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L4(Lp)-THEORY OF PARABOLIC PDEs
WITH VARIABLE COEFFICIENTS

KyEOoNG-HUN KiMm

ABSTRACT. Second-order parabolic equations with variable coefficients
are considered on R? and C! domains. Existence and uniqueness results
are given in Lq(Lyp)-spaces, where it is allowed for the powers of summa-
bility with respect to space and time variables to be different.

1. Introduction

Let Q be an open set in R%. In this article we are dealing with Sobolev space
theory of the equations

(1.1) us = a¥ugig; + blug: + cu + f,

(1.2) ur = Dy(aYug; + blu+ fi) + blugi +cu+ f,

given for z € 2 and t > 0. Throughout the article Einstein’s summation con-
vention is used. Needless to say, such equations have been extensively studied
by many authors in Holder and L,([0, T, L,(£2))-spaces. However, surprisingly
enough, Ly([0,T], L,(Q))-theory (p # q) of the equations had never been ad-
dressed before except in [1], [10] and [4]. In [1] and [10] the Cauchy problem
with f = 0 was studied, and recently in [4] Krylov developed the L,(L,)-theory
of the heat equation u; = Au+ f on R? and R%.

In this article we extend the results in {4]. We give the uniqueness and
existence results of equations (1.1) and (1.2) with variable coefficients on R?
and C' domains in Ly([0, T, L,)-spaces. Since the boundary is not supposed to
be regular enough we look for solutions in function spaces with weights allowing
derivatives of solutions to blow up near the boundary.

Usually once one knows how to solve the heat equation in R¢ and R%, then
constructing a solvability theory of equation (1.1) with variable coefficients
becomes a standard work. If p # g then L,(L,)-theory of PDEs turns out to be
one more exception to the usual situation. For instance, let {(, :n=1,2,...}
be a standard partition of unity and each (,, have small support. Then based on
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some perturbation arguments, it may be possible to estimate the L,(Ly)-norm
of {,,u. However relations like

T o0 T
/ ot ey 0~ 16 0utt oy

hold only if p = g. Thus local estimations of v don’t easily yield a priori
estimate of u. Furthermore, since we are also dealing with the equations in
Sobolev spaces with weights, usual perturbation arguments don’t work well
and require some nontrivial modifications.

In Section 2 we prove the unique solvability of equation (1.1) and equation
(1.2) defined on R? in L([0,T],H)) and Lq([O,T],H;), respectively. Here
1<p<qg<oo,v€R and H) is the space of Bessel potentials. In Section 3
we present the unique solvability results (Theorem 3.8 and Theorem 3.6) of the
equations defined on C! domains in Lq([0,T7, H, 4(2)), where the weighted
Sobolev space H ;(?) is introduced in Section 3. Many advantages of Ly(Ly)-
theory over Ly(L,)-theory were investigated in [3] and we introduce some of
them in Remark 3.9. In Section 4 we develop some auxiliary results, and in
Section 5 and Section 6 we prove Theorem 3.8 and Theorem 3.6, respectively.

In this paper, as usual R? stands for the Euclidean space of points z =
(z',...,2%), Br(z) = {y € R¥: |z —y| < r}, B, = B,(0) and R% = {z e R%:
z' > 0}. For i = 1,...,d, multi-indices & = (04,...,04), o5 € {0,1,2,...},
and functions u(x) we set

Uy = Ou/8z" = Du, D%u=D ... D%, |a|=ai+: -+ aq.
If we write N = N(---), this means that the constant N depends only on what
are in parenthesis.
2. PDEs on R?
Here we deal with the equations on R%. For n =0,1,2,..., define
H) = Hg(Rd) ={u:u,Du,...,D% € Ly : |a| <n}.
In general, for p € (1,00) and v € R define the space H = HY(R%) =

(1 - A)="/2L, (called the space of Bessel potentials or the Sobolev space with
fractional derivatives) as the set of all distributions u such that

lull sy == 111 = A)2u||z, < co.
Denote
H)Y(T) = Lg([0,T), H)), LIT)=HOYT), U =H)]"%1.

By H79(T) we denote the space of all functions v € H%(T) such that
u(0,-) € Up»? and for some f € H}~29(T)

(2.1) ug = f
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in the sense of distributions. In other words, for any ¢ € C§°, the equality

(2.2 (u(t,6) = (0).6) + [ (6.9, ds
holds for all ¢ < T'. Denote
Hy o (T) = Hy4T) N {u: u(0,-) = 0}.
The norm in H}9(T) is introduced by
lllrgacry = llullmpeer) + luellgy-20 7y + [1600) e
Here are the main results of this section.

Assumption 2.1. (i) The functions a¥, b, b, c are Borel measurable in (¢, z),
a¥ = @’ and a is uniformly continuous in x. In other words, for any ¢ > 0,
there exists § > 0 such that

la” (t,2) —a” (t,y)| < e

whenever |z — y| < 6.
(ii) For any t > 0,z € R?, and A € R?,

(2.3) Sol A2 < a¥ (t, )NV < K|A]%,

b* (¢, z)| + |b* (¢, 2)| + |elt, z)) < K.
Theorem 2.2. Let 1 < p < q < oo, € > 0 and Assumption 2.1 be satisfied.
Then for any f* € LYT), f € H;"9(T) and uo € HI Y9 equation (1.2)
with initial data up admits a unigque solution u in the class Hzl,’q(T), and for
this solution
24)  Nullyggary € NI lugery + N lgzroer) + Nluoll gz-2/eve
where N = N(€7d7p7Q7607K7T)'

Fix k9 > 0, and for v € R define |y|+ = || if |y] = 0,1,2,... and |y|4 =
lv| 4+ ko otherwise. Also define

B(R%) :oy=0
Bl = ohImLIRY) L |y =1,2,.
ChlFro(RY) . otherwise,

where B(RY) is the space of bounded functions on R¢, CII=L1(R9) is the
space of |y| — 1 times continuously differentiable functions whose derivatives of

(J¥] = 1)st order are Lipschitz continuous and C!7I+%0(R¢) is the usual Hélder
space.

