|2ϵ(ci)

∂ϵ(ci)
∂cix

x
+

|∇ci|2ϵ(ci)

∂ϵ(ci)
∂ciy

y

, (9)

∂U
∂t

= D∆U +

N
i=1

∂ci
∂t

for i = 1, 2, . . . ,N,

where ci is the phase-field of the ith dendrite, which varies from
unity in the solid phase to zero in the liquid phase, ϵ(ci) is an
anisotropy function, λ is a dimensionless parameter that controls
the strength of the coupling between the phase and diffusion fields,
and U = (T − TM)/(L/cp) is a dimensionless temperature field.
Here T is the temperature, TM is the melting temperature, L is the
latent heat of melting, and cp is the specific heat at constant pres-
sure.D = ατ0/W 2

0 is the dimensionless thermal diffusivity,α is the
thermal diffusivity of the solid, τ0 is the characteristic time, andW0
is the characteristic length, which is typically the diffuse interface
width. The relationsW0 = λd0/a1 and τ0 = (d20/α)a2λ

3/a21 follow

2110 H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115
from the thin-interface analysis of Karma and Rappel [65], where
d0 is the capillary length and a1 and a2 are constants.

For each dendrite, the angle between the direction normal to
the interface and the x-axis is calculated from the phase-field via
θi = arctan(ciy/cix). Then, by replacing ϵ(ci) with ϵ(θi) = 1 +

ϵk cos(kθi), where ϵk is the strength of anisotropy and k is a fold
number, we can simplify the third term on the right-hand side of
Eq. (9):

|∇ci|2ϵ(ci)
∂ϵ(ci)
∂cix

x

=

(ci2x + ci2y)ϵ(θi)ϵ

′(θi)

−

ciy
ci2x + ci2y

x

= −(ϵ′(θi)ϵ(θi)ciy)x.

In a similar way, we get
|∇ci|2ϵ(ci)

∂ϵ(ci)
∂ciy

y

= (ϵ′(θi)ϵ(θi)cix)y.

Therefore the phase-field equations for multiple k-fold symmetric
dendrites can be rewritten as

ϵ2(θi)
∂ci
∂t

= ∇ · (ϵ2(θi)∇ci)

+ [ci − 0.5 − λUci(1 − ci)]ci(1 − ci)
− (ϵ′(θi)ϵ(θi)ciy)x + (ϵ′(θi)ϵ(θi)cix)y, (10)

∂U
∂t

= D∆U +

N
i=1

∂ci
∂t

for i = 1, 2, . . . ,N. (11)

4.2. Numerical algorithm

We discretize Eqs. (10) and (11) in time by an operator splitting
algorithm:

ϵ2(θi
n)

cin+1
− cin

∆t
= ϵ2(θi

n)∆hcin+1,2

+ 2ϵ(θin)∇hϵ(θi
n) · ∇hcin

− F ′(cin+1)− 4λUnF(cin+1,1)

− (ϵ′(θi)ϵ(θi)ciy)
n
x + (ϵ′(θi)ϵ(θi)cix)

n
y, (12)

Un+1
− Un

∆t
= D∆hUn+1

+

N
i=1

cin+1
− cin

∆t

for i = 1, 2, . . . ,N,

where F(c) = 0.25c2(1 − c)2 and F ′(c) = c(c − 0.5)(c − 1). Here
cin+1,1 and cin+1,2 are defined in the operator splitting algorithm.
Eq. (12) can be split into three equations:

ϵ2(θi
n)

cin+1,1
− cin

∆t
= 2ϵ(θin)∇hϵ(θi

n) · ∇hcin

− (ϵ′(θi)ϵ(θi)ciy)
n
x + (ϵ′(θi)ϵ(θi)cix)

n
y,

ϵ2(θi
n)

cin+1,2
− cin+1,1

∆t
= ϵ2(θi

n)∆hcin+1,2

− 4λUnF(cin+1,1),

ϵ2(θi
n)

cin+1
− cin+1,2

∆t
= −F ′(cin+1). (13)
Eq. (13) can be considered as an approximation of the equation

ct = −
c(c − 0.5)(c − 1)

