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1 Introduction

In this article we present an Lo-theory of stochastic partial differential equations (SPDEs in abbreviation)
of the type

du = <8i (a9 ugs + biu) + bhugs +cu + f) dt + (0% ugs + pPu 4 g*)dzk (1.1)

given for w € Q,¢t > 0 and z € R%. Here {ZF, k = 1,2,...} are independent one-dimensional Lévy
processes defined on & probability space 2, 4 and j go from 1 to d, k£ runs through {1,2,...} with the
summation convention on 1, j, k being enforced. The coefficients %, b?, b¢, ¢, 0%, u* and the free terms
J, 9" depend on (w, t,x).

SPDEs of type (1.1) arise naturally in many applications, for instance in nonlinear filtering theory of
partially observable diffusion processes, in relativistic quantum mechanics and population models with
geographical structures (see [14]).

‘When Zf are independent one-dimensional Wiener processes, the corresponding Ls-theory is well
developed and an account of it can be found, for instance, in [13,14]. Also an L,-theory of equation (1.1)
defined on R? was first introduced by Krylov in [9]. Later Krylov’s results were extended for SPDEs
defined on domains of R? (see [5,7,8]). We refer the reader to [12] and the references therein for other
work on SPDEs driven by continuous Banach space-valued processes.
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SPDEs (1.1) can be viewed as stochastic differential equations (SDEs) in Banach spaces (see
Remark 2.13 below). In [3], Gydngy studied existence and uniqueness of Hilbert space-valued solution to
the following type of SDEs in Banach spaces:

du = A(w,t,u(t))dN, + B(w,t,u(l))dM, (1.2)

where N is a non-decreasing real-valued process, M is a Hilbert space-valued quasi-left continuous local
martingale, A and B are random operators defined on a reflexive Banach space V' continuously and
densely embedded into a Hilbert space H. See, for instance, [1,2,6,10,11] for other related works on
Banach space-valued SDEs of type (1.2) driven by Poisson random measures or stable noises.

The purpose of this paper is two-fold. First we show in Section 2 that if each ZF has finite second
moment, that is, if

/zzyk(dz) < oo foreverykz1, (1.3)
R

where vy is the Lévy measure of ZF, then for every T' > 0, the equation (1.1) admits a unique solution
in H(T"), and the map R : (uo, f,g") — Ru, where Ru is the solution of (1.1) with initial date uo, is a
continuous linear operator from Ul x Hy*(T) x La(T, £2) to H3(T') (see Section 2 for the definitions of
these spaces). We point out that, while it is possible to deduce this result (Theorem 2.12) from the main
results in Gyéngy [3] (see Remark 2.13 below), our approach in this paper is different from his. We use a
direct martingale approach and a method of continuity, which may be of independent interest. We then
give two extensions in Section 3. First we develop an Ly-theory for the semi-linear equation

du = (aiz (a¥ugs + biu) + b'ugs + cu + f(u)) dt + (0™ ugi + pPu + g* (u))dZF, (1.4)
under the condition that f(u) = f(w,t,,u), ¢*(u) = ¢*(w,t,z,u) satisfy Assumption 3.1 below. Next
we weaken the second moment condition (1.3) by assuming that it holds only for sufficiently large &
(thus it can be dropped if only finitely many processes ZF appear in the equation) and prove that the
equation (1.4) has a unique pathwise H3-valued solution.

As usual, throughout this paper, R stands for the Euclidean space of points = = (z!,z2,. .., z4) and
By(z) = {y € R¢: |z —y| < r}. Fori=1,2,...,d, multi-indices & = (a1, @2,...,@a), &; € {0,1,2,...},
and functions u(z), we set

Ugi = Ou/0x* = Dju, D% =D{---D3%u, |of=o01+ - +ag.

We also use the notation D™ for a partial derivative of order m with respect to z. If we write ¢ = ¢(-),
it means that the constant ¢ depends only on what are in parenthesis. For scalar functions f, g defined

on RY, (f,9) = [pa F(2)g(x)dx.

2 L,-theory for linear equations under condition (1.3)

Let (Q, F, P) be a complete probability space equipped with a filtration (Fz,t = 0) satisfying the usual
condition. We assume that on © we are given independent one-dimensional Lévy processes Zy, 72, ...
relative to {Fs ¢t > 0}. Let P be the predictable o-field generated by {F3,¢ > 0}.