Assumption 2.3. For each t > 0,

la(t, ) givie + [b(t, )| giviy + let )| grie < C.
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Theorem 2.4. Let1 < p < g < o0, 7€ R, £ >0 and Assumptions 2.1 and 2.8
be satisfied. Then for any f € H}9(T) and ug € H)T9%  equation (1.1)
with initial data uo admits a unique solution u in the class HYt*9(T) and for
this solution

(2~5) “u“Hg“vq(T) < N”f”]HIZ,'"(T) + N||U0”H;+2—2/q+e,
where N = N(v,¢,d,p,q,60,K,C,T).
Define

d
taalliy = 3 lttases -
i,j=1
We need the following lemmas to prove Theorems 2.2 and 2.4.

Lemma 2.5. For k = 1,2,...,n, let matriz a* = (a®¥) be independent of =
and satisfy (2.3). Let u®) ¢ ’HZ’JBZP (T') be a solution of the equation
ok ;
(2.6) uP = ak’”“xw + &,
Then

/0 H||u<k> wdt<NZ / 1FO O, T Qe d,

f#k
where N = N(d7p7 n, 607 )'

Proof. See Lemma 1.6 in [4]. Actually in [4] the case a®) = o V(k =

1,2,...,n, is considered. But one can easily check that the proof there still
holds in our case. O
Lemma 2.6. For k = 1,2,...,n, let matriz a® = (a®V) satisfy Assump-

tions 2.1, 2.8 and
[a®(t,2) —a®)(t, )| <e, Vk,t, .

Let u®) € H”"'zm (T) be a solution of equation (2.6). Then there exists eq €
(0, 00) mdependent of C such that if € < g, then

[ Hnu<’°><t)||’;,;+2dt
<NZ / 1 @2 TT ha O (@)1 ol

" ik
Ny / (I 1w ® @2, ) TT 1O @l .
Jer keJ 113

where T is the collection of all subsets A of {1,2,...,n} such that A # {1,2,...,
n} and N = N(d,p,n,v, 8, K,C).
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Proof. Denote a*(t,z) = ak(t,0) and FO = (akis — ghidyy N I] + f®.

Then by Lemma 2.5, (2.7) holds with f0 instead of f(*). Here we use
lull gze ~ Ulueellmy + fullmy)
k k
1@® = af™ul® |l < Njal® = af® | gty [u®]] 02,
and get

[ T 0l

0 k=1

s N/O H(Ilu(z’?(t)llilg + [[u® ()2 )t
v Hnu Dl at
+NZ/ (T e )1 (T 1a® ey

Jer keJ g

< Ns;1p|a( ao |Bm+/ H Hu(k ||Hw+2

B

+NZ / 1£90) IT 1O Ol ade

"k
030 ) (TCIOTANNY ) (SIS
Jer keJ gy
Thus our lemma holds true if N supy, [a*) — af |giviy < 1/2. Observe that
for alf) (t,z) := a(®) (t/m2, z/m) we have
|a£1rf) (t,) — asq’i) (t, .)IBMJr <e+ m—(|7|+/\1)c>

and the second on the right can be dropped if ¥ = 0. Denote £y = (4N)~! and
fix m such that Nmn~("+AD(C < 1/4. Then it follows that the lemma holds if
we replace a®), u®) f® and T by a'%, u® (¢/m?2, z/m), m=2f®) (t/m?, z/m)
and m2T, respectively. Finally it suffices to observe that || - ||y norms of
u®) (t/m? z/m) and u*) (¢, z) are comparable. The lemma is proved. O

Lemma 2.7. Fork =1,2,...,n, let matriz a® = (a®Y) satisfy Assumption 2.1
and

a®(t,2) - aP(ty)l <&, Vhtay.
Let u® ¢ H;:g(T) be a solution of the equation

ugk) — Di(ak’iju;’;) + fiRY 4 e
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Then there erists €1 € (0,00) such that if € < g1, then

T n
/ IT i@, dt<NZ / 1FO O, TT @ @2, d
0 k=1

£k
+§j / 17 @1, TT haO @)1, de
24k
+NY / (T 1 O3] O ®12,)
JeI© keJ gJ

where N = N(d,p,n,~, 8, K).