ϵ2
(14)

by an implicit Euler’s method with an initial condition cin+1,2.
We can solve Eq. (14) analytically by the method of separation of
variables. The solution is given as follows:

cin+1
= 0.5 +

cin+1,2
− 0.5

e
−

∆t
2ϵ2(θin) + (2cin+1,2 − 1)2

1 − e

−
∆t

2ϵ2(θin)

 .
Finally, the numerical algorithm can be written as follows: for
i = 1, 2, . . . ,N

ϵ2(θi
n)

cin+1,1
− cin

∆t
= 2ϵ(θin)∇hϵ(θi

n) · ∇hcin

− (ϵ′(θi)ϵ(θi)ciy)
n
x + (ϵ′(θi)ϵ(θi)cix)

n
y,

ϵ2(θi
n)

cin+1,2
− cin+1,1

∆t
= ϵ2(θi

n)∆hcin+1,2

− 4λUnF(cin+1,1), (15)

cin+1
= 0.5 +

cin+1,2
− 0.5e

−
∆t

2ϵ2(θin) + (2cin+1,2 − 1)2

1 − e

−
∆t

2ϵ2(θin)

 ,

Un+1
− Un

∆t
= D∆hUn+1

+

N
i=1

cin+1
− cin

∆t
. (16)

Eqs. (15) and (16) can be solved by a linear geometric multigrid
method. Also, a pointwise Gauss–Seidel relaxation scheme is used
as the smoother in the multigrid method.

5. Numerical experiments

5.1. Convergence test

We consider a quaternary system in one-dimensional space,
Ω = [0, 1]. An estimate of the convergence rate is obtained by
performing a number of simulations for a sample initial problem
on a set of increasingly finer grids. The initial conditions are

c1(x, 0) = 0.25 + 0.01 cos(3πx)+ 0.04 cos(5πx),
c2(x, 0) = 0.25 − 0.02 cos(2πx)+ 0.01 cos(4πx),
c3(x, 0) = 0.25 + 0.03 cos(5πx)+ 0.015 cos(3πx).

The numerical solutions are computed on the uniform grids h =

1/2n and with ϵ = 0.01 for n = 5, 6, 7, 8, and 9. For each grid,
we integrate to time T = 0.001 with ∆t = 0.001h2. We define
the error to be the discrete l2-norm of the difference between
that grid and the average of the next finer grid cells covering it:
eh/ h

2 i
:= chi − (c h

2 2i
+ c h

2 2i−1
)/2. The rate of convergence is defined

as: log2(∥eh/ h
2
∥/∥e h

2 /
h
4
∥). The errors and rates of convergence are

given in Table 1. The results suggest that the scheme is accurate to
second order in space and first order in time.

5.2. Linear stability analysis

In this section,we study the short-timebehavior of a quaternary
mixture. The partial differential equation (4) we wish to solve can
be written as

∂c(x, t)
∂t

= −

ψ(c)
ϵ2

−∆c

, for (x, t) ∈ Ω × (0, T], (17)

H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115 2111
Table 1
l2 convergence result.

32–64 Rate 64–128 Rate 128–256 Rate 256–512

5.6048e−4 1.9997 1.4015e−4 2.0000 3.5037e−5 2.0000 8.7594e−6
where ψ(c) = f(c) + β(c)1. Let the mean concentration take the
formm = (m1,m2,m3). We seek a solution of the form

c(x, t) = m +

∞
k=1

cos(kπx)(αk(t), βk(t), γk(t)), (18)

where |αk(t)|, |βk(t)|, and |γk(t)| ≪ 1. After linearizingψ(c) about
m, we have

ψ(c) ≈ ψ(m)

+ (c − m)

