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• We numerically investigate the zebra skin pattern formation on a zebra model.
• We use Lengyel–Epstein model: a two component activator and inhibitor system.
• We provide computational experiments to study the pattern formation.
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a b s t r a c t

In this paper, we numerically investigate the zebra skin pattern formation on the surface
of a zebra model in three-dimensional space. To model the pattern formation, we use
the Lengyel–Epstein model which is a two component activator and inhibitor system.
The concentration profiles of the Lengyel–Epstein model are obtained by solving the
corresponding reaction–diffusion equation numerically using a finite difference method.
We represent the zebra surface implicitly as the zero level set of a signed distance function
and then solve the resulting system on a discrete narrow band domain containing the
zebra skin. The values at boundary are dealt with an interpolation using the closet point
method.We present the numerical method in detail and investigate the effect of themodel
parameters on the pattern formation on the surface of the zebra model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Although the pattern in living organisms is one of the classical problems of morphogenesis which explains how animals
such as mammals, seashells, and marine fishes and vegetation evolve differently resulting in a consolidated and stable
pattern [1–3], it had been generally believed that how the skin pattern in living organisms, especiallymammals, is generated
genetically is unclear. Nevertheless, pattern formation based on the Turing model has been one of the notable exceptions
since the middle part of the 20th century while acceptance in bioinformatics of mathematical biology has been slower [4].
Mostmathematicalmodels of these patterns are based on a reaction–diffusionmodel,whichwas first proposedby Turing [5].
The reaction–diffusion model, the system of two distributed reacting and diffusing chemicals, could generate spatial
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Fig. 1. (a) Schematic illustration of the surface S, the narrow band domain Ωδ with thickness 2δ, and its boundary ∂Ωδ . (b) Closest points cp(x1) and
cp(x2) for points x1 , x2 ∈ ∂Ωδ .

patterns autonomously. Murray [6] presented the reaction–diffusion mechanism for laying down of the pre-patterns for
animal marking. Young [7] performed the simulation that cells lay out on a grid with an activator and an inhibitor. Barrio
et al. [8] studied numerically the spatial pattern formation with the Turing’s model on the two-dimensional domain. Also,
activator–inhibitor systems with non-local coupling are studied in two dimensions by Silva et al. [9]. Painter et al. [10]
proposed the robustly generated patternswithout parameter control which is overcome that the difficulty of applicability of
classical Turing models to pattern formation is limited by the sensitivity of patterns to model parameters. Based on Turing’s
hypothesis, evolving morphogenetic fields in the zebra skin pattern was researched by Grávan and Lahoz-Beltra [1]. Guiu-
Souto et al. [11] introduced a set of quantitative morphological measures that describe the geometrical and topological
properties of Turing patterns (area, boundary length, cluster numbering, connectivity, and so on) for easily distinguish
among different Turing structures.

The theoretically predicted patterns has been demonstrated under controlled experimental conditions in a Chlorite–
Iodide–Malonic Acid–Starch (CIMA) reaction [12–14]. Lengyel and Epstein [15–17] derived the mathematical model from
the chemical reactions and the predicted pattern by their model has a good agreement with those experimental results.
Also until recently, much research has been studied on the Turing patterns [18–20]. The main purpose of this article is to
develop a fast and computationally efficient finite difference method for the Turing pattern on curved surfaces in the three-
dimensional space. We solve the resulting discrete equations on a narrow band domain. We use an interpolation using the
closest point method [21–23] for the domain boundary cells. We present numerical results of the zebra patterns generated
by the proposed numerical method.

The layout of this paper is as follows. In Section 2, we describe the reaction–diffusion model on a narrow band domain.
In Section 3, we provide the numerical solution algorithm. We present the numerical results in Section 4. In Section 5,
conclusions are drawn.