For ¢ > 0 and A € B(R\ {0}), define

Ni(t, A) = #{0 < s < t; Z¥ — 25 € A},  Ni(t, A) = Ni(t, A) — tvg(A),

where v (A) := E[Nk(1, A)] is the Lévy measure of ZF. By Lévy-Itd decomposition, there exist constants
ok, B and Brownian motion Bf so that

ZF = agt + PrBy +/

2Nt dz) + / Nt d2). @.1)
jz|<1

221



Chen Z-Q et al. Sci China Math November 2012 Vol. 55 No. 11 2235

Assumption 2.1. (i) For each k > 1,

1/2
B = [ / ZQV;;(dz)} < . (2.2)
R
(ii) There exist constants § € (0,1), K € [1,00) so that for anyw € Q, t> 0 and z € R?

SlE)? < (a¥ — o)l < a¥gied < K|EP, VEeRY, (2.3)
where o == £ 30 | (62 + BE)oFoik.

Due to (2.2), flz|>1 |z|vk(dz) < oo, and thus by absorbing flzl>1 zvi(dz) into oy, we can rewrite (2.1) as
ZF = axt + BrBE + / ZN(t, dz).
R

For d > 1, consider the equation for random function u(¢,z) on Q x [0,7] x R%:

5 . _ . ,
du = <()zv (@ ugs + b'u) + Buys +cu + f) dt + (0% ugs -+ phu + gF)dzk (2.4)

in the sense of distributions. See Definition 2.4 below. The coefficients a*, b%, b?, ¢, 0, ¥ and the free
terms f, g* are random functions depending on ¢t > 0 and z € R%. Without loss of generality, we assume
éy, = 0, since otherwise we can rewrite (2.4) as follows:

o .. . — - ; 5
du = (83:- (@“ugs +b'u) + (" + o™ )ugs + (¢4 apu®)u + f) dt + (0% ugs + pFu + gF)dZE,
1

where Zf := ZF — ayt.

Remark 2.2.  Conditions (2.2) and (2.3) will be weakened in Section 3. In particular, one can com-
pletely drop the condition (2.2) if there are only finitely many processes Z in equation (2.4).

Forn=0,1,2,..., define the Banach spaces
HY = HF(RY) = {u: D*u € Ly(RY), |o| < n}.

In general, for v € R define the space Hy = HJ(R?) = (1 — A)~"/2L, as the set of all distributions u
on R? such that (1 — A)"/?y € Ly. For u € Hy, we define

lullzry =111 = A)2ull, = | F (L + €12 F @)E)]) ey, (2.5)

where F is the Fourier transform. If n is a nonnegative integer then the norm [ju|| Hp I8 equivalent to
Zjajgn 1D%ul| ;- Let P4P*% be the completion of P with respect to dP x dt. For n € Z and T > 0, we
write w € HF(T') if v is an Hy-valued PP *d-measurable process defined on £ x [0,77] so that

T 1/2
lullmpzy = (E[ / ||u<t,->u%,;dtD <o

Denote Lo (T') := HJ(T). For an £y-valued process g = (g',g%...), we write g € La(T, £3) if g* € Lo(T)
for every k > 1 and

oo T 1/2
loltacren = (3ot +2be] [ lgtiz,a]) " <o
k=1
Finally, we use U2 to denote the family of Ly(R%)-valued Fy-measurable random variables g having

1/2
luollyy = (Elluol3,)"* < oo
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Remark 2.3. (i) Since we are assuming &y = 0, Zf is a square integrable martingale, whose quadratic
variation will be denoted by [Z¥]. For every process H in Ly(£2 x [0,7]), which has a predictable dP x dt-
version H, M; = f; H,dZk (= f(f HydZ® in Ly(Q)) is well defined and M; is a martingale with

E[M?] :]E[/OtHf d[Z’“]s} = (,3,3+5,%)]E[/0tH3ds], t<T.

ii) For any g = (g, ¢2,...) € La(T, £3) and ¢ € C§°(R?), the finite sum Y7 “(g*, $)dZF is a square
0 k=1Jo ¢
integrable martingale with quadratic variation > ;_; (62 +€3) j(f (g%, $)%ds. Since

e e] T
ZEA(@+%mﬂ@wmwwammmm<m, (2.6)
k=1

it follows that the series of stochastic integral ) 5o, fot (g%, ¢) dZF converges uniformly on t € [0,77] in
probability.
(iii) In many articles, equations of the type

du = (Au + f)dt + g(u(t—))dZ,

have been considered to study pathwise solutions. The expression u(t—) is used because in those type of
equations one requires the solution to be adapted and cadlag (ie., right continuous having left limits).
In this article, we do not use such notation since we only require g{u) has a predictable version.