∂c1ψ1(m) ∂c1ψ2(m) ∂c1ψ3(m)
∂c2ψ1(m) ∂c2ψ2(m) ∂c2ψ3(m)
∂c3ψ1(m) ∂c3ψ2(m) ∂c3ψ3(m)

. (19)

Substituting (19) into (17) and lettingm1 = m2 = m3 = m = 0.25
for simplicity, then, up to first order, we have

∂c
∂t

= −
c − m
2ϵ2

×

18m2
− 9m + 1 3m(4m − 1) 3m(4m − 1)

3m(4m − 1) 18m2
− 9m + 1 3m(4m − 1)

3m(4m − 1) 3m(4m − 1) 18m2
− 9m + 1

+∆c. (20)

After substituting c(x, t) from Eq. (18) into (20), we get

d
dt

αk(t)
βk(t)
γk(t)

= A

αk(t)
βk(t)
γk(t)

, A =

a b b
b a b
b b a

, (21)

where a = −(18m2
− 9m+ 1)/(2ϵ2)− k2π2 and b = −3m(4m−

1)/(2ϵ2). The eigenvalues of A are

λ1 = −
42m2

− 15m + 1 + 2ϵ2k2π2

2ϵ2
,

λ2 = λ3 = −
6m2

− 6m + 1 + 2ϵ2k2π2

2ϵ2
.

The solution to the system of ordinary differential equations (21)
is given by
αk(t)
βk(t)
γk(t)

=
αk(0)+ βk(0)+ γk(0)

3

1
1
1

eλ1t

+
−αk(0)− βk(0)+ 2γk(0)

3

−1
0
1

eλ2t

+
−αk(0)+ 2βk(0)− γk(0)

3

−1
1
0

eλ2t .

In Fig. 2, we plot the evolution of the amplitudes as a function of
time. The symbols ‘-◦-’, ‘-�-’, and ‘-△-’ are numerical results, which
are comparedwith the theoretical valuesαk(t) (point), βk(t) (star),
and γk(t) (plus), respectively:

c1(x, 0) = 0.25 + 0.001 cos(3πx), (22)
c2(x, 0) = 0.25 + 0.002 cos(3πx), (23)
c3(x, 0) = 0.25 + 0.003 cos(3πx). (24)
Fig. 2. The symbols ‘-◦-’, ‘-�-’, and ‘-△-’ are numerical results, which are compared
with the theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus), respectively,
with the initial conditions of Eqs. (22)–(24).

Here, we used k = 3, m = 0.25, ϵ = 0.01, h = 1/256, ∆t =

0.001h, and T = 200∆t . The numerical amplitudes are defined
by

αn
k =

max
1≤i≤Nx

cn1 (xi)− min
1≤i≤Nx

cn1 (xi)

2,

βn
k =

max
1≤i≤Nx

cn2 (xi)− min
1≤i≤Nx

cn2 (xi)

2,

γ n
k =

max
1≤i≤Nx

cn3 (xi)− min
1≤i≤Nx

cn3 (xi)

2.

The results in Fig. 2 show that the linear stability analysis and
numerical solutions are in good agreement in a linear regime.

5.3. The efficiency of the proposed algorithm

As mentioned in Section 3, we can solve the vector-valued
AC equations with N components in a decoupled way by using
our algorithm. In order to show the efficiency of the proposed
algorithm, we consider grain growth on the unit square domain
Ω = (0, 1)×(0, 1)withN = 5, 10, 15, and 20. The initial condition
is a randomly chosen superposition of 1000 circular grains. The
randomly chosen radii are ranging from 0.01 to 0.04. The other
parameter values are chosen as h = 1/256, ϵ = 0.0019, and
∆t = 0.1ϵ2. Simulations are performed on a 3.2 GHz Intel Core
i3 CPU with 2 GB of RAM. Table 2 provides the execution time for
different values ofN , averaged over the first 10 time steps. Fig. 3 (a)
and (b) show the relative computing time per time step for the first
10 time steps of Vanherpe et al. [32] and our study, respectively.
Here, the execution time for N = 5 is taken as a reference point. It
can be seen that the convergence rate of the average CPU time of
the proposed algorithm is linearwith respect to a number of phase-
field variables. For N = 5, Fig. 4 shows the initial condition and
evolutions of the phases.