2. The Lengyel–Epstein model on a narrow band domain

We consider the following reaction–diffusion equation [15] on a smooth closed surface S in R3:

∂u
∂t

= Du∆Su + f (u, v) = Du∆Su + k1


v −

uv
1 + v2


, (1)

∂v

∂t
= Dv∆Sv + g(u, v) = Dv∆Sv + k2 − v −

4uv
1 + v2

, (2)

where u(x, t) and v(x, t) are concentrations of an inhibitor and an activator at position x ∈ S and time t , respectively.
Here, Du and Dv are the diffusion coefficients, and k1 and k2 are positive constants related to the feed concentrations. Also,
∆S denotes the Laplace–Beltrami operator [24–27]. In this study, we represent a given smooth surface S using the signed
distance function φ : R3

→ R. In other words, S = {x ∈ R3
: φ(x) = 0} with φ < 0 inside of S and φ > 0 outside of S.

The tangential gradient of u on S is defined as ∇Su(x, t) = P(x)∇u(x, t), where P = I−∇φ∇φT is a projection operator on
the tangent space. Here, I is the identity matrix [28]. Then, the Laplace–Beltrami operator is defined as ∆Su = ∇S · ∇Su =

(P∇) · (P∇u) = ∇ · (P∇u). Next, we define a δ-neighborhood band of S asΩδ = {y|x ∈ S, y = x+θn(x) for |θ | < δ}, where
n(x) is a unit normal vector at x ∈ S. Fig. 1(a) shows the schematic illustration of the surface S, the narrow band domain
Ωδ , and the boundary ∂Ωδ of the narrow band domain Ωδ . Let cp(x) be a point in the surface S which is closest to x [24].
Fig. 1(b) shows the closest points cp(x1) and cp(x2) for boundary points x1 and x2 on ∂Ωδ . Then, the boundary condition is
defined as

u(x, t) = u(cp(x), t) and v(x, t) = v(cp(x), t) on ∂Ωδ. (3)
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If δ is small enough, then the temporal evolution of Eqs. (1) and (2) with the boundary condition (3) results in u and v
which are constant in the direction normal to the surface. Therefore, we can replace the surface Laplacian operator ∆S by
the standard Laplacian operator ∆ in the narrow band domain Ωδ , i.e.,

∂u
∂t

= Du1u + k1


v −

uv
1 + v2


, (4)

∂v

∂t
= Dv1v + k2 − v −

4uv
1 + v2

. (5)

3. Numerical solution

We present a numerical algorithm for the Lengyel–Epstein model on the narrow band domain, Ωδ . We discretize the
reaction–diffusion equation in a three-dimensional domain Ω = (a, b) × (c, d) × (e, f ) embedding Ωδ . Let Nx, Ny, and Nz

be positive integers, h = (b − a)/Nx = (d − c)/Ny = (f − e)/Nz be the uniform mesh size, and Ωh
= {xijk = (xi, yj, zk) =

(a + hi, c + hj, e + hk)|0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz} be the discrete domain. Let un
ijk and vn

ijk be approximations of
u(xi, yj, zk, n1t) and v(xi, yj, zk, n1t), where 1t = T/Nt is the time step, T is the final time, and Nt is the total number of
time steps.

We adopt the numerical scheme used in the fast and accurate numerical method for motion by mean curvature of
curves on a surface in three-dimensional space using the Allen–Cahn equation [23]. For a given smooth surface S, we define
φ : R3

→ R as the signed distance function to S so that S = {x ∈ R3
|φ(x) = 0} with φ < 0 inside S and φ > 0

outside S. Let Ωh
δ = {xijk| |φijk| < δ} be the discrete narrow band domain. We take δ ≥

√
3h since Ωh

δ must contain
the interpolation stencil for the closest points of the domain boundary points. We define a discrete L2-norm on Ωh

δ as
∥φ∥L2(Ωh

δ ) =


1

#Ωh
δ


xijk∈Ωh

δ
φ2
ijk, where #Ωh

δ is the cardinality of the set Ωh
δ . Let us define the domain boundary points

as ∂Ωh
δ = {(xi, yj, zk)|Iijk|∇hIijk| ≠ 0}, where ∇hIijk = (Ii+1,jk − Ii−1,jk, Ii,j+1,k − Ii,j−1,k, Iij,k+1 − Iij,k−1)/(2h). Here, Iijk = 0

if (xi, yj, zk) ∈ Ωh
δ ; otherwise Iijk = 1. We consider the discretization of the reaction–diffusion system (4) and (5) using

explicit scheme,

un+1
ijk − un

ijk

1t
= Du∆hun

ijk + k1


vn
ijk −

un
ijkv

n
ijk

1 + (vn
ijk)