Proof. Denote f*) = D;((a®¥ —ag’ij)ugj) + fi#)) 4+ ) Then by Lemma 2.5,
(2.7) holds with v = —1 and fék) instead of f(*). Here we use

1769 g1
< NJI@® = af)ul® + O, + ]| fE) s
< Nellul )z, + NI F O, + [ £ B -
< Nellu® |y + NI F O, + [ F0] -
and get

T n
/ I[ 1 @l < ¥ / Huu(k) O, + 1 @)1, )
< Ne / Hnu“)(t I, dt+2 / 17O, TT IO @1, d
o4k
> / 179 @ TT @1, d

ok
+8 S [ AL 0T IO,
Jer keJ 2
Obviously this proves the lemma. O

Proof of Theorem 2.4. The theorem is already known ([4]) if a = (a¥) is inde-
pendent of z and b* = ¢ = 0. Thus due to the method of continuity we only
need to show that estimate (2.5) holds given that a solution u € HIT9(T)
already exists. We know from [4] that there is a unique solution v € H’7+2 (T)
of the equation
v =Av, v(0,) =ug
and
IleIH;+2’q(T) < N”’U,()”Hg+2—»2/q+s.
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If we replace the function u by © — v, we come to the situation with zero initial
data. Also we may assume that ¢ = np for some positive integer n. The case
g # np is covered by Marcinkiewicz interpolation theorem.

Choose r > 0 such that

la(t, z) — a(t, y)| < e0/2
whenever [z —y| < r. Let {(;, : m =1,2,...} be a standard partition of unity
such that for any m the support of {;, lies in a ball B, /4(zm). Also for each
m, choose a function ny € C§°(B,/2(2m)) such that 0 < 9, < 1 and 7y, =1
on the support of {,,. Denote
a™(t,z) = (a™9) := a(t, @)nm (z) + (1 = N (2))alt, zm).

Then one can easily check that

sup ]a(m) (t,z) — al™ (t,y)] < eo-
t,z,y

By Lemma 6.7 in (5] for any v € R and v € H,

(2.8) D MCmolly ~ vl
m
29 S vl < Nl 3 onaevly < Nl
m m
Therefore,

T T
1) [ ulgad < N [T 16l
0 P - 2

T n
- P
= N Z /0 kl:ll ”kau”H;Mdt-

my,M2,...,My,

Note that (p,, u satisfies
(Cmew)e = ™9 (G u)gigs + £,
where
f(m’“) = —Zaijuzigmkmi - aijugmkzizj + biuxi{mk + culm, + Cmp f

and (see Lemma 5.2 in [5])

”f(mk)“H;’ < N“ua:ikazj ||H; + NHUkaxixj “Hg + N||uzl<mk”H;’
+ N”quk ”H;’ + ”kaf”HZ'
By Lemma 2.6, for any t < T,

t n
T li¢mull?...z ds
/0 Pt M Hpr+2
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i t
SNy, X /0 17y TT iGome 2,12 ds

k=1 mi,ma,....myp, £#£k
t
NS [ AT ) T sl .
JET m1,ma,...;ma 0 keJ P g

Here

DIEEDY /0(HIIucm,cH’;mz)(H||ugm[||f;{;)ds

Jer mi,ma,....mp keJ LgJ
t
= 3 [ TLCE humaly o) TIC el ds
JerV0 keg my Poagg me

n—-1 + , t
¢ -t
<Ny /O ull?, callul 97 ds < e / el ndt + N /0 a2, ds
=0 0
and

n t
Z Z /0 ”umigmsz“i[;’ H ”uqmz”il;mz ds

k=1 mi,ma,...,mn £k
n ot
= 3 [ Mo ) IO o ) 5
=170 ‘mp bk me ?

HJt?

t
< [ sl bl 527 s

Similar computation based on (2.8) and (2.9) shows

n t
> X [0l T atn e ds

k=1 mi,ma,...,my L#k
t
-1
<N [l + uly + 171l 2 s
< 5”ullgﬂg+2,w(t) + N”“w“ﬁg'"l’(t) + N”u”;ugmp(t) + N”f”ﬁgnl’(t)'

Now take € > 0 sufficiently small then for each t < T,

Il amm ) = Nillghszme ) + 167 Uasas + Btgs + cu+ Fllghins gy
< N2 gy + NIy
Here we use (see Theorem 4.2 in [3])
(211) sup u(s) %12 < N2, Tl
and get

np np
i‘;l? ”“(S)HH;H < N””IIH;-I-Z,np(t)?
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t
.
212) Ul o, < / Sup ()} 10 ds < N / A

Il vy < [ BT 5+ NIy

Actually there is a restriction that p > 2 in Theorem 4.2 of [5], but by inspecting
the proofs of Theorem 4.2 and Theorem 7.1 in [5] one can easily check that
in our (deterministic) case the result holds for all p > 1. Finally Gronwall’s
inequality leads to (2.5). The theorem is proved. |

Proof of Theorem 2.2. We prove that the estimate (2.4) holds assuming that
a solution w € HL%(T) of equation (1.2) already exists. As before, we also
assume that ug = 0 and ¢ = np.

Step 1. Assume that b = 0. Define a partition of unity {¢, :m =1,2,...}
and a!™ as in the proof of Theorem 2.4 such that

sup [a™ (t, ) — a!™ (t,y)| < €1,
t,z,y

Asin (2.11),

[uligassy ¥ A anmkunz;ds
1 .

my,...,Mn

Note that v(™*) := ¢, u satisfies

Ugmk) — Di(amk,ijvg(c’f;‘bk) + fl(mk)) + f(mk),

where

FIm) = B u i, — UG 1

Fome) = — gy, Gt = b UGzt = Gyt + iyt + fom,-
Obviously,

17|z, < Nlmgulle, + 1 Gmillz, + 1m,arlle,
and (remember that ||u||H;_1 < Hlullgy)
1P| g < Nl tgs Gyt | =2 + Nt 2, + | Gt 12,
+ N”kau”Lp + ”f(mk ”H;l-
Also, we claim that for any £ > 0,
(2.13) Uz Gl g1 < Elltgi Gmpas iz, + N (€)1as Gyt | 1+
Indeed, take a sequence of smooth functions a,, satisfying

supla —an| < 1/n.
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Then
o ugs Gyl s < N0 vas il g1 + 10 = @ Yty
< Nlaniclnumemkzi”Hp“l + l/n“uwjg’n'wcwi“llp'
Now we use Lemma 2.7 to estimate

> / H Gyl
=1

mMi,...,Mn

Similar computations as in the proof of Theorem 2.4 shows that
sy < Nl oy + NN ) + NI iy + NI

This, (2.12) and Gronwall’s inequality certainly yield (2.4).