2112 H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115
(a) Vanherpe et al.’s result [32]. (b) Our result.

Fig. 3. CPU time during the first 10 time steps for N = 5, 10, 15, and 20. Here, the CPU time for N = 5 is taken as a reference point.
(a) Initial condition. (b) t = 3000∆t . (c) t = 10000∆t .

Fig. 4. Evolution of the phases for N = 5.
(a) Vanherpe et al.’s result [32]. (b) Our result.

Fig. 5. CPU time during the first 10 time steps for h = 1/64, 1/128, 1/256, and 1/512. Here, the CPU time for h = 1/64 is taken as a reference point.
Table 2
Average CPU time (s) for different numbers of phase-field variables N during the
first 10 time steps. V (5, 5)-cycles are applied. The numbers in parentheses are the
average CPU times (s) given in Ref. [32].

N System size Average CPU time

5 5 × 256 × 256 0.2953 (8.0620)
10 10 × 256 × 256 0.7297 (38.5610)
15 15 × 256 × 256 1.2391 (89.0100)
20 20 × 256 × 256 1.8188 (193.3280)
Next, we study the execution time as a function of the grid size,
h. Table 3 shows the execution time averaged over the first 10
time steps of simulations on a domain Ω = (0, 1) × (0, 1) with
h = 1/64, 1/128, 1/256, and 1/512, for ϵ = 0.0019, ∆t = 0.1ϵ2,
andN = 10. Fig. 5(a) and (b) show the relative computing time per
time step for the first 10 time steps of Vanherpe et al. [32] and our
study, respectively. Here, the execution time for h = 1/64 is taken
as a reference point. The results suggest that both Vanherpe et al.’s
and our algorithms achieve multigrid efficiency and, in particular,
our algorithm reaches the tenth time step in a very small CPU time.

H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115 2113
Fig. 6. Polar plot of the anisotropy function ϵ(θ) = 1 + ϵ4 cos(4θ), with ϵ4 = 0.5.

Fig. 7. Schematic of the growth of nine crystals.

Table 3
Average CPU time (s) for different numbers of spatial unknowns during the first 10
time steps. V (5, 5)-cycles are applied. The numbers in parentheses are the average
CPU times (s) given in Ref. [32].

h System size Average CPU time

1/64 10 × 64 × 64 0.0468 (2.2250)
1/128 10 × 128 × 128 0.1828 (9.5110)
1/256 10 × 256 × 256 0.7297 (38.5610)
1/512 10 × 512 × 512 3.1875 (153.3250)

5.4. The growth of nine crystals: effect of crystal spacing

With the anisotropy function ϵ(θ) = 1 + ϵ4 cos[4(θ − I)],
where I is an orientation angle, a four-fold crystal grows fastest
in directions with angles 0° + I , 90° + I , 180° + I , and 270° + I to
the x-axis, and slowest in directions with angles 45° + I , 135° + I ,
225° + I , and 315° + I to the x-axis [66] (see Fig. 6). As I varies
for different crystals, different crystals will grow with different
preferred orientations.

In this section, we consider the growth of nine four-fold crystals
with orientations I = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°, as
shown in Fig. 7. A simulation of this problem has previously been
performed by Tan and Zabaras using a level-set method [66]. The
computational domain is Ω = (−450, 450) × (−450, 450). The
nine crystals are uniformly spacedwith distance δ. The initial shape
of each crystal is circular, with radius 14d0. The capillary length
d0 is defined as d0 = a1W0/λ [67–69], with a1 = 5

√
2/8 [65,67,

70], W0 = 1 [67–69], and λ = 3.1913 [67]. Initially, the domain
is undercooled at temperature −0.55, while inside the nine initial
crystals the initial temperature is taken as 0. We take ϵ4 = 0.05,
h = 0.8789, and∆t = 0.15.