Definition 2.4. We say u € HA(T) if u € H(T), »(0) € U3, u is right continuous with left limits in
Ls a.s., and for some f € H; Y (T) and g = (g%, g% ...) € La(T', £2),
du(t) = f(£)dt + g*(t)dZF, VO<tLT

in the sense of distributions, that is, for any ¢ € C§° (R%), the equality

t it
(00, ) = 0), ) + [ () s + [ ("(e) 9)azk (27)
0 0
holds for all t £ T" a.s. In this case, we write
Du:=f, Sfu=g* Su:=(S",S%,..)= (g, % .. ), (2.8)

and define
[ullaggery = lullicry + Dullg; 2y + ISeluaeres) + 1w(0) oz

Lemma 2.5. Let u € Hi(T), then

(i) for any p€ CS°(RY), (u(t), @) is a progressively measurable right continuous process having left limits;

(ii) for each fized t > 0, u(t) = u(t~) in L a.s.
Proof. (i) For any positive integer n, the process Sohea ), tt (g®, $)dZ¥ is progressively measurable, right
continuous and has left limits. Thus the claim follows immediately from Remark 2.3(ii).

(i) By assumption w(t—) exists. Let {¢n,: ¢n € Hz,n = 1,2,...} be an orthonormal basis in Lo(RY).
Then the process ¢ — (u(t—), #n) is predictable by (i). Since fot (g%, n)dZ¥ is stochastically continuous,
we have for each fixed ¢ and n > 1, (u(t), én) = (u(t—), ¢n) a.s. Therefore

u(t=) = (u(t=), dn)pn = ult) as.
The lemma is now proved. 0

Lemma 2.6.  For any integer n and f € H3(T') there ewist fo, f1,...,fd € H5 (T so that

d
F=fo+Difiy Y Nfillgp+rery < Nflag-
=0



Chen Z-Q et al. Sci China Math November 2012 Vol. 55 No.11 2237

Proof.  This is a classical result and we give a proof only for the completeness. By definition (2.5) the
map (1 —A): H¥*? — HF is an isometry. Denote

fo=(1-A)'f and fi= —g—i—g for i=1,2,...,d.
Then f = (1 - A)(1 - A)"1f = fo + D;f; and
d
> Wilwgriery < Nl folluperery < N fllagery. O
=0

Theorem 2.7.  The space H3(T) is a Banach space, and for any u € H(T") we have
B sup [u(0)13,] < clDull i + D000y + 180l )+ IO, 29)

where the constant c is independent of u.

Proof.  First we prove (2.9). Let u(0) = up and du = fdt -+ g"dZF. Then for any ¢ € C$°(R?),

(u(t), 8) = (o, #) + / (f(5), 6)ds + / (¢(s), §)dz (2.10)

for all t < T a.s. For f € Hy *(T), by Lemma 2.6, we can write it as f = fo + a—i—ifi with f; € Lo(T") for
0<i<dand

d
S M fillacry < el Fllggr (2.11)
i=0
For a moment, additionally assume that u, f, g, up are infinitely differentiable in %, and therefore

t t
u(t) = ug +/ fdt +/ gkdZE, Vi< T as. (2.12)

0 0
The stochastic integral in (2.12) does not change if we replace g by its predictable version, thus we may

assume that g is predictable.
Applying Ito’s formula to |u(2)|? in (2.12) (see [4, Theorem 4.4.7]) and integrating over R, we get

t t
lu(®)lIf, = lluollZ, + 2/0 (u(s), f(s))ds + Zﬁ}f/o lg* (113, ds
k

w2 [tz + X 3 I Az,
k

k 0<s<t
t d t
= || Ul s S —_— Uril8 (8 S 2 k S 2 8
~ Juoll, +2 (( 6 13(6) = Y (e i )))d +§kjﬂk/0 lo*(s)]2,d
123 / (u(s=), " ())azE + 37 5 gk (5)AZE(2,, (2.13)
PERAY k O<s<t

where we have used the fact that Z*’s are independent and so with probability one at most one of the

ZL,Z2% ... can jump at any given time. By virtue of the Lévy system of the Lévy process Z kit follows
that .
3 et AZEE, = ME 4 [ Io¥3.s (2.14)
0<s<t 0

where M* is a purely discontinuous square integrable martingale with

Mf — Mf = ||g"()AZF|2, for t>0.
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For any € > 0,
t d
i sup [ (e suton - ) o)) ds |
d
< el| Dullf, 7y +€]ESUP|\U( G, +cle, T Z 1T 5 -
=0