Step 2. Drop the condition 4° = 0 in Step 1. We prove that there exists
€ € (0,1) such that (2.4) holds if T < e. Assume that T < 1. Since blug: €
L72?(T), by Theorem 2.4, the equation

= Av + buy
has a unique solution v € ’H;:g” (T), and furthermore
(2.14) lvllz2 ey < Nllbuzllpzery < Nlluellpeer),
where N is independent of T, since T' < 1. Thus by (2.12),
||U||H11,v"P(T) = NT”””%%W(T) < NT”ux”L;‘P(T)-
Observe that @ = u — v satisfies
= Dy(a% i, + G+ f) +cu + J,
= 4+bv+(a¥ — 69wy, fi=f+cuv.
By the result of step 1 and (2.14)
“U“ 1, Hy™P(T) — < ”u”HI,’VIP(T) + HUHHI P (T)
< NT”U” 1, TLP(T + NHJM”]L"P(T) + N”f”]?ﬂgl»np(T)'
Thus if NT < 1, then
W gy S NIy + NI -

This yields (2.4).
Step 3. General case. First we prove the following lemma.

Lemma 2.8. Let 7 < T, u € H7+2’q(7') and u; = f. Then there exists a
unique @ € H)§>%(T) such that @(t) = u(t) for t < and, on (0,T),

(2.15) up = At + f(t),

where f = (f(t) — Au(t))Ii<,. Furthermore,

(2.16) “ﬁllng“vq(T) < N||u||Hg+2’q(T)7
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where N is independent of u and 7.

Proof. Note f € H»9(T'), so that, by Theorem 2.4, equation (2.15) has a unique
solution & € H“’Jrz’q(T) and (2.16) follows. To show that #(¢) = u(¢) for ¢t <,
notice that, for ¢ < 7, the function v(t) = @(¢) — u(t) satisfies the equation

vy =Av, v(0,-)=0.
It follows from Theorem 2.4 that v(t) =0 for ¢t < 7. O

Now, take an integer M > 2 such that T/M < ¢, and denote t,, = Tm/M.
Assume that, for m = 1,2,..., M — 1, we have the estimate (2.4) with ¢, in
place of T' (and N depending only on d,p, 8y, K,T). We are going to use the
induction on m. Let u(™ be the continuation of u on [tm,T], which exists by
Lemma 2.8 with v = —1. Then

(2.17) HUMHH;"I(T) < N“““H;»q(tm)‘
Denote v{™ := u — 4™, then v(™(t,,,-) = 0, and for ¢ € [t,,, T
o™ = Di(aijviT) + b0 4 1Y)+ bivgf) + o™ + fo,
where
fh = (a¥ 5”) N L o fm = biu;T) +cul™ + f.

Next, in a natural way, introduce spaces Ly([tm,t], H)). Then we get a
counterpart of the result of step 2 and conclude that

| e s

<N/ 13 ()%, + 1S, ) ds

Thus by (2.17) and the induction hypothesis we get

L o) as
0

T tmt1
<V [ s 8 [ b ) 9 0

< NUF Iy, + NI

We see that the induction goes through and thus the theorem is proved. [

(tm+1 H_l q +1) ’
3. PDEs on bounded C*! domains
Here we deal with the equations on bounded domains.

Assumption 3.1. The domain Q is of class Cl. In other words, for any
xo € 09, there exist constants ro, Ky € (0,00) and a one-to-one continuously
differentiable mapping ¥ of B, (o) onto a domain G C R? such that
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(1) G4 :=¥(By,(z0) NN) C RE and ¥(zo) =0
(i) U(Bro(zo)NIN) =GN {yeR?: y! =0};
(iii) ||‘I’||01(Bro(w0)) < Ko and [T~ (y1) — U~ (y2)| < Kolyr — g2/ for any
vi € G;
(iv) ¥ is uniformly continuous in for B, (zo).

Here is a well known property of C! domains (see, for instance, [2]). Denote
p(z) := dist(z, OQ).

Lemma 3.2. There is a real-valued bounded function v defined on Q such that
for any multi-indez o,

3.1) lim p(x)Yzz(x) =0, SuPplal(w)lDa"/’z(w)l <00
p(z)—0 Q

and for some constant N = N(Q) > 0,
N71p(z) < $(x) < Np(z).
We use the Banach spaces introduced in [3], [6], and [9]. f 0 € R and n is a
nonnegative integer, then
Lyo(Q) := H 4(Q) = L, (2, p°dz),

(3.2) o) = {u:u,puy,...,pl% D% € L, 5(Q) : Ja| < n}.

