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Abstract:We develop a numerical algorithm for predicting prices and Greeks of equity-linked securities (ELS)
with a knock-in barrier at any time over the total time period from issue date to maturity by using Monte
Carlo simulation (MCS). The ELS is one of the most important financial derivatives in Korea. In the proposed
algorithm, first we calculate the probability (0 ≤ p ≤ 1) that underlying asset price never hits the knock-in
barrier up to the intermediate evaluation date. Second, we compute two option prices Vnk and Vk, where
Vnk is the option value which knock-in event does not occur and Vk is the option value which knock-in event
occurs. Finally, we predict the option valuewith aweighted average.We apply the proposed algorithm to two-
and three-asset ELS. We provide the pseudo-numerical algorithm and computational results to demonstrate
the usefulness of the proposed method.
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1 Introduction
The equity-linked security (ELS) is the security whose return on investment is dependent on the performance
of the underlying equities linked to the securities [10, 11]. The investment on ELS has steadily increased due
to the global financial crisis. Scale of annual issuance for this derivative is over half-trillion US dollars [11].
However, ELS has encountered critical crisis since last quarter of 2015 due to a significant decrease of Hang
Seng index (HSI) ofHongKong. Therefore,more detailed studies of ELS are needed tomanage risks associated
with ELS.

There are many kinds of options [4, 22] such as Asian option [3, 9, 14, 16], American option [1, 15, 21],
barrier option [2, 23], European option [18] and lookback option [17, 20], etc. In [2], the authors applied the
Heath-Platen (HP) estimator to calculate barrier options. Comparedwith naiveMonte Carlo simulation (MCS),
HP estimator provided a variance reduction. In [9], the authors applied Brownian bridge construction to com-
pare with Niederreiter and Sobol’ sequences for the convergence rates in Asian option. In [18], the authors
applied quasi-Monte Carlo methods based on lattice sequences for multidimensional numerical integration
to evaluate European options. Especially, an important feature of ELS is the auto-callable knock-out condi-
tion called early redemption and knock-in condition. For this feature, Fries and Joshi mentioned conditional
analytic Monte Carlo pricing method of auto-callable products in [5, 8]. Glasserman and Staum introduced
conditioning on one-step survival for barrier option simulations in [7].
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The operator splitting method (OSM) was used in pricing two-asset ELS in [10] and extended to three-
asset ELS in [11, 12]. A method using exit-probability was proposed in [13]. MCS was used to evaluate the
price of ELS in [10, 11]. However, all the previous computations were focused on pricing ELS at only current
time. In this paper, we present a numerical algorithm for predicting prices and Greeks of ELS with a knock-in
barrier at intermediate times, i.e., arbitrary evaluation times between present and expiration dates, from
present time using MCS and Brownian bridge. The proposed algorithm has two steps. First, by using the
Brownian bridge, we compute the probability (0 ≤ p ≤ 1), where p is the probability that underlying asset
never hits the knock-in barrier up to the intermediate evaluation date. Second, we calculate two option prices
Vnk and Vk under the conditions without and with the knock-in event, respectively. Finally, we define the
option value with the weighted average, Vw = pVnk + (1 − p)Vk.

The paper is organized as follows. In Section 2, we present general information about step-down ELS. In
Section 3, we describemain idea and algorithm of Brownian bridge forMonte Carlo simulation. In Sections 4,
5 and 6, we provide numerical results for ELS prices and Greeks for one-, two-, and three-asset, respectively.
In Section 7, conclusion is given.

2 Step-down equity-linked security
We consider a step-down ELS which is the most important product among the equity-linked securities.
Step-down ELS is a kind of structured product consisting of knock-in and knock-out conditions. We present
one-asset ELS. Two- and three-asset ELS are similarly defined.

Let K1 ≥ K2 ≥ ⋅ ⋅ ⋅ ≥ KN and c1, c2, . . . , cN be strike percentages of underlying asset and coupon rates at
t1 < t2 < ⋅ ⋅ ⋅ < tN , respectively. As time goes by, strike percentages Ki are going down. Let S(t) be the value
of the underlying asset at time t and V(S, t) be the value of ELS at price S, time t and X(t) = 100 S(t)

S(0) . Then
the payoff of one-asset step-down ELS is defined as follows: If 100 S(t1)

S(0) ≥ K1, then the contract is closed with
(1 + c1)F return.Here, F is face value. Otherwise, i.e., X(t1) < K1, we checkwhether X(t2) ≥ K2. If it is true, the
contract is closed with (1 + c2)F return. Otherwise, we proceed this process until t = tN−1 and check whether
X(tN) ≥ KN . If it is true, the contract is closed with (1 + cN)F return. If this condition is not satisfied, we check
whether the underlying asset hits the knock-in barrier D over the total period from issue date to maturity tN .
That is, ifmin0≤t≤tN X(t) ≤ D, the return is KNF

S(0) . Ifmin0≤t≤tN X(t) > D, the return is (1 + d)F,where d is a dummy
rate. Payoff structure of step-down ELS is shown in Figure 1.

Figure 1: Payoff of step-down ELS at early redemptions and maturity.
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3 Brownian bridge for Monte Carlo simulation
Now, we describe the proposed algorithm. Table 1 lists the parameter values used in this algorithm. Let
X(0) = 100 be the reference price at t = 0. F = 100, knock-in barrier D = 60, dummy d = 0.07, risk-free inter-
est rate r = 0.03, and volatility σ = 0.3 are used. The payoff structure for the one-asset step-down ELS is
illustrated in Figure 2.