By Davis’s inequality,

E[ sup |Mt’°|] cE[[M*, M’“]l/2]<cE[

otgT

T
S lek Az’“HLgkcezE[ / ugk(wn%zdt},

o<tgLT

and

IE{ sup {2 /Ot(u(s_),gk(s))de

0t<T 5
1/2
) <u(t—),gk<t>)2<Azf>2) }

=
SCZ]E <

k=1 - N o<iT

o) r 1/2
<o Elsupluln( 3 Is @I @zt?) |

k=1 LS 0<t<T

[sup||u(t)||L2]+C(5)Z]E[ > Jgk( t)”Lz(AZf)}

k=1 0<tgT
[o,9]
< B[supln()IE,] + o) ARE [ 1O, 0
T k=1

By choosing & > 0 sufficiently small, one gets
Esup [u(t)I1,] < e(luollzy +1Dultyco) + 1Al + sl (2.15)

To drop the assumption that u, f, g, uo are sufficiently smooth in z, we take a nonnegative function
W € C(B1(0)) with unit integral, and for & > 0 define 1, (z) = e ~%)(x/¢). For any generalized function
v, define v (z) = v x . () = (v(-),%e (& — -)), then v (z) is an infinitely differentiable function of .
By plugging 1. (z — -) instead of ¢ in (2.10),

ot t
wO,7) = (@) + [ (0 + D+ [ Oz
0 J 0
By (2.15),

E[sup [ ©)11,] < el gy + 1D s + 1oy + 19D Eare), (216)

=

and similarly by considering u(®) — 4 instead of u(®),
B[sup [u(€) w1, ] < el oy + DU = DO
el £ = fE Ny + elle® 8 My @1T)
By using the fact that for any h € L, |A®)||z, < ||h] L, and |hE) — ||, — 0 as & — 0, we get

44 = ul| gy + D6 = Dullg,ery + 175 = fillaery + 199 = gllperen + llul? - oz — 0
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as € — 0. This and (2.17) show that there exists an Lo-valued cadlag process v so that

]E[Sup 1w () — u(t)||§2] —0 as e—0.
t<T
Since u(*) — v in H}(T") we conclude v = u, and we get (2.9) by letting & — 0 in (2.16).

Now we prove the completeness of the space H3(T). Let {un,mn = 1,2,...} be a Cauchy sequence
in H3(T). Let fr := Dup, gn := Sup and uno = u,(0). Then there exist u € HY(T), f € H; (1),
g € La(T, £2) and ug € U3 so that un, fn, gn and ung converge to u, f, g and up, respectively. Furthermore,
by (2.9),

2 2
E[fg? ([ _uang] < cfjun ~ um”?{%(T) -0

as m,m — co. Also since v — u in HA(T) as n — oo, it follows that Elsup;r [[un —u]|},] — 0 as
n — oo and u is an Lg-valued cadlag process.
Now let ¢ € C§°(R?). Since a.s.

(Un(t), ¢) = (Un07 ¢) +/O (fn(s)a (;S)ds +‘/(; (g,’i(S), ¢>)dZ§, Vi < T,

taking n — oo, we have for each ¢ > 0,

(0 9) = (u0,) + | ) s+ [ (@5, $)ZE s, (218)

Thus equality (2.18) holds almost everywhere in £ x [0, T]. Using the fact that both sides of (2.18) are

cadlag processes, we conclude that equality (2.18) holds for all ¢ < T" a.s. Consequently u € H3(T) and

u™ ~» u in HE(T). O

Assumption 2.8. (i) The coefficients a™,b%,b%, c,0™* and p* are P @ B(R?)-measurable functions.
(i) For each w,t,x,1,7,

N ‘ [+%s) ] 1/2
a9 4 (5] 16+ [e] + (Zw,% L) (0P + m’ﬂ?)) <K (2.19)
k=1

Theorem 2.9 (A priori estimate).  Let Assumptions 2.1 and 2.8 hold. Then for any solution u € HL(T)
of equation (2.4), we have

lellsgyery < ellf gz ey + 190acres) + luollug), (2.20)
where ¢ = ¢(6, K, T).
Proof.  'We proceed as in the proof of Theorem 2.7. As before, rewrite f € H; (T as

d
0 .
f=1fo+ Z %ffi with f; € Lo(T)
i=1 K
and
d

D illiacry < ellf g2y

=0
As in the proof of Theorem 2.7, without loss of generality, we may and do assume that u, f, g, ug are

sufficiently smooth in 2. By h* we denote the predictable version of o™ v + pwFu + g, Applying Ito’s
formula to |u(t)|? in (2.4),

t
Ellu(t)l?, = Elluoll?, + 2151[ / (—(@¥ugs +b'u + fi, ugi) + (Blugs 4+ cu + fo,u))ds
0