Fig. 8(a) and (b) show evolutions of the interface with spacing
300 and 200, respectively. In the case of δ = 300, each crystal
grows almost independently, since the thermal boundary layers
very slightly overlap (see Figs. 8 and 9(a)). However, in the case
of δ = 200, the interaction between the crystals is very obvious, as
shown in Fig. 8(b). This is caused by overlapping of the thermal
boundary layers (see Fig. 9 (b)). These results are in qualitative
agreement with the previous results of Tan and Zabaras [66]. Also,
in both cases, we can see that the two crystals with I = 30° and
I = 60° (or I = 40° and I = 50°) are symmetrical to each other
at places close to their center line y =

δ
2 (or x =

δ
2). This partial

symmetry comes from the symmetry in the crystal orientations, as
shown in Fig. 7.

5.5. Crystals with different fold numbers and orientations on a single
domain

With the anisotropy functions ϵ(θi) = 1 + ϵk cos[k(θi − Ii)]
for each crystal, our algorithm can simulate the growth of multiple
crystals with different orientation angles and fold numbers on
a single domain. To show this, we simulate the growth of eight
crystals with different fold numbers and orientations on a single
domain. A 1024×1024mesh is used on the computational domain
Ω = (−450, 450)× (−450, 450). The initial shape of each crystal
is circular, with radius 14d0 where d0 = 0.2770. Initially, the
domain is undercooled at temperature −0.55, while inside the
nine initial crystals the initial temperature is taken as 0.We choose
∆t = 0.15 and ϵk = 1/(k2−1). The evolutions are shown in Fig. 10.
Fig. 8. (a) and (b) show sequences of interfaces with spacing 300 and 200, respectively. The times are (a) t = 0, 113, 225, 338, 450, 563, 675, 788, 900, and 1013 and (b)
t = 0, 225, 450, 675, 900, 1125, 1350, 1575, and 1800 (from inside to outside).

2114 H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115
(a) t = 1013. (b) t = 1800.

Fig. 9. Temperature field for the interaction between nine crystals with spacing (a) 300 and (b) 200. The temperature fields are shown with filled contours from −0.55 to 0
increasing in steps of 0.11.
Fig. 10. The growth of eight crystals with different fold numbers and orientations.

6. Conclusions

In this paper, we considered the vector-valued Allen–Cahn
equations which model phase separation in N-component sys-
tems. The numerical algorithm for the vector-valued AC equations
was based on an operator splitting technique. The linear equation
was solved using an implicit Euler’s method and a linear geomet-
ric multigridmethodwith Gauss–Seidel smoother, and the nonlin-
ear equationwas solved analytically. The accuracy of our algorithm
was demonstrated using a convergence test and it was shown that
our algorithm is accurate to second order in space and first or-
der in time. The algorithm allowed us to convert the vector-valued
AC equations with N components into a system of N − 1 binary
AC equations and drastically reduced the required computational
time and memory. Through the efficiency test, we observed that
the convergence rate of the computing time of the algorithm is
linear with respect to the number of phase-field variables. Finally,
by extending our algorithm, we simulated the growth of multiple
crystals with different orientation angles and fold numbers on a
single domain.

Note that to compute the vector-valued Allen–Cahn equations
in arbitrarily shaped domains, we required the use of unstructured
meshes of triangles. For unstructured meshes, an algebraic
multigrid method is more suitable than a geometric multigrid
method. In future work, we will investigate our algorithm with an
algebraic multigrid to allow more flexibility in the choice of mesh.

Acknowledgments

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(No. 2011-0023794). The authors thank the reviewers for their
constructive and valuable comments.