2


, (6)

vn+1
ijk − vn

ijk

1t
= Dv∆hv

n
ijk + k2 − vn

ijk −
4un

ijkv
n
ijk

1 + (vn
ijk)

2
, (7)

with the boundary condition on ∂Ωh
δ : un

ijk = un(cp(xijk)) and vn
ijk = vn(cp(xijk)). Here, the discretization of second spatial

derivative is given by ∆huijk =
1
h2

(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1 − 6uijk). The other one ∆hvijk is
similarly defined. We define the numerical closest point of the boundary point xijk to the surface S as

cp(xijk) = xijk −
∇h|φijk|

|∇h|φijk| |
|φijk|. (8)

If the closest point cp(xijk) is not lying on a given computational grid, we obtain un(cp(xijk)) and vn(cp(xijk)) by using the
trilinear interpolation. For the fast computation, we tabulated the interpolation stencil and three fractions for each boundary
point before starting time iterations.

4. Numerical experiments

4.1. Linear stability analysis

In this section, we study the linear stability analysis for Eqs. (4) and (5). We seek a solution of the form,

u(x, y, t) = ū + αm1,m2(t) cos

2πm1x

Lx


cos


2πm2y

Ly


, (9)

v(x, y, t) = v̄ + βm1,m2(t) cos

2πm1x

Lx


cos


2πm2y

Ly


, (10)

where Ω = (0, Lx) × (0, Ly) and f (ū, v̄) = g(ū, v̄) = 0. Substituting Eqs. (9) and (10) into the linearized equations of Eqs.
(4) and (5) yields

d
dt


αm1,m2(t)
βm1,m2(t)


= A


αm1,m2(t)
βm1,m2(t)


=


a b
c d


αm1,m2(t)
βm1,m2(t)


, (11)
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Fig. 2. (a) Mesh plot and (b) filled contour plot of max(Re(λ1), Re(λ2)). Shaded area is the positive value of max(Re(λ1), Re(λ2)).

where A is a 2 × 2 matrix whose components are given as

a = −Du


2πm1

Lx

2

+


2πm2

Ly

2


−
k1v̄

1 + v̄2
, (12)

b = k1


1 −

ū(1 − v̄2)

(1 + v̄2)2


,

c = −
4v̄

1 + v̄2
, (13)

d = −Dv


2πm1

Lx

2

+


2πm2

Ly

2


− 1 −
4ū(1 − v̄2)

(1 + v̄2)2
.

Fig. 2(a) and (b) show the mesh plot and the contour plot of max(Re(λ1), Re(λ2)), respectively, where λ1 and λ2 are the
eigenvalues of thematrix A. For a better visualization, we put the zero plane together. Here, we used the parameters:Du = 1,
Dv = 0.02, k1 = 9, k2 = 11, ū = 1 + 0.04k22, v̄ = 0.2k2, Lx = 10, and Ly = 10.

4.2. Pattern on two-dimensional rectangular domain

We first numerically solve Eqs. (1) and (2) on a two-dimensional rectangular domainΩ = [0, 10]×[0, 10] usingDu = 1,
k2 = 11, a mesh grid 101 × 101, h = 0.1, and 1t = 0.1h2. Here, periodic boundary conditions in each direction are used.
Initial conditions for u and v are u(x, y, 0) = ū + 0.1 rand(x, y), v(x, y, 0) = v̄ + 0.1 rand(x, y), where ū = 1 + 0.04k22,
v̄ = 0.2k2, and rand(x, y) is a random number between −1 and 1.

