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+e network is a concept that can be seen a lot in many areas of research. It is used to describe and interpret datasets in various
fields such as social network, biological network, and metabolic regulation network. As a result, network diagrams appeared in
various forms, and methods for visualizing the network information are being developed. In this article, we present a simple
method with a weight of information data to visualize the network diagram for the three-dimensional (3D) network. +e generic
method of network visualization is a circular representation with many intersections. When dealing with a lot of data, the three-
dimensional network graphics, which can be rotated, are easier to analyze than the two-dimensional (2D) network. +e proposed
algorithm focuses on visualizing three factors: the position and size of the nodes and the thickness of the edge between linked
nodes. In the proposedmethod, an objective function is defined, which consists of two parts to locate the nodes: (i) a constraint for
given distance, which is the weight of the relationship among all the data, and (ii) the mutual repulsive force among the given
nodes. We apply the gradient descent method to minimize the objective function. +e size of the nodes and the thickness of the
edges are defined by using the weight of each node and the weight between other nodes associated with it, respectively. To
demonstrate the performance of the proposed algorithm, the relationships of the characters in the two novels are visualized using
3D network diagram.

1. Introduction

+e network is a vital concept to understand modern society
structure and components of the society. +e concept of the
network has been applied not only to people but also to
social network [1–7], biological network [8–12], metabolic
regulation network [13], online social network [14, 15],
sports social network [16, 17], structure of neural network
[18–20], etc. As a result, the data for storing network in-
formation has become complex and diverse. In addition, the
need to make complex data more recognizable has been
essential, and efforts to meet such demands continue to this
day. +erefore, a medium called a network diagram has

emerged, which has become essential to understand network
information. Network diagrams have appeared in various
forms in two-dimensional (2D) and three-dimensional (3D)
space. In addition, various methods and programs for
drawing such diagrams or visualizing network information
have appeared and developed.

In 2D space, the classical algorithm to draw the network
automatically is the force-directed algorithm using the
straight edges as springs [21]. +is algorithm draws aesthetic
graphs using only the information of a given graph. Teja and
Yemula [22] modified and improved the force-directed al-
gorithm to solve the limitation of the algorithm. Another
algorithm for drawing graphs is stress majorization [23],
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which is widely used. Recently, the authors in [24] proposed
an improved stress majorization method. Moreover, this
method has an advantage that there is no need to solve the
optimization problem with constraints. However, it is not
easy to grasp the network in 2D space, and there are needs
for the network plot in 3D space.

+ere are various tools and techniques for network
visualization in 3D space. +e author in [25] used a Java-
based tool called CAVALIER (Communication and Ac-
tivity VisuALIsation for the EnterRprise) to analyze the
social network. In addition, the spring-embedding and
alternative layout algorithm was introduced for network
visualization. Ho et al. [26] studied the interactions be-
tween proteins in 3D diagrams. +ese visualizations help
users to understand the biological process and re-
lationships easily. In [27], the authors proposed a novel
visualization tool named Arena3D that could address
large scale and complex networks. +ey demonstrated the
utility of Arena3D using network data relevant to
Huntington disease. Paananen and Wong [28] presented
a new visualization method based on real-time 3D force-
directed graphs that can be used to discover new
knowledge in the data. +ey also created and used
a software tool which is called FORG3D. By using the
given genomic data, they proved the functionality of
FORG3D to visualize and explore unified genome-scale
data. In [29], the authors developed the evidence network
visualization algorithm with the exploration of covariate
distribution for network meta-analysis (NMA) in 3D.
+is algorithm extended the z-axis to the generic 2D
network to display the covariate bars for each trial,
placing the covariate bars for each information data at the
edge between the nodes involved.

In this article, we present a simple method with weight
of information data to visualize the network diagram for
3D, and the rotatable 3D network diagram can be obtained
to analyze data more easily. While the proposed method is
an extension of the method applied in 2D [30], it is further
improved in terms of the simplicity of the algorithm. In
general, the problem is solved in a regular structure
[31–36]; however, we visualized the network using the
importance of information and concept of distance in the
unstructured place. Furthermore, the position of nodes is
relocated by minimizing an objective function which
consists of repulsive and attractive energies. +e gradient
descent method is applied to minimize the objective
function. +erefore, an optimal network diagram to the
given data is obtained. +e proposed method has advan-
tages over other methods for visualizing networks in terms
of simplicity.