2240 Chen Z-Q et al. Sci China Math November 2012 Vol. 55 No.11

+Zﬁk/ ||h’“||L2ds+2IE[Z/ dzk]
+Z]E[
By using 2ab < €a® + ¢ 71b?, we get for any € > 0

t t
SR8t [ U de =B [ olotuc + sk
T Jo

> uh’vAz’“nLQ} (2.21)

0<s<t

:EZ / R0 Uit + 20 g (1P + g7) + |l [ul® + oz, )dds

t .
< 215{/0 (a?uziaumi)des} +e| Dullf, ) + c@)llult, e +c(@)gl?, ¢z,

where of =13, Bio®ci*. Similarly,

ZE[ > Ieazis,

0<s<t

Z ]E[/ o ugs + u+g||Lds]

t .
< 21@{ [ (e umj)ds] Tl Dul g+ )y + gl ey

where oy = 3 2otk gk, Also,

]E[/Ot ( = (B, ugs) — i(fi,umi) T (Bugs + cu+ fo, u))ds}

i=1
d
< ell Dullf, gy + clelulli, @ + cle) > NfillR
i=0

Thus we have from (2.21) that for each ¢t < T

Eflu(t)|3, + 2E Z / TNVitgi, Ugs )ds

1,5=1

< Nuoll?; + el Dulld 0y + ( / Elu(e)R,ds + 3 1+l + Dol m) (2:22)

=0

where ¢ = c(g, K) is independent of £. On the other hand, we know from the condition (2.3) that
(% — & )ugs, ugs) 2 8| Dull?,.
The above two displays together with Gronwall’s inequality yield
lulleyery < clluollug + 1 luzr oy + 19lLacz.ea))s

where ¢ = ¢(J, K, T"). The theorem is proved. O

Remark 2.10.  The proof of Theorem 2.9 shows that if bt = = ¢ = p* = 0, one can drop the term
fot Ellul|?, in (2.22), and therefore by taking € < 6/2,

IDulliaery < el F il 2y + 19lLaeren + lluollug)

where ¢ is independent of T'.
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"To use the method of continuity we introduce linear operators Ly and A as follows: for A€ [0, 1], denote

af =" + (1-X)§9, olf =o'k,

_f\ = AEZI) 3\ = )‘bzy Cx = ’\Cv /'Ll)i = )‘/l'k)

(@¥ugs 4 %) + blugs 4+ cu, APu = o%uy + pFu,

0
Ly =
%= o
9 . 4 Tin i
B (@¥ g + bY) + blugs + cru,
(3
Abu = APy = o%ugs + pbu for k> 1.

Lyu:=ALu+ (1 - M)Ay =

Note that
L,\lu - L,\zu = ()\1 - /\2)(L — A)U, A)\lu — A,\2u = ()\1 — )\Q)Au,

where Ayu == (Aju, Adu,...), Au:= (Alu, A%y, ...), and
[oaw = Lasull gr + [1Axw = Axyull Loy < () = Ao o] gy (2.23)

Corollary 2.11.  There exists a constant ¢ = c(6, K,T) so that for any A € [0,1] and any solution
u € HA(T) of the equation

du = (Lyu+ f)dt + (A¥u + ¢®)dzZE,  u(0) = uo,
we have
[l < c(“f“Hz_l(T) + | glliacr,eny + ”U0||U21)~
Proof.  For A € [0,1], denote o := Iye @+ B2)0ikoiF = \2ai, Then for any ¢ € R,
(o — of)E'¢ < a6 = Na¥EiE + (1= N)Je < K e,
SlEf* < Ma¥ — a¥)E e + (1= N[E < (Aa¥ + (1= )69 — N?a) £7¢d = (af — ol )¢,

Also, the new coefficients af\j, b, bi, cx, o8k, V¥ satisfy (2.3) and (2.19). Now the assertion of the corollary
follows from Theorem 2.9. |

Here is the main result of this section.

Theorem 2.12.  Suppose Assumptions 2.1 and 2.8 hold. Then for any f € Hy}(T), g € Ly (T, £2) and
up € U3, equation (2.4) with initial data uo has a unique solution u € HA(T), and

lullzegry < ellF gy + 19lacea) + loliug), (2.24)
where ¢ = c(8, K, T).
Proof.  In view of the a priori estimate (2.20), it suffices to show that there is a solution to (2.4).
Step 1. We show that for any given f € Hy*(T'), g € Lo(T, £2) and ug € UL, the equation
du = (Au+ f)dt + g*dzf, u(0) = uy, (2.25)
has a solution v € H3(T"). For a moment, assume that g* = 0 for all £k > N for some N > 1, and each

g® is of the type
m(k)

gk(t) = Z I(n_hn](t)‘)ai(x)v (2'26)

where 7; are bounded stopping times and ¢; € C§°(R?). Define

N t
u(t) = kstf.
(t) ,;1/09“
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Then it is easy to see that v € HA(T). Note that u satisfies (2.25) if and only if @ = u — v satisfies
du = (At + Av + f)dt with 4(0) = uo.