In general, for v € R, the weighted Sobolev space H ;’9(9) is defined as set of

all distributions % on Q such that
o

(3.3) el oy = D2 €™llG=nle™ule™ )y < oo,

n=—oo

where {(, : n € Z} is a sequence of functions ¢, € C{°(Q) such that
Y >e>0, |D™a(z)| < N(m)e™
n

We also introduce Banach spaces defined on R%. Fix a function ¢ € C°(R.)
such that

(3.4) D i€ty > >0, VzeR,
nez
and define {,(z) = {(e"z), so that (3.3) becomes
(35) I, = 32 e (el < .

It is known that the set H ;(Q2) is independent of the choice of {,, and the
norms generated by different ch01ces of (, are all equivalent. In particular, if
7 is a nonnegative integer then as in (3.2)

(3.6) el oy~ D2 / 101 DoufP o= .

| <y
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Denote p(z,y) = p(x) Ap(y). Foroc € R, v € (0,1] and k =0, 1,2,.. ., define

lu(z) — u(y)]
u =supu:r, U|ov =sup —————,
lulca) lu(z)], [eve A —r
[mg—ﬁ%&—swp“%mw%wn
lﬁl k
(o) (o) k+v+o ID'BU(ZL‘) - Dﬁu(y)l
U, = yQ = Sup z,Yy > ,
[ ]k—i— [ ]Ic—i— Q Iiﬁegp ( ) |$—y|
u (o) (o)
uli” = luley = S, Wl = 1ul.q =l + [, o
7=0

We collect some properties of the space H 6(Q). The constants N’s in the
following lemma depend only d,p,~, 8 and Q

Lemma 3.3 ([9]). (i) Assume thaty—d/p = m+v for somem =0,1,... and
€ (0,1). Let 4,5 be multi-indices such that |i| < m,|j| = m. Then for any
u € HJ ,(Q), we have

YliHo/P Dy e C(Q), ¢™TYH/PDIy e CV(Q),
|¢Iz’|+9/pDiu|C(Q) + [,(/}m+u+0/PDju]CV<Q) < NHUHH;Q(Q)

(i) D, Dy : H) 4(Q) — H;gl(ﬂ) are bounded linear operators, and for any
u € H;9(Q)

(3.7 ||U”H;”9(Q) < N“wuzllHl—sl(Q) + N“““H;Y_SI(Q) < N”““H;”G(Q),

B8 Nl o < NIl + Nl @ < Vul o)
(ili) For any v,y €R, Yy H) ,(Q) = H) H) o (), and

(3.9) lullzy, @ < Nl ullmy @ < Nlulay, @)

(iv) There exists a constant N > 0 such that

laull iy (@) < N|a||7|+”U||H NOR

Denote
HY§(Q,T) = Ly([0,T], HY (), HG(T) = Ly([0,T1, HY o),

Ly o0 T) =HRQ.T), UZj =o' "2/ H}*"(9),
where

,_ 2/q—1
HUHU;’; = ||7/’ ! u“H;EQ/Q(Q)-
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By $,°5(?,T) we denote the space of all functions v € YH'3(Q,T) such
that u(0,-) € U and for some f € 9~ 1HZ;2’Q(Q,T),
(3.10) up = f
in the sense of distributions. We define 79 ((Q,T) = H6,T)N{u: u(0,-) =
0}. The norm in $,74(Q,7) is introduced by
lullgr e =4~ UHHunIT)4'H¢udhm 2 T uolluyg.

By Lemma 3.3(iii), the norm ||| #74(o,1) Is equivalent to

ety

@m) + lutlurza 0 + lwollurg-

From this point on, we assume that
d-1<8<d-1+p.

Here are the main results of this section.

Assumption 3.4. (i) The functions a,b,b,c are Borel measurable in (t,z),
a’ = a’* and a is uniformly continuous in z.
(ii) For any t > 0,z € Q, and A € RY,

(3.11) SolAl? < a¥(t, z)AN < KN
(ili) For any ¢, z,
(3.12) p@)[B' (8, )| + p(2)[b' (¢, 2) + p*(2) e(t, 2)| < K
and there is a control on the behavior of b, b and ¢ near 42, namely,
(313 lim sup(e(@)lb(t,5)] + p(a)lb(t,2)] + ()l 7)) = .
e

Remark 3.5. (3.12) and (3.13) allow the coefficients b%, b and ¢ to be unbounded
and to blow up near the boundary of Q. For instance, those conditions are
satisfied if for some e, N > 0

bt 2)| + b(t, 2)] < Np*H (), e(t,2)| < Np*~2(a).

Theorem 3.6. Lete >0 and 1 < p < ¢ < co and Assumption 3.4 be satisfied.
Then for any f* € LZ ,(,T), f € »™"H, y(Q,T) and

ug € ¢—2/Q+1+£H1—2/¢1+5(Q)

equation (1.2) with initial data ug has a unique solution u € YJ 5(Q,T), and
for this solution

(3'14) “u“ﬁ:}”g(ﬂ,T)
< N(”’/’2/q—1_£u0HH;—QZ/HE(Q) + “fi“]Lg,e(Q,T) + ”w.f“u-n;y};q(g,:r)),

where the constant N is independent of u, f, and ug.
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Assumption 3.7. For each ¢ > 0,
(3.15) ja(t, )+ 1Y+ et < K

171+
Theorem 3.8. Lety € R,e >0, 1 <p < g < oo and Assumptions 3.4 and 3.7
be satisfied. Then for any f € v~"H3(Q,T) and
ug € YHarire graimate(q),
equation (1.1) with instial date ug admits a unique solution w in the class

HIEUQ,T), and for this solution

(3.16) lallsos2eo,m < NUWYE 00l rsa-zrase g + 1f g ga.m),

where the constant N is independent of v, f, and ug.