+e composition of this paper consists of the fol-
lowing order. Section 2 describes the proposed algorithm
in detail. In Section 3, to demonstrate the performance
of the proposed algorithm, 3D network diagram visual-
izations of the relationship of characters in two
novels are presented. Finally, conclusions are made in
Section 4.

2. Numerical Algorithm

2.1. SimpleNetworkVisualizationAlgorithm. +e purpose of
the proposed algorithm for network visualization in 3D is to
find optimal node positions X � X1,X2, . . . ,XN  which
minimize the following objective function:

E(X) �
1
2



N

i<j
Ψ wij  Xi − Xj



 − dij 
2

− c 
N

i<j
Xi − Xj



,

(1)

where wij is the normalized weight of the relationship be-
tween nodes Xi and Xj and Ψ(w) is defined as Ψ(w) � 1 if
w> 0; otherwise, Ψ(w) � 0. In addition, c is the strength
parameter that keeps Xi and Xj away from each other. For
the simplicity, 0≤wij ≤ 1 is assumed. +e distance function
dij for wij can be used as follows [30]:

dij � d wij  �
1

w
q

ij

, forwij > 0, (2)

where q is a nonnegative constant, and then, dij ≥ 1. Let Dmax
and Dmin be the maximum and minimum distances, re-
spectively. +en, by the definition of the normalized weight,
Dmin � 1, and for a given Dmax value, the nonnegative
constant q is defined as follows:

q � −
ln Dmax( 

ln(minW)
, (3)

where minW is the minimum positive value of wij, i.e.,

minW � min
1≤i,j≤N

wij>0

wij.
(4)

For example, if minW � 0.5 and Dmax � 3, then q is
obtained approximately as follows:

q � −
ln(3)

ln(0.5)
≈ 1.5850. (5)

Figure 1 shows the distance function dij using given
normalized weight wij and maximum distance Dmax values.

Let Xn
1,Xn

2, . . . ,Xn
N  be the set of positions of given

nodes at iteration n. Figure 2 shows the effect of the first term
of the objective function E. +ere are two possible cases of
forces at nodes Xn

i and Xn
j : repulsive force when

|Xn
i − Xn

j |< dij and attractive force when |Xn
i − Xn

j |> dij.
+e second term of the objective function E produces

the mutual repulsive forces between Xn
i and X

n
j , see Figure 3.

+e effect of this force places nodes with low weight outward
in the network. In other words, nodes with small weights are
positioned outside the main network diagram.

+en, we relocate the position of the node points as

X
n+1
i � X

n
i − Δt

zΕ
zXi

X
n

( , for 1≤ i≤N, (6)

where Δt is an artificial temporal step and (zE/zXi) is the
differentiation of equation (1) with respect to Xi, i.e.,
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(7)

Once the positions of the nodes are renewed, then the
network diagram is plotted automatically. +e iterative
process will be terminated if the process reaches an equi-
librium state, i.e.,

Xn+1
− Xn

����
����2 < tol, (8)

for n≥Nt and for some Nt. For example, let us consider four
points X1, X2, X3, and X4. Furthermore, assume that the
weighting matrix W between Xi and Xj is given as

W �

0 2 3 1

2 0 2 1

3 2 0 1

1 1 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Let the matrix W be redefined by dividing all the ele-
ments of W by the largest value among the elements of the
given W. +at is,

dij

wij

Dmax

minWO

1

1

dij = 1/wq
ij

Figure 1: Illustration of distance function dij using the normalized weighting value wij of the relationship between nodes Xi and Xj. Here,
q � − (ln(Dmax)/ln(minW)).
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Figure 3: Mutual repulsive force among nodes: (a) initial state, (b) middle state, and (c) equilibrium state.
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Figure 2: Two possible forces at nodes Xn
i and Xn

j : (a) repulsive force when |Xn
i − Xn

j |<dij and (b) attractive force |Xn
i − Xn

j |<dij for the
given dij value.
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. (10)

We take Dmax � 4 and get q � 1.2619 because
minW � (1/3):
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. (11)