Fig. 3(a) and (b) show the temporal evolutions of the activator concentration (v) when we use Dv = 0.04, k1 = 7 and
Dv = 0.02, k1 = 9, respectively. The times are shown below each column. We can observe spots and stripes depending
on the parameters as shown in [29]. Note that Othmer et al. [29] showed more patterns observed in animal skin, including
spots, stripes, reticulated stripes, and inverted spots.

4.3. Parameter study on pattern formation on spherical surface

Next, we investigate the effect of parameters Dv and k1 on the pattern dynamics on the surface of a sphere with radius
4.5. The spherical surface is represented by the zero level set of the signed distance function

φ(x, y, z) =


(x − 5)2 + (y − 5)2 + (z − 5)2 − 4.5.

For the numerical simulation, we use the same parameter values for k1, k2, Du, and Dv as in [29]. The initial conditions
are taken to be

u(x, y, z, 0) = 1 + 0.04k22 + 0.1 rand(x, y, z), (14)

v(x, y, z, 0) = 0.2k2 + 0.1 rand(x, y, z), (15)

where rand(x, y, z) is a randomnumber between−1 and 1. The parameters used areDu = 1, k2 = 11, h = 0.1, δ = 1.1
√
3h,

1t = 0.1h2, and T = 1000 on the computational domain Ω = [0, 10]3. Fig. 4 represents numerical solutions of activator v
by Eqs. (6) and (7) with respect toDv and k1. Depending on the parameter sets (Dv, k1), we obtain the numerical results such
as spots, stripes, and mixtures of spots and stripes. In the upper and right sides in Fig. 4, Turing instability does not occur.
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Fig. 3. Temporal evolution of activator concentration with Du = 1 and k2 = 11 on two-dimensional domain Ω = [0, 10] × [0, 10]. Here, (a) Dv = 0.04,
k1 = 7 and (b) Dv = 0.02, k1 = 9 are used.

Fig. 4. Overview of pattern formation on surface of sphere corresponding to concentration of activator (v) at different values of Dv (horizontal axis) and
k1 (vertical axis).
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Fig. 5. Pattern formation on the torus surface with the different values of Dv (horizontal axis) and k1(vertical axis).

4.4. Parameter study on pattern formation on torus surface

As in the previous section, we study the pattern formation with the various values of the parameters (Dv and k1) on the
torus surface with major radius 5.5 and minor radius 3.5. The torus surface is represented by the zero level set of a signed
distance function

φ(x, y, z) =


(

x2 + y2 − 5.5)2 + z2 − 3.5.

For the numerical simulation, we use the same parameter values and initial conditions as in the previous section. The
parameters used are Du = 1, k2 = 11, h = 0.1, δ = 1.1

√
3h, 1t = 0.1h2, and T = 1000 on the computational domain

Ω = [0, 10]3. Fig. 5 represents numerical solutions of activator v. We obtain the similar numerical results as in the previous
section such as spots, stripes, andmixtures of spots and stripes from each cases (Dv, k1). In the case of k1 = 9 andDv = 0.05,
Turing instability does not occur.

4.5. Stripe patterns on zebra surface

To solve the reaction–diffusion system (6) and (7) on the surface of a zebra surface, we need a narrow band domain for
the zebra surface. First, we obtain a 3ds file format for a three-dimensional zebra model which is available in [30]. Next, we
extract the geometry information such as vertices and triangles by using Autodesk R⃝3DSMAX R⃝. Fig. 6(a) shows the vertices
of the zebra. However, some regions do not contain sufficient points for constructing a smooth surface. We addmore points
as shown in Fig. 6(b).

The procedure of adding points is as follows: Let tol be a tolerance which is a maximum size of the sides of the triangles.
Loop over the triangles recursively until all the sides of the triangles are less than the given tolerance. For example, take a
triangle consisting of three vertices P1, P2, P3 and divide the triangle and add mid points until the maximum size of the
sides is less than the given tolerance, see Fig. 7(a)–(d).