Remark 3.9. Various Holder estimates of the solution u € ,67+2 4Q,T) are

investigated in [3]. For instance (see (4.10) and (4.17) there), 1f
2/g<a<B<l, y+2-B-d/p=k+e

where k£ = 0,1,...,¢ € (0,1]. Then for v := 8 — 1 + 6/p and multi-indices ¢

and j such that |¢| < k and |j| = k, we have

sup ¢ = s~/ (gD (u(t) = u(s) e
t#s

+ [ DI (u(t) — u(s)))oe o) < oo
In particular, if v = -1, 6 = d and ko := 1 — 2/q — d/p > 0, then for any
K€ (O,Iio)

t —ul(t t,x) —u(s,x
aup sup LED UYL ) uls,2)
t<T x,yef |z — ylm zeQt,s<T (t - SIN

< 0.

Indeed, to estimate the second term, take 8 = kg — k + 2/¢, then we have
e=1-8—d/p=rk = —v. For the first term in the above, take o = k + 2/q,
and note that 2/¢ < a < 1—-d/p <1and qa/2—1=g¢gxr/2.

4, Auxiliary results

In this section we develop some estimates for PDEs defined on ]R‘i. By M¢
we denote the operator of multiplying (z1)® and M = M!.

Theorem 4.1. Let 1 < p €< g < 00,7 € R and ¢ > 0. Also let Assumption
8.4(1)-(ii), Assumption 3.7 hold and

la? (8, @) — a” (¢, y)| + 2B (E, @) + (&) le(t, 2)| < B, VE,z,y.
Then there exists By > 0 such that if 8 < By then for any f € M~TH)'2(T) and
ug € M~% q+1+5H 7+2_2/ It equation (1.1) with initial data uo has o unigue

solution v € M]HI7+2 UT), and for this solution

(4.1) HM ““]HI’“ () < N“Mf“]HI 17y + N”]\’P/q - UOHHH? 2/ate,
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where N = N(d,p, q,v,¢, 80, K).

Proof. By Theorem 3.2 in [4], the theorem is true if a = (a%) is independent
of z and b* = ¢ = 0. Thus we only need to show that there exists Bo such that
the estimate (4.1) holds given that a solution u already exists and 8 < 8. As
before, we also assume that ug = 0.

Case 1. |v| € {1,2,...}. Fix xg € R and denote ao(t,z) = a(t, ). Then
u satisfies

U = af)jumiwj + 7 Fi=(a¥ - aéj)uxixj + bugi + cu + f.
By Theorem 3.2 in [4],
(4.2) HM_IUHH;;M(T) < NIIM fllursr)-
Here we use (Lemma 3.3(ii) or Theorem 2.1 in [6])
(43) IMuzelig, + sl < NIM "l s
and (Lemma 3.6 in [2])
(4.4 Jaullsg, < Nsup ol

where s =1if y =0 and s =1 — |y|/]y|+ (> 0), otherwise. Thus
1M (a ~ aO)um”H;’,e < N,BS“MUMHH;’G < Nﬂs”M_lu”H;*g??
IMbually, + IMeuly, < NBuallry, + NSIM " ul o .
Consequently,
“M_lull]zq[;;m(:r) < Nﬁs“M‘lun]H[;;?»‘I(T) + N”Mf”]HI;:g(T)-
Now it suffices to take Gy sufficiently small such that N 88 <1/2.

Case 2. v € {1,2,...}. Proceed as before, but instead of (4.4) we use
(Lemma 3.6 in [2])

(0)
laullz, < Nsup allully , + Mol ul .

By Theorem 2.6 in [7] for any ¢ > 0,
el < ellull s + N ulz,.
Thus
1M Flls oy < Nﬂ”M_lu”]H[;:;Zq(T) + N”M_IUHHQ;M(T)
+ NIM fllwzzcry
S N(B+ E)HM—lu”H;f:zM(T) + N”M_lu”ﬂi:g(q“) + ”Mf”H;’;g(T)'

This and the result of Case 1 (when v = 0) easily yield (4.1).

Case 3. v € {-1,-2,...}. We proceed by induction on v and assume that
there exists Gy > 0 such that the theorem holds for v + 1 in place of 7. The
possibility to start the induction from y = —1 is justified in case 1.
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Note that if (3.15) holds for v then it also holds for v + 1. Let 8 < fo.
Then the operator R which maps f € M '1Hz;1’q(T) into the solution v €
M HZ;?”‘I(T) of equation (1.1) with zero initial data is well defined and bounded.

Take f € M~'H[)'{(T), then by Corollary 2.12 of [6] we have the represen-
tation

d
f=>_ MDf*,
k=1
where f* e M‘lHZfél and
d
(4.5) D IM s < NIM flay -

k=1
Now define

d
wt =R kE=1,2,....d, v=> MDuw*
k=1
Owing to the induction hypothesis, (4.3) and (4.5) we have

1Ml 20 (T) < 3 b lgrsnar,
k

< NZ ”M_lwk”H;fg&q(T) < N||Mf||n{;;g(T)-
k

Furthermore, B
Ve = @Y g5 + by v+ f+
with _ N ,
Mf = Mwk. ;MDya” + wk, M2Dyb* + M~ w* M3 Dyc
= 2a"" MwF, . —wk. Mb'.