Let X0
1 � (0, 0, 0), X0

2 � (1, 0, 0), X0
3 � (0, 1, 0), and X0

4 �

(0, 0, 1) be the initial positions of four nodes, where the
superscript 0 denotes the starting index. We use Δt � 0.2,
c � 0.01, and tol � 0.001. In Figure 4, the node markers and
edges are depicted by sphere and gray lines, respectively.
Here, the red and blue spheres mean initial and after 1 it-
eration positions, respectively. Figure 4(a) shows the initial
state consisting of four points with red spheres and gray
edges of linked nodes using scaledW. Note that the values of
each element of W are represented by the thickness of
connecting lines in the diagram. In Figure 4(b), black arrows
indicate the force direction acting on each node. +e red
arrows in Figure 4(c) are net force vectors F01, F

0
2, F

0
3, and F

0
4.

Using net force vectors, we update the positions of nodes as
follows:

X1
i � X0

i + ΔtF0i , for i � 1, 2, 3, and 4. (12)

Figure 4(d) shows the network diagrams after 1 iteration.
+e nodes are initially located in a tetrahedron, and the
network diagram is drawn according to the given weights.

So far we have only considered the positions of nodes,
now we discuss the visualization of nodes and edges. In
general, nodes and edges are visualized as unit sphere shape
and straight lines with a fixed thickness. We visualize the size
of the nodes Si and the thickness of edges Tij according to
the weight W of each node as follows:

Si � s

�����



N

j�1
wij




,

Tij � tw
2
ij + Ψ wij ,

(13)

where s and t are positive constants. Characters with relatively
high activity are indicated by larger nodes; meanwhile, rel-
atively intimate relationships are depicted by thicker edges.

3. Numerical Results

Numerical simulations are conducted to demonstrate the
performance of the proposed algorithm and to visualize the
relationship examples of characters in two novels in the 3D
network diagram. +e first example is “+e Venice Mer-
chant” and the second example is “Romeo and Juliet,” which
are William Shakespeare’s representative plays. +e ele-
ments of the weighting matrix are set based on the number
of conversations between the characters in each novel.

In the first novel, let N � 19 of the characters to make the
weighting matrix W, which is provided in Appendix. Each
element wij ofWmeans the cumulative number of dialogues
between characters Xi and Xj. +e parameters are given as
Δt � 0.2, c � 0.01, Dmax � 5, and tol � 0.001. +en,
q ≈ 0.4363 is obtained. As shown in Figure 5, the motion of
nodes and edges can be observed from the initial state where
the nodes are randomly located until the optimal network
diagram is found by applying the proposed algorithm re-
peatedly. +e proposed algorithm for “+e Venice Mer-
chant” data reached the equilibrium state at 828 iterations.

Figure 6 shows a diagram of the network in the equi-
librium of the iterative algorithm for “+e VeniceMerchant”
dataset. +e equilibrium state means that all nodes are
properly located according to the weights of a given network.
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Figure 4: Schematic illustration of the proposed algorithm. (a) Initial state of four nodes. (b) Direction of forces acting on each node. (c) Net
force direction of each point. (d) Position of four nodes after 1 iteration using the proposed method. Here, the normalized weight matrixW
in equation (10) is used.
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(a) (b)

(c) (d)

Figure 5: Snapshots of the process applying the proposed algorithm for “+e Venice Merchant.” (a) Initial state of 19 nodes at n � 0. (b)
Intermediate state of nodes at n � 10. (c) Intermediate state of nodes at n � 400. (d) Equilibrium state of nodes at n � 828.

Figure 6: Magnified network plot of the equilibrium state from another directional view for “+e Venice Merchant.” Large-sized nodes are
linked together with thicker lines, and small-sized nodes are linked with thinner lines and located around the large-sized nodes.
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(a) (b)

(c) (d)

Figure 8: Snapshots of the process applying the proposed algorithm for “Romeo and Juliet.” (a) Initial state of 26 nodes at n � 0. (b)
Intermediate state of nodes at n � 25. (c) Intermediate state of nodes at n � 310. (d) Equilibrium state of nodes at n � 617.
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Figure 7: Temporal evolution of the objective function E with respect to the iteration of the algorithm for “+e Venice Merchant” case.
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Assortativity refers to the tendency of nodes in a network
being connected with similar sized nodes. +erefore, highly
assortativity networks are clearly shown to have a core
periphery structure between nodes with large and small
sizes. +ese characteristics mean that the basic structure of
the interaction that makes up the story of the novel is
centered on the main characters. Figure 6, therefore, shows
that “+e Venice Merchant” has a high assortativity, that is,
a novel property that revolves around the main character. As
the nodes move, we can confirm that the objective function
E decreases, as shown in Figure 7.