References

[1] S.M. Allen, J.W. Cahn, Acta Metall. 27 (1979) 1085.
[2] M. Beneš, V. Chalupecký, K. Mikula, Appl. Numer. Math. 51 (2004) 187.
[3] J.A. Dobrosotskaya, A.L. Bertozzi, IEEE Trans. Image Process. 17 (2008) 657.
[4] L.C. Evans, H.M. Soner, P.E. Souganidis, Comm. Pure Appl. Math. 45 (1992)

1097.
[5] T. Ilmanen, J. Differ. Geom. 38 (1993) 417.
[6] M. Katsoulakis, G.T. Kossioris, F. Reitich, J. Geom. Anal. 5 (1995) 255.
[7] L.Q. Chen, J. Shen, Comput. Phys. Commun. 108 (1998) 147.
[8] M. Beneš, K. Mikula, Acta Math. Univ. Comenian. 67 (1998) 17.
[9] X. Feng, A. Prohl, Numer. Math. 94 (2003) 33.

[10] T. Ohtsuka, Asymptot. Anal. 56 (2008) 87.
[11] X. Yang, J.J. Feng, C. Liu, J. Shen, J. Comput. Phys. 218 (2006) 417.
[12] A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys. Rev. A 45 (1992) 7424.
[13] M. Cheng, J.A. Warren, J. Comput. Phys. 227 (2008) 6241.
[14] Y. Li, H.G. Lee, J. Kim, J. Cryst. Growth 321 (2011) 176.
[15] L.-Q. Chen, W. Yang, Phys. Rev. B 50 (1994) 15752.
[16] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L.

Rezende, Physica D 94 (1996) 135.
[17] D. Fan, C. Geng, L.-Q. Chen, Acta Mater. 45 (1997) 1115.
[18] M.T. Lusk, Proc. R. Soc. Lond. Ser. A 455 (1999) 677.
[19] R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140 (2000) 141.
[20] J.A. Sethian, J. Strain, J. Comput. Phys. 98 (1992) 231.
[21] S. Li, J.S. Lowengrub, P.H. Leo, Physica D 208 (2005) 209.
[22] D. Li, R. Li, P. Zhang, Appl. Math. Model. 31 (2007) 971.
[23] H. Yin, S.D. Felicelli, Modell. Simul. Mater. Sci. Eng. 17 (2009) 075011.
[24] D. Juric, G. Tryggvason, J. Comput. Phys. 123 (1996) 127.
[25] D. Stafford, M.J. Ward, B. Wetton, Eur. J. Appl. Math. 12 (2001) 1.
[26] S. Chen, B. Merriman, S. Osher, P. Smereka, J. Comput. Phys. 135 (1997) 8.
[27] L.-L. Wang, Y. Gu, Commun. Comput. Phys. 9 (2011) 859.
[28] Z. Xu, H. Huang, X. Li, P. Meakin, Comput. Phys. Commun. 183 (2012) 15.
[29] A.E. Lobkovsky, J.A. Warren, J. Cryst. Growth 225 (2001) 282.
[30] B. Nestler, A.A. Wheeler, Comput. Phys. Commun. 147 (2002) 230.
[31] J.-W. Choi, H.G. Lee, D. Jeong, J. Kim, Phys. A 388 (2009) 1791.
[32] L. Vanherpe, F. Wendler, B. Nestler, S. Vandewalle, Math. Comput. Simul. 80

(2010) 1438.
[33] Y. Li, J. Kim, Comput. Math. Appl. 62 (2011) 737.
[34] H. Garcke, B. Nestler, B. Stoth, Physica D 115 (1998) 87.
[35] B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71 (2005) 041609.