In addition,
|M Dialjy4+1) = |MDraljy -1 < Nlaly < NK,
|M?Dybljy 41 = M2 Dbl < Np|{2),

and similar estimates hold for M3 Dye, a, and Mb. Hence from the construction
of w*, we infer that

”MfHH;jél < N[IM fll -

Now we define 4 = R(f) and % = v — %. Then % belongs to M]HI;;M(T)
and satisfies equation (1.1) and (4.1) follows from the above estimates. Finally
by reducing Sy if necessary (we are free to do this) we show that v = 4. Since
P=4q,

u, @ € MHYE*P(T).
It follows from Theorem 2.14 in [2] that u = @ (if 8 sufficiently small). The
theorem is proved. ]
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Theorem 4.2. Let 1 <p < g<oo ande > 0. Also let Assumption 3.4(i)-(ii)
hold and

[ (t,2) — a¥ (¢, 9)| + 2" |2, 0)| + 26 (1, 2)| + (@ Plelt, @) < B, W,z
Then there exists 81 > 0 such that if 3 < (31 then for any f* € ]LZ’G(T),
fe M_IH;;"](T) and ug € M—2/4+1+5H;;2/q+€, equation (1.2) with initial
data ug has a unique solution u € M ]I-]I;:g(T), and for this solution
(4.6) 1M~ ullgary < NI e @) + NIM fllsg- 0y

2/q—1—¢
+|| M uo||H;}2/q+e,
where N = N(d,p,q,7,¢,00, K).
Proof. Fix zo € R%, denote ag(t,z) = a(t, xo) and
f=Di((a¥ — af Yugzs + biu+ %) + blug: + cu + f.
Then by Theorem 3.2 in [4],
||M_1UIIH;1‘§(T) < M”MJ?“H;;‘I(T)‘
Since M D : H;,o — H;gl is a bounded operator,
IMD:((0 ~ af Yool -2 < N1l (@ = a1, < NBltsllz, o,

IMDiE W)l -1 < NIMEM ullz, , < NAIM ]z, ,,

p,0 —
|| M by +Mcu|]H;é < IMbugillp, , + | M2 eM ™ |y, , < N6||M—1u||H;9.
Thus,
||Mf_‘”11-11;,§’q(T) < NﬁIIM_WIIH;;g + N”fi”LZ’e(T) + HMfHH;;,q(T).
Obviously, this proves the theorem. O

5. Proof of Theorem 3.8

We repeat arguments in the proof of Theorem 2.10 in [2], where the the-
orem is proved when p = ¢. As in the proof of Theorem 2.10 in [2] we may
assume that 0Q is infinitely differentiable. Indeed, there is € > 0 and a C'™
diffeomorphism p : Q. := {z € Q : ¥(z) > e} — Q such that the map-
pings 1 and p~! induce one-to-one linear bounded mappings from H; o ()
onto H) () and vice versa, and proving that the function u € S’J;:gz’q(Q, T)
satisfies (1.1) and admits estimate (3.16) is equivalent to proving the function
@ =ulu) € ﬁ;f’q(Qe,T) satisfies the corresponding equation in ., and ad-
mits the natural modification of estimate (3.16). Furthermore, the mappings
w and p~! preserve all the assumptions on the coefficients. Remember that WP
is bounded and infinitely differentiable, and therefore 2, € C°.
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Next we establish a priori estimate (3.16) given that a solution u already
exists. Let zg € 9Q and ¥ be the function in Assumption 3.1. As mentioned
above, we may assume that ¥ is infinitely differentiable with bounded deriva-
tives.

Define r = r¢/ K and fix a smooth function n € C§°(B,) suchthat 0 <n <1
and n = 1in B, ;. Observe that ¥(B, (z¢)) contains B,. For m = 1,2,..
t >0, z € RY, introduce n,,(2) = n{mz),

")

am (t, ) :== anm + (1 = nm)alt, 0), by, 1= l;nm, Em = ENm,

where
a(t,x) = & (t, v (z)), @ =a VLWL,
bi(t,z) = b (t, 0™ (2)), B =a W . + bV, &(t,z) =c(t, T (z)).

One can easily check that there is a constant X independent of g such that

O T (N Y RN
SUp Sup([Gmj 1, + lbmljyp, + lemlyy),) < K-

Take By from Theorem 4.1 corresponding to §,p, ¢, K,y and K. By Assumption
3.4 one can easily find m such that

i (t,2) = G (t,9)| + 2 b (8, 2)| + (21)?[Em(t, 7)| < Bo, VE, @, y.
Now we fix m and pg < ¢ such that
\I/(Bpo (Io)) - Br/@m).

Let £ be a smooth function with support in B,, (zo) and denote v := (u€)(¥ 1)
and continue v as zero in R% \ W(B,,(z0)). Since n,, = 1 on (B, (x0)), the
function v satisfies

Ve = @9 04105 + b vgi + Emv +
where
F=F0Y), F=-20"ugty — aubyy — buly +£f.