Now, we need to get the surface of zebra as the zero level set of a scalar function from the scattered data points. In
this step, we apply an image segmentation technique which was proposed by Li and Kim [31]. For the segmentation, the
governing equation is given as

∂φ(x, t)
∂t

= g(x)


−
F ′(φ(x, t))

ϵ2
+ 1φ(x, t) + βF(φ(x, t))


, (16)

where g(x) is the unsigned distance function constructed from the unorganized data set of zebra, φ is a phase-field function,
which is close to 1 and−1 in the inside and outside domain of the reconstructed zebra. Fig. 8(a) represents the zero isosurface



112 D. Jeong et al. / Physica A 475 (2017) 106–116

Fig. 6. (a) Given unorganized data set of zebra and (b) enriched data set.

Fig. 7. Recursively supplement points into polygon: (a) initial polygon, (b) first iteration, (c) second iteration, and (d) third iteration.

Fig. 8. Zero isosurface (a) before and (b) after reinitialization step.

of the segmented image using Eq. (16) with ϵ = 0.0225 and λ = 500. Here, a 64 × 256 × 192 mesh grid on the domain
Ω = (0, 1) × (0, 4) × (0, 3) and 1t = 0.001 are used.

Finally, we construct the signed distance function from the unsigned distance function which is obtained in the previous
step, since |∇φ| is not one in the neighborhood of S, i.e., φ = 0. To obtain the signed distance function (Fig. 8(b)), we apply
the following equation:

φt = Sδ(φ
0)(1 −


φ2
x + φ2

y + φ2
z ), (17)

where φ0 = φ(x, 0) and Sδ(φ
0) = φ0/


(φ0)2 + δ2 is a smoothed sign function [32].

Depending on varying parameters, different kinds of stripe patterns on a given zebra surface are generated. To investigate
this, we take the initial conditions (14) and (15). The other parameters used are as follows: Du = 1, k2 = 11, h = 10/64,
δ = 1.1

√
3h, 1t = 0.1h2, T = 2441.4, and Ω = [0, 84h] × [0, 276h] × [0, 212h]. For k1 and Dv , we use the three different

values as (k1,Dv) = (11, 0.02), (k1,Dv) = (5, 0.04), and (k1,Dv) = (3, 0.06). Here, for the chosen parameters, we may
refer to [11].

Fig. 9 represents the temporal evolution of morphological patterns of activator v on the zebra surface with different
values of (k1,Dv). The computational times are listed beloweach row. In this figure,we plot the patternwith a local grayscale
corresponds towhite and blackwithmaximumandminimum concentration of activator v. As k2 decreases andDv increases,
the thickness of the stripes are larger.
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Fig. 9. Pattern formation process of the Lengyel–Epstein model on a zebra surface with k1 = 11 and Du = 1 at t = 10001t, 10 0001t, 100 0001t , and
100 0001t . Here, the other parameters are used (a) k2 = 11,Dv = 0.02, (b) k2 = 5,Dv = 0.04, and (c) k2 = 3,Dv = 0.06, respectively.

4.6. Extension of a non-local coupled Lengyel–Esptein model

Next, we consider a non-local coupling, i.e., the following integro-differential equations as

∂u(x, t)
∂t

= f (u(x, t), v(x, t)) + Du


Ω

σ(x, x′)u(x′, t)dx′, (18)

∂v(x, t)
∂t

= g(u(x, t), v(x, t)) + Dv


Ω

σ(x, x′)v(x′, t)dx′, (19)

where σ(x, x′) is a non-local interaction kernel. Based on the activator–inhibitor system with power-law coupling [9], we
extend a non-local coupled Lengyel–Epstein model to a three-dimensional space and discretize this model by using the
explicit scheme as follows:

un+1
ijk − un

ijk

1t
= k1


vn
ijk −

un
ijkv

n
ijk

1 + (vn
ijk)

2


+

6Du

h2κijk(α)


(p,q,r)∈Ωm

ijk

un
i+p,j+q,k+r − un

ijk

(p2 + q2 + r2)α/2
, (20)
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Fig. 10. Patterns of the activator in a non-local coupled Lengyel–Epstein model with respect to α on the surface of sphere. Here, Du = 1, k1 = 9, k2 = 11,
and (a) Dv = 0.03; (b) Dv = 0.02 are used.