H.G. Lee, J. Kim / Computer Physics Communications 183 (2012) 2107–2115 2115
[36] H. Garcke, V. Styles, Interfaces Free Bound. 6 (2004) 271.
[37] R. Kornhuber, R. Krause, Comput. Visual. Sci. 9 (2006) 103.
[38] D.A. Kay, A. Tomasi, IEEE Trans. Image Process. 18 (2009) 2330.
[39] D.J. Eyre, An unconditionally stable one-step scheme for gradient systems,

http://www.math.utah.edu/~eyre/research/methods/stable.ps.
[40] Y. Li, H.G. Lee, D. Jeong, J. Kim, Comput. Math. Appl. 60 (2010) 1591.
[41] S.-L. Wang, R.F. Sekerka, Phys. Rev. E 53 (1996) 3760.
[42] R.J. Braun, B.T. Murray, J. Soto Jr., Modell. Simul. Mater. Sci. Eng. 5 (1997) 365.
[43] N. Provatas, N. Goldenfeld, J. Dantzig, J. Comput. Phys. 148 (1999) 265.
[44] M. Plapp, A. Karma, J. Comput. Phys. 165 (2000) 592.
[45] C.W. Lan, C.M. Hsu, C.C. Liu, Y.C. Chang, Phys. Rev. E 65 (2002) 061601.
[46] B. Nestler, J. Cryst. Growth 275 (2005) e273.
[47] Y. Suwa, Y. Saito, H. Onodera, Scr. Mater. 55 (2006) 407.
[48] W.M. Feng, P. Yu, S.Y. Hu, Z.K. Liu, Q. Du, L.Q. Chen, J. Comput. Phys. 220 (2006)

498.
[49] P. Zhao, J.C. Heinrich, J. Comput. Phys. 173 (2001) 765.
[50] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, J. Sci. Comput. 19 (2002) 183.
[51] A. Badillo, C. Beckermann, Acta Mater. 54 (2006) 2015.
[52] B. Nestler, A.A. Wheeler, Physica D 138 (2000) 114.
[53] B. Nestler, A.A. Wheeler, L. Ratke, C. Stöcker, Physica D 141 (2000) 133.
[54] J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, Physica D 115 (1998) 73.
[55] I. Steinbach, F. Pezzolla, Physica D 134 (1999) 385.
[56] P.C. Bollada, P.K. Jimack, A.M. Mullis, Physica D 241 (2012) 816.
[57] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
[58] U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Academic Press, London,

2001.
[59] A. Stuart, A.R. Humphries, Dynamical System and Numerical Analysis,

Cambridge University Press, Cambridge, 1998.
[60] S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Rev. 43 (2001) 89.
[61] R.J. Spiteri, S.J. Ruuth, SIAM J. Numer. Anal. 40 (2003) 469.
[62] S. Gottlieb, D.I. Ketcheson, C.-W. Shu, J. Sci. Comput. 38 (2009) 251.
[63] C. Huang, Appl. Numer. Math. 59 (2009) 891.
[64] S.J. Ruuth, W. Hundsdorfer, J. Comput. Phys. 209 (2005) 226.
[65] A. Karma, W.-J. Rappel, Phys. Rev. E 57 (1998) 4323.
[66] L. Tan, N. Zabaras, J. Comput. Phys. 226 (2007) 131.
[67] J. Rosam, P.K. Jimack, A. Mullis, J. Comput. Phys. 225 (2007) 1271.
[68] G. Caginalp, Phys. Rev. A 39 (1989) 5887.
[69] J.S. Langer, Directions in Condensed Matter Physics, World Scientific,

Singapore, 1986, pp. 165–186.
[70] A. Karma, W.-J. Rappel, Phys. Rev. E 53 (1996) R3017.

http://www.math.utah.edu/~eyre/research/methods/stable.ps

	An efficient and accurate numerical algorithm for the vector-valued Allen--Cahn equations
	Introduction
	The vector-valued Allen--Cahn equations
	Numerical algorithm
	The growth of multiple dendrites with k -fold symmetry
	The phase-field model
	Numerical algorithm

	Numerical experiments
	Convergence test
	Linear stability analysis
	The efficiency of the proposed algorithm
	The growth of nine crystals: effect of crystal spacing
	Crystals with different fold numbers and orientations on a single domain

	Conclusions
	Acknowledgments
	References