Since this equation has a solution in H#3(T") (see [9, Theorem 5.1]), we conclude that equation (2.25) has
a solution v in Hg(7T).
In general, by [9, Theorem 3.10], we can take a sequence g, € Ly(T', £3) so that ||gn — 9liLy(r,es) — 0 as
n — o0, g = 0 for k > N(n) and g& are of type (2.26). By the above result we can define un € HI(T)
as the solution to
dun, = (Dtin + [)dE + gndZy,  u(0) = uo,

and by Theorem 2.9 (or Corollary 2.11)

[[wn — “mHH;(T) < ¢llgn — gmllLy(res) = O

as n,m — co. Now it is clear the limit of this Cauchy sequence is a solution to (2.25).

Step 2. Let J C [0, 1] denote the set of A, so that for any f, g, uo, the equation
du = (Lyu + f)dt + (Aku + g*)dzF, u(0) =uo (2.27)

has a solution v € HA(T). Then as proved above, 0 € J. Now assume Ao € J, and note that u is a
solution of equation (2.27) if and only if

du = (Dot + (Lt = Dagu + F)) dt + (AS u+ (Abu — A% u + g%)) dZf. (2.28)

Remember that D : Hf — HZ ™' is a bounded operator. Thus for any u € H3(7T'), k¥ > 1 and X € [0, 1],
we have
Lyu € H; 1 (T) and Aju € Ly(T, £2).

Recall Mg € J. Denote u® = ug and for n = 1,2,... we define u™™! € H3(T) as the solution of the

equation
du™ = (Lyu™t + fo)dt + (A’;Uu”Jrl +g8VdzE,  wH0) = o,

where
fo = Lu™ = Lyu™ + f and gk .= Afum — A’f\ou” +g".

By Corollary 2.11 and the inequality (2.23), we have

[+t — Mgy zy < ell (B = Dag) @™ = 0™ Dl ry +ell (Ax = Aso) (™ = 4" ) [, 2,09)
<

el = XolJu™ = u" iy

Let 20 = 1/(2¢). Then for A € (Ao — €0, A + €0), ™! = ullyy(ry < gllu™ — w™ iy for every
n > 1 and so u™ converges to some u in H3(T). It follows that u solves equation (2.28). This proves that
(Ao — €0, Ao +€0) N[0, 1] C J. Consequently, we conclude J = [0, 1]. |
Remark 2.13. Theorem 2.12 can be deduced from the main results in Gyongy [3] by regarding the
SPDE (1.1) as a Hilbert space-valued SDE of type (1.2). To see this, by using the same notation as that
in [3], let H denote the Hilbert space Ly(R%), V = Hj (R¢) and E the Hilbert space £2 of all square
summable real-valued sequences with the usual orthonormal basis {ex, k = 1,2,...}. Here V is viewed as
a separable reflexive Banach space which is embedded continuously and densely into the Hilbert space
H. Let V* be the dual space of V. By identifying Hilbert space H with its dual #*, we have

VCcCH=H"CcV"
Assume that Assumptions 2.1 and 2.8 hold. Define the E-valued martingale

- 1
(B + )21+ R

Ty = Zf ek

k=1
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Let @ be the linear operator from E to itself defined by Qep = :L-lefek' We now define three linear
operators from V' C H into L(E, H), the space of bounded linear operators from E to H,

oo
Bo(w,t,") ru ((zk) — ch 14 k2uk(t)uzkek>,
k=1

oG
Bi(w,t,-) tu— <(z’”) — ch\/ 1 +k20'k(t)umizk€k>, i=1,2,...,d,

k=1
o0
Bayi(w,t,) tu—s ((zk) — Z kv 1+ kzgk(t)zkek)
k=1

It is easy to verify that each Ble/ % is a Hilbert-Schmidt operator from E to H with j =0,1,. .. ,d—+1.
Forv eV, let

o . _, A
Alw, t,v) = %(a”vmj +b"0) + bvgs +ev + f,
%

which is viewed as an element in V*. Then SPDE (1.1) can be rewritten as an SDE in Hilbert space:

A1
du(t) = Alw, t,u(t))dt + <2Bj(w, t,u(t))> dzy.

j=0

Assumptions 2.1 and 2.8 imply that the conditions (I)-(V) on [3, p.235] are satisfied. Now our
Theorem 2.12 follows from Theorems 2.9, 2.10 and 4.1 in [3]. The approach in [3] is different from
ours.