Next we observe that by Theorem 3.2 in [9] for any v,a € R and h €
Y~*H) ,(Q) with support in B, (x0)

-1
(5.1) ¥Rl my ) ~ IM*R(T )|z ,-
Therefore by Theorem 4.1 we have, for any ¢t < T,

||M_1U||H;§2~Q(t) < N||Mf||H;j;g(t) + N||M2/q_1_5u0(\11_1)§||Hg+2A2/q+€,
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By using (5.1) again we obtain
||1/}_1u§”)141;/‘*é2"1(9,t) < Nlla§w¢uz||ﬂ-ﬂ;’:g(ﬂ,t)
+ NllaezYulluys (o,
+ N“fzwtm“]}ﬂ;;g(n,t) + N”§¢f|l]ﬁl;:§(ﬂ,t)
+ N||¢2/q_1—euoHH;+2—2/4+E(Q)~
Also since

0 0
sup(latl[3], + VI, + lagestl]]],) < oo,

we conclude
W™ e lgrs200,0y < Nlvuzllurg@s + Nllularg@.e
+ NS llez. + Jlp?/ 7= 1~6u0”H7+2 2/ate ()

Observe that pg,m, K’, N are independent of zyp. To estimate the norm
I~ u]|H~,+z (G gy One 1ntroduces a partition of unity (g, ¢ = 0,1,2,..., Ny

such that Cg) € C5°(Q2) and () € C§°(Bp, (i) for i = 1,2,...,N0, where
x; € Ofd.
Then one estimates Ilzp_luC(O)Hsz,q(Q + using Theorem 2.4 and the other
»,0 ’

norms as above. By summing up those estimates (this is possible since Q is
bounded and thus Ny < o0) one gets

(5.2) ||¢_1“||H;$2»Q(Q,t)
< Niyuellmrg o + N“UHH;;M(Q,t)
+N||¢f”m1;:g(ﬂ,t) + N“'po/q_l_Euo”H;+2—2/q+e-
Furthermore, we know that
lbuzll gy @) < Nl gyt oy-
Therefore (5.2) yields
(53) ”u”%w+2,4(9 t)
< Vol e * N9l g0
+N“w2/q - EUOHH;/+2—2/Q+E(Q)-
Now we use (Theorem 2.7 in [8])
p
sup HU(S)HH;;l(Q) < JVllullﬁwzp(Q 5

to get

L N 3
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Actually in [8] there is a restriction that p > 2. But as mentioned before,
in our (deterministic) case the inequality holds for all p > 1. Now (5.3) and
Gronwall’s inequality lead to (3.16).

The a priori estimate combined with the method of continuity show that it
only remains to prove solvability in the case of the heat equation

ug =Au+ f, u(0,-) = up.

Since C§°(Q) is dense in HY ,(Q) for any v and 6, it suffices to concentrate
on ug € C§°(R). Then passing from u to u — up we see that we may assume
that up = 0. Again using the fact that C§°(£2) is dense in the spaces H;-O(Q)
we easily convince ourselves that it suffices to only consider f’s which are
bounded on € x [0,7] along with each derivative in (¢,z) and vanish if z is
in a neighborhood of the boundary of Q. In that case it is well known that
there exists a classical solution u of the heat equation with zero boundary and
initial data. It turns out (see [2]) that ¢~'u is infinitely differentiable and has
bounded derivatives. It easily follows that u € S’J;’)gz’q(Q,T). The theorem is
proved.

6. Proof of Theorem 3.6

Due to Theorem 3.8 we only need to establish estimate (3.14) assuming that

a solution u already exists and u(0) = 0. Also note that D; f* € p~'H_ 54, T)
since

10DuF 300y < NS 2y 0060

If we replace f with fI, + f then we come to the situation with f* = 0. Thus
without loss of generality we assume that f° =0.

Let zo € 0§, Take 7, and G, from the proof of Theorem 3.8. Define
@} = Dy(V%-(T71)(D),

bm = l:mm, b = i, Cm = CNm
where
I:)i(t,x) =b"(t, ¥ N z)) WL, (U1 (z)), bt,x) =b(t, ¥,
b= —a™ Wi 4 "B, E(t,x) =&t U z)), é=c—b .
Then, one can easily find m such that for each ¢, z, v,

[ (t,2) = am (8, 9] + 3 b (£, 2)| + 2 b, 2)| + (1) m (8, 2)] < 1.
Now we fix m and p1 < rg such that U(B,, (x0)) C B,/(2m)- Let £ be a smooth
function with support in B,, (zo) and denote v := (u€)(¥~!) and continue v
as zero in R4 \ W(B,, (z0)). Then,

vy = Di(a% v, + la)lmv + ) 4+ b vy + ému + f,
where

fAi = .fi(\I’—l)a fl = aijué'wjy
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F=FO7Y, f=fe+bubs —aVuyy — budy.

By Theorem 4.2 and (5.1},

-1 ~ ~
e u&”]}nkg(g;p) < N”fZ”LZ’g(Q,T) + N||¢f“H;}9»q(Q,T)-

As in (2.13), one can show that for any ¢ > 0,

90 Ugs € “H;é(g) < elluwibeilln, o) + N(e)llvugs€as ”H;}a(g)-

To estimate the norm ||¢_1u||H1,Z (2, one introduces a partition of unity
s @ = 0,1,2,..., Ny such that () € C5°(Q) and (s € C(By, (x4)) for
i=1,2,..., N1, where z; € Q. Then one estimates ||¢_1uC(0)||H1,g(Q’t) using

Theorem 2.2 and the other norms as above. By summing up those estimates
one gets, for each t < T,

IW—IUHH;‘;(QJ&) < NEIIUmIILZﬂ(Q,t) + N”@bquH;z,q(Q,t) + N"T/’f”H;lqu(Q,ty
This yields (5.2) with v = —1 and finishes the proof.

(1]
(2]

[10]
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