vn+1
ijk − vn

ijk

1t
= k2 − vn

ijk −
4un

ijkv
n
ijk

1 + (vn
ijk)

2
+

6Dv

h2κijk(α)


(p,q,r)∈Ωm

ijk

vn
i+p,j+q,k+r − vn

ijk

(p2 + q2 + r2)α/2
. (21)

Here,Ωm
ijk = {(p, q, r)|−m ≤ p, q, r ≤ m, xi+p,j+q,k+r ∈ Ωh

δ , |p|+|q|+|r| ≠ 0} and κijk(α) =


(p,q,r)∈Ωm
ijk

(p2+q2+r2)−0.5α .
Now, we perform several numerical tests with the non-local coupled Lengyel–Epstein model to show effect of an

exponent α, that is, non-local factor. First, we perform a numerical test on the surface of sphere with α = 1 and α = 1000.
For this test, we use the following spherical surfacewhich is represented by the zero level set of the signed distance function:

φ(x, y, z) =


(x − 5)2 + (y − 5)2 + (z − 5)2 − 3.5

on the computational domain Ω = (0, 10)3. The initial conditions are taken to Eqs. (14) and (15). As a representative
example, we use two different values Dv = 0.03 and Dv = 0.02. The other parameters used are as Du = 1, k1 = 9, k2 = 11,
h = 0.1, and Nx = Ny = Nz = 101, 1t = 0.1h2, and δ = 1.1

√
3h, m = 2 in all tests. Fig. 10 shows the numerical solutions

at T = 1 000 0001t . Depending on the values of Dv , we see the dotted and lamella patterns. As the value of α decreases, the
diffusion term has more global effect. Also, the spatial–temporal patterns appear larger one.

As second example, we perform a numerical test on the surface of torus, which is represented by the following the signed
distance function as

φ(x, y, z) =


x2 + y2 − 3

2
+ z2 − 1.5.

We use the same values as the previous test for the other parameters. Fig. 11 represents the numerical results at T =

1 000 0001t when α = 1 and α = 1000. Like the previous test, we see that the temporal patterns get smaller as α increases.
Finally, we apply the non-local coupled Lengyel–Espteinmodel on the surface of zebra. In this test, we use the same value

which is used in Fig. 9. Fig. 12 shows the numerical results at T = 1 000 0001t with α = 1 and α = 1000. We can observe
the non-local factor α effect on the zebra surface.

5. Conclusions

In this article, we numerically studied the zebra skin pattern formation on the surface of a zebra model in three-
dimensional space using a two-component activator–inhibitor system of reaction–diffusion equations. We discretized
the governing equations using a finite difference method and solved the resulting system on a discrete narrow band
domain containing the zebra skin. For the domain boundary cells, we used an interpolation using the closest point method.
We presented numerical results of the zebra patterns generated by the model. Depending on parameter sets, we had
different spatial pattern formations such as spots, stripes, and mixture of spots and stripes as shown in two-dimensional
rectangular space. Also, we can see this results on zebra surface, which is more complex than sphere, as well as sphere.
From the numerical tests, we knew that the condition that distinguish between stripe or spots is determined by Dv in
reaction–diffusion systems and k1 plays a role in decision of the wavelength of pattern. Especially, we obtained the similar
numerical pattern on given zebra surface to the real one. In futurework, wewill investigate space-dependent variablemodel
coefficient to simulate the realistic zebra pattern formations.
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Fig. 11. Patterns of the activator in a non-local coupled Lengyel–Epstein model with respect to α on the surface of torus. Here, Du = 1, k1 = 9, k2 = 11,
and (a) Dv = 0.03; (b) Dv = 0.02 are used.

Fig. 12. Patterns of the activator in a non-local coupled Lengyel–Epstein model with respect to α. Here, Du = 1, k1 = 9, k2 = 11, Dv = 0.02 are used.
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