For a stopping time 7 relative to {F;}, denote
(0, 7] :={(w,t) : 0 < t < T(w)}.

Then obviously the process 1(g,j(w,t) is left-continuous and predictable. Actually, by definition, the
predictable o-field P is the o-field generated by all such processes. For an H}-valued P4 *%_measurable
process u, write u € Hi(7) if

[ullgry == E { /O HuH%I%ds} < oo,

We define the Banach spaces Lg(r,£2) and H3i(r) similarly. The following theorem plays the key role
when we weaken condition (2.2) later in the next section.

Theorem 2.14.  Suppose that 7 is a stopping time bounded by T. Theorem 2.12 holds with the deter-
ministic time T replaced by the stopping time 7.

Proof.  First we prove the existence. As mentioned above 1(o,] is predictable and therefore
F=1pnf e (T), §:=1g.19¢La(T,ta).

Let u € H}(T") be the solution of (2.4) with f and § instead of f and g respectively. Then, since 7 < T,
we have u € H3(7) and

el sy < Tllagery < oy + 1eareny + lollo)
= e Fllpzr oy + N9llagr,ea) + llwollug)-
Now we prove the uniqueness. Let u € H1(7) be a solution of equation (2.4). Then since 7 < T,
Lgo,rg - (Du — Au) € Hy Y(T), 1go,r7- Su € Lo(T, £3).

See (2.8) for the definitions of Du, Su and S*u. According to Theorem 2.12 we can define v € H(T) as
the solution of

dv = (Av + 10,,) Du — Au))dt + Lgo .1 S*u dZF,  v(0) = u(0). (2.29)
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Then for t < 7, d(u —v) = A(u — v)dt and therefore using a classical result for the heat equation
(see [9, Theorem 5.1]), we conclude that u(t) = v(t) for all ¢ < 7, a.s. Thus, equation (2.4) becomes (just
replace u by v for t < 7)

dv = (gi—i(a,ijvmj + l:)iv) + Zi'l)mi + v + fl([oﬂ-]]> dt
+ (6% v, + iFv + g1 0,147, (2.30)

where _

G = a,ijl([o’T]] + 5ij(1 - 1([0,.,]]), bt = Eil([o,,r]], b= bil([O’T]], ceey ﬂk = /,Lkl([oﬂ.]].
Note that since finite sum or product of predictable functions is predictable, these new coelficients are
predictable, and obviously they satisfy (2.3) and (2.19). Thus it follows from Theorem 2.12 that v is
the unique solution of equation (2.30) in the class #3(T"). We proved that if u € H3() is a solution of
equation (2.4) then u(t) = v(t) for all t < 7. This proves the uniqueness of solution of equation (2.4) in
the class H3(7). The theorem is proved. O

3 TFurther results

In this section we give two extensions of Theorem 2.12. First, we consider the nonlinear equation

du = (3(331' (a9 ugs + bou) + blugi + cu + f(u)) dt
+ (0™ ugi + pfu + g®(w))dZE, (3.1)
where f(u) = f(w,t,x,u) and g*(u) = g*(w,t, z, u).
Assumption 3.1. (i) For any u € Hj,
fu) € Hy' and g(u) = (g'(u), % (u), ...) € La(la)-
(ii) For every e > 0, there exists a constant Ky = K1(g) so that for any u,v € Hi(T) and t < T,
1760) = ) Rsgy + 190) = 90N Eaen < el = oy + Kallu = vl . (32)

Theorem 3.2.  Suppose Assumptions 2.1, 2.8 and 3.1 hold. Then for any ug € U}, equation (3.1) with
initial date ug has a unique solution u € H3(T), and

lullzgery < el O)lgz2ery + 190 Laq,n) + lluollug), (3.3)

where £(0) = f(w,t,x,0),g(0) = g(w,t,2,0) and c = c(3, K,T).

Proof.  'We will use a fixed point theorem to show the existence and uniqueness of the solution to (3.1).
Estimate (3.3) follows from (2.20), (3.2), (2.9) and the Gronwall’s inequality. Let R(f, g) € Hi(T) denote
the solution of (2.4) with initial data ug. Then by Theorem 2.12,

Ru = R(f(u),g(w)) for ueH3(T)

is well defined and R is a map from H3(T") to HA(T"). Define u® = R(£(0), g(0)) and u™+! = R(f (u"), g(u™))-
Then by Theorem 2.12 and (3.2), for any ¢t < T,

HR'U, - ,R,’UH?_[%(,:) < CE”“ - ’UH’?LLé(t) + CI{IHU’ - U‘I]iz(t)
t
< cellu — vl\%;(t) + CKl/O [l — U”?H;(s)dsw

where the last inequality is from (2.9). The proof of [9, Theorem 6.4] implies that R™ is a contraction in
H1(T') with the coefficient 1/2 for all sufficiently large m, that is, [R™u—R™ 0]l ) < 1/2lfu =l 33(zy-
This yields all the assertions of the theorem. The theorem is proved. 1
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Here is an application of Theorem 3.2 to SPDEs with the fractional Laplacian.