As a second example, let N � 26 of the characters to set
the weighting matrix W which is based on the number of
conversations between 26 characters in “Romeo and Juliet.”
+is data is provided in Appendix. +e parameters are given
as Dmax � 5 and tol � 0.001, and then, the value of q is about
0.3652. In addition, time step Δt � 0.2 and c � 0.01 are used.
Figure 8 shows the process of finding the optimal network
plot by applying the proposed algorithm. +e proposed

algorithm for “Romeo and Juliet” data reached the equi-
librium state at 617 iterations.

Figure 9 shows the network plot of the equilibrium state
of the iterative algorithm for the “Romeo and Juliet” dataset.
From the results, we can quickly and easily grasp the re-
lationship among characters and see the high assortativity.
Furthermore, we can confirm that the objective function E

decreases and converges during the process of finding the
optimal position for all nodes. Figure 10 depicts the de-
creasing of the objective function.

4. Conclusion

We proposed a simple method for 3D network diagrams in
this article.+e proposedmethod had the advantage of being
drawn only with information from a given network.We used
the distance function based on the network information and
objective function. To minimize the proposed objective
function, we used the gradient descentmethod and confirmed
the energy dissipation. According to the given relationship,
the network diagrams own various characteristics: (i) different
sizes of nodes and (ii) different thickness of edges. +rough
specific examples, we have known that these features help us
to grasp network information at a glance. Furthermore, our
algorithm is simple to understand and implement. Finally, the
MATLAB source code of our algorithm is provided for the
interested readers to try.

Social distancing and contact tracing can contribute to
curbing the spread of the COVID-19 virus. Research on

Table 1: Name of the character corresponding to each number.

Number
Character name

+e Merchant of Venice Romeo and Juliet
1 Antonio Montague
2 Bassanio Lady Montague
3 Shylock Capulet
4 Portia Lady Capulet
5 Nerissa Second Capulet
6 Lorenzo Romeo
7 Jessica Juliet
8 Duke Nurse
9 Tubal Peter
10 Salerio Prince Escalus
11 Salanio Paris
12 Gratiano Mercutio
13 Leonardo Benvolio
14 Launcelot Gobbo Tybalt
15 Old Gobbo Friar Laurence
16 Stephano Balthasar
17 Prince of Morocco Sampson
18 Prince of Arragon Gregory
19 Servant Abraham
20 Apothecary
21 Musician
22 Page
23 Servant
24 Watchman
25 Friar john
26 Citizen
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Figure 10: Temporal evolution of the objective function E with
respect to the iteration of the algorithm for the “Romeo and Juliet”
case.

Figure 9: Magnified network plot of the equilibrium state from
another directional view for “Romeo and Juliet.” Large-sized nodes
are linked together with thicker lines, and small-sized nodes are
linked with thinner lines and located around the large-sized nodes.
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SARS-COV-2 transmission control strategies in actual social
networks using GPS or mobile data is actively being con-
ducted. In future works, we plan to use the proposed algo-
rithm to present a contact network diagram. Using this
diagram, we can visualize the contact network for the dy-
namics of the COVID-19 spreading.

Appendix

In this appendix, we provide the MATLAB source codes of
the proposed algorithm for novel data as “+e Merchant of
Venice” and “Romeo and Juliet,” and Table 1 describes each
character name and corresponding node number. +e
source code is available on the following website: http://
elie.Korea.ac.kr/∼cfdkim/codes/.