Example 3.3.  For simplicity assume g*(u) =0 for k > 2. Take f(u) = (—A)*/?u and g(u) = g'(u) =
(——A)ﬂ/2u where @ < 2 and § < 1, then obviously for any € > 0,

17 @) = £ )y + 190) = 90y < ellw = 013y +elhs — w12,

< ellw = vl + Kallu = vliE, 0,

where for the second inequality we use the following classical fact (see [15, Section 2.4.7)): if 7y = sy +(1—
k)vo and & € [0,1] then [lullgy < N ||ul|"jq;1 ||u|{}{_7’§ . Thus the existence and uniqueness of equation (3.1)
2

with f(u) and g(u) given as above is guaranteed by Theorem 3.2.

The following is a weakened version of Assumption 2.1.
Assumption 3.4.  There exists an integer Ny > 1 so that

(1) ¢, < oo for all integer k > Np;

(ii) for some & > 0,

SJEl? < (a¥ — o eI, VEeRY, (3.4)

where a%o = % ZZ":NOH(E,% + 2otk gk,

For a stopping time 7 < T', write u € H%,IOC(T) if there exists a sequence of stopping times 7, + co so
that u € Hi(t A 7,,) for each n. Here is our second extension.
Theorem 3.5.  Let Assumption 3.4 hold and o}, = 0 for k < No. Then for any uo € U}, f € Hy'(T)
and process g = (g%, g%, ...) having entries in Ly(T) so that SN (Cr + ﬂ,%)||gk||ﬂ%2(T) < 00, there exists
a unique u € Hy \ (T) such that

(1) u(t) is right continuous with left limits in Ly a.s.

(i) for any ¢ € C(RY), the equality

t
(u(t)7 ¢) = (’LL(), d)) _l_/O ((_a'ijumj - Eiu’ ¢m“) + (biumi +cu+ f7 ¢))d8

+ /0 (0% ugi, 8) + (15, ) + (9", ¢))d2ZE (3.5)

holds for all t < T a.s.

We say that u € Hj |, (7) is a pathwise solution if u satisfies the conditions (i) and (ii) in the theorem
fort < 7.

Proof. Step 1.  First assume that Assumption 2.1 holds. Then the existence of pathwise solution

under Assumption 2.1 in H}(7) (hence in H 14(7)) follows from Theorem 2.14. Now we show that the

pathwise solution is unique in B} 1. (7). Let u € H} () be a pathwise solution. Define 7, = 7 A inf{t :
fot ||u||§{%ds > n}. Then u € H(r,) and 7, 1 7 since fot ||u|ﬁ{%ds < oo forallt < 7, a.s. By Theorem 2.14,

el ey < T K iy ) + 19 Lot + 1u(0)]1g)-
3 (Tn)

By letting n — oo we find that v € H3(7), and the uniqueness of the pathwise solution under
Assumption 2.1 follows from the uniqueness result of Theorem 2.14.
Step 2.  For the general case, note that for each n > 0 and k£ < Ny,

1/2
Chon 1= (/ |z|2uk(dz)> < 00.
{z€R:|z|<n}

Consider Lévy processes (Zy, ..., 20, ZNo+1 ) in place of (71, Z2,...), where Z% (k < Ny) is obtained
from Z* by removing all the jumps that has absolute size strictly large than n. Note that condition (2.3)
is valid with € replaced by € n since o™ are assumed to be zero for all k < Np.
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By Step 1, there is a unique pathwise solution v, € H3(T) with Zﬁ in place of Z* for k =1,2,..., No.
Let 7}, be the first time that one of the Lévy processes {Z k 1<k < No} has a jump of (absolute) size
1 (n,00). Define u(t) = v,(t) for t < T, AT. Note that for n < m, by Step 1, we have Un(t) = vm(t)
for t < T,,. This is because, for ¢ < Ty, both vy, and v, satisfy (3.5) with each term inside the stochastic
integral multiplied by 1,<7, (and with ZF, k& < No, in place of Z k), Thus u is well defined. By letting
n — oo, one constructs a unique pathwise solution u in H%,IOC(T). The theorem is proved. O
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