Here, the weights of each novel data were presented as
W1 and W2 in the source code.

clear;

W1 �

0 21 24 16 0 0 0 2 0 7 4 5 0 0 0 0 0 0 1
21 0 27 32 0 0 0 0 0 2 0 11 2 3 2 0 0 0 0
24 27 0 40 0 0 7 0 12 6 0 2 0 5 0 0 0 0 2
16 32 40 0 36 3 0 7 0 0 0 10 0 0 0 3 13 2 0
0 0 0 36 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 7 3 2 0 15 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 15 0 0 0 0 0 0 0 3 0 0 0 0 0
2 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 11 2 10 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
0 2 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W2 �

0 3 3 0 0 1 0 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 18 5 0 8 17 0 1 14 0 0 9 5 0 0 0 0 0 0 0 10 0 0 0
0 0 18 0 0 0 42 17 0 3 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 71 45 0 0 6 56 60 17 38 10 0 0 0 8 0 0 16 0 0 0
0 0 8 42 0 71 0 82 0 0 17 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0
0 0 17 17 0 45 82 0 0 0 0 7 0 0 8 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0
9 2 1 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 14 2 0 6 17 0 0 0 0 0 0 0 4 2 0 0 0 0 20 0 0 0 0 0
0 0 0 0 0 56 0 7 1 0 0 0 47 13 9 0 0 0 0 0 0 2 0 5 0 0
9 1 0 0 0 60 0 0 0 4 0 47 0 5 0 0 0 0 0 0 0 2 0 0 0 0
0 0 9 0 0 17 0 0 0 0 0 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 5 2 0 38 17 8 0 4 9 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 2 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 4 0 0 0 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 10 2 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

flag� 1;
if flag� � 1
W � W1;
else if flag� � 2
W � W2;
end
W �W/max (max(W)); minW�min(min(W(W> 0)));
N� size(W,1); lbD� 1; ubD� 5;
q� − log (ubD)/log(minW); rand(“seed”,3773);
t1� rand(N,1); t2� rand(N,1);
xy� ubD ∗ [sin(pi ∗ t1) ∗ cos (2 ∗ pi ∗ t2), sin (pi ∗
t1) ∗ sin (2 ∗ pi ∗ t2), cos (pi ∗ t1)];

for i� 1:N
for j� 1:N

if W(i, j)> 0
d (i, j)� 1/W(i, j)̂q;
end

end
end
dt� 0.2; gam� 0.01; tol� 0.001; error� 2∗ tol; n� 0;
while error≥ tol

n� n+ 1; F� zeros(N, 3);
for i� 1 :N

for j� i+ 1 :N
if W(i, j)> 0
vt� xy (i, :)-xy (j, :);
F (i, :)� F(i, :) - (norm(vt)-d(i, j)) ∗ vt/norm

(vt);
F (j, :)� F(j, :) + (norm(vt)-d(i, j)) ∗ vt/norm

(vt);
end

end
end

for i� 1:N
for j� 1:N

if j∼� i
vt� xy (i, :)-xy(j, :);
F(i, :)� F(i, :) + gam∗ vt/norm(vt);
end

end
end
xy� xy + dt∗ F; error� norm(dt∗ F)/sqrt(N);
if mod(n, 30)� � 0 \Vert error< tol
DrawNetwork(xy, W); pause(0.1)
end

end
function DrawNetwork(xy,W)
n� 20; x� linspace(− 1.1, 1.1, n); y� x; z� x;
[xx, yy, zz]�meshgrid(x, y, z); u(1:n, 1:n, 1:n)� 0;
for i� 1:n

for j� 1:n
for k� 1:n
u(i, j, k)� 1-sqrt(x(i)̂2y(j)̂2z(k)̂2);
end

end

end
N� length (xy); clf;
for i� 1 :N
s� 0.2∗ sum (W(i,:))̂0.5 + 0.1;
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isosurface
(s∗ xx+ xy(i,1),s∗ yy + xy(i,2),s∗ zz + xy(i,3),u,0); hold
on
end
camlight; lighting phong;
for i� 1:N

for j� i+1:N
if W(i, j)> 0.4
plot3 (xy ([i, j], 1), xy ([i, j], 2), xy ([i, j], 3), “r”,

“linewidth,” 15∗W (i, j)̂2 + 1);
elseif W (i, j)> 0
plot3 (xy ([i, j], 1), xy ([i, j], 2), xy ([i, j], 3), “b”,

“linewidth”, 15∗W(i, j)̂2 + 1);
end
end

end
for i� 1:N
s� 0.2∗ sum (W(i , :))̂0.5 + 0.4; a� 0.15; b� 0;
text (xy(i, 1)-a,xy(i, 2)-b, xy (i, 3) + s, num2str (i),
“fontsize,”10);
end
axis off; axis image;
end

Data Availability

We have released the code and data of this paper in the
Appendix and the corresponding author’s homepage.
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