Early redemption date t1 = 0.5 t2 = 1 t3 = 1.5 t4 = 2
Strike percentage K1 = 95 K2 = 90 K3 = 85 K4 = 80
Coupon rate c1 = 0.02 c2 = 0.04 c3 = 0.06 c4 = 0.08
Table 1: Parameter lists for the step-down ELS.
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Figure 2: Payoff structure of the one-asset step-down ELS at early redemption and maturity.

Now, let us look at the seven possible cases of stock paths arising in the step-down ELS. Let Xn := X(n∆t)
denote the stock price at time t = n∆t, where ∆t is time step size. Using standard Monte Carlo simulation, the
stock path is defined as

Xn+1 = Xn exp((r − 0.5σ2)∆t + σ√∆tZn) for 0 ≤ n ≤ t4
∆t − 1,

where Zn ∈ N(0, 1). With r = 0.03, σ = 0.3, and ∆t = 1
360 , we can have the various path processes. We mark

each case as a circled number as shown in Figure 3. Here 1 – 3 are early redemption cases at t = t1, t2, and
t3, respectively. Case 4 represents occurrence of obligatory redemption at the maturity. Case 5 illustrates
the situation that the dummy is paid. The investors lose the value of their investment for the cases 6 and 7 .

Algorithm 1 is the standard Monte Carlo simulation algorithm for one-asset ELS. Table 2 lists the com-
putational results using 1. As we increase the number of MCS samples, it shows that price of ELS converges.
Here, let # Sample be the number of samples.

Next, we consider the Brownian bridge procedure for Monte Carlo simulation. Whenwewant more infor-
mation between the two points, we can apply the Brownian bridge approach to generate a path connecting
the specific two points. We define the standard Brownian bridge from 0 to 0 on [0, T] to be the process

X(t) = W(t) − t
T
W(T), 0 ≤ t ≤ T,
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Figure 3: Seven sample random paths for the step-down ELS.

Algorithm 1. General Monte Carlo simulation algorithm for one-asset ELS.
Require: Set values for X0 = 100, T, Nm, Nt, ∆t = T/Nt, F, σ, r, tj, cj, Kj where 1 ≤ j ≤ 4, d, and D.
Set Mk = 0 for k = 1, 2, 3, 4.
for i = 1 to Nm do

for n = 0 to Nt − 1 do
⊳ Generate process of security as
Xn+1 = Xn exp((r − 0.5σ2)∆t + σ√∆tZn), where Zn ∼ N(0, 1)

end for
⊳ Check price of security at check dates
if X

t1
∆t ≥ K1 then M1 = M1 + (1 + c1)F

else if X
t2
∆t ≥ K2 then M2 = M2 + (1 + c2)F

else if X
t3
∆t ≥ K3 then M3 = M3 + (1 + c3)F

else if X
t4
∆t ≥ K4 then M4 = M4 + (1 + c4)F

else if min {X} > D then M4 = M4 + (1 + d)F
else M4 = M4 + FX

t4
∆t /S0

end if
end for
⊳ Compute the price.
V(X0, 0) = ∑4k=1(e−rtkMk/Nm)

#Sample 105 2 × 105 5 × 105 106

ELS Price 98.6821 98.6078 98.6666 98.6697

Table 2: ELS price with various samples.

here W(t) is the Brownian motion and W(0) = 0. More generally, we define the Brownian bridge from a to b
(a, b ∈ ℝ) on [Ti , Ti+1] as the process

Xa→b(t) = a + (b − a)(t − Ti)
Ti+1 − Ti +W(t − Ti) − t − Ti

Ti+1 − TiW(Ti+1 − Ti) for Ti ≤ t ≤ Ti+1.
Let X(Ti) and X(Ti+1) be the two given stock index values.We generate a path starting from Y(Ti) = X(Ti)with
the time step ∆t:

Y(tj+1) = Y(tj)ewj , j = 0, . . . , Ti+1 − Ti∆t − 1,
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where wj = (r − 0.5σ2)∆t + σ√∆tZj and tj = Ti + j∆t. LetWj = ∑
j
i=0 wi; then

Y(tj+1) = Y(Ti)eWj , j = 0, . . . , Ti+1 − Ti∆t − 1.

In general, Y(Ti+1) ̸= X(Ti+1). To construct a path connecting X(Ti) and X(Ti+1), we apply theBrownianbridge
toWj. Let

Bj = Wj +
tj − Ti

Ti+1 − Ti log X(Ti+1)
Y(Ti+1) , j = 0, . . . , Ti+1 − Ti∆t − 1.

Then we obtain a full path connecting X(Ti) and X(Ti+1) as
X(tj+1) = X(Ti)eBj , j = 0, . . . , Ti+1 − Ti∆t − 1.

By using the Brownian bridge, the main idea of the proposed method is to calculate the ELS price with
weighted average of probability weights p and 1 − p, where p is the probability that the path never hits the
knock-in barrier. Let Vω( ̂t, X̂) be the weighted ELS time ̂t and price at spot X̂. The evaluation process is as
follows.

Step 1: Calculate probability p. In this step, we calculate the probability p. First, we generate a sufficiently
large number of paths (Np). When the paths do not satisfy early redemption conditions, we regenerate the
paths by using Brownian bridge until t = ̂t = n̂∆t at X = X̂, see Figure 4. Among the paths, we choose the
specific paths that passes from (0, X0) to ( ̂t, X̂).

(a) (b)

Figure 4: (a) Schematic illustration of a stock path by using Brownian bridge from (0, X0) to ( ̂t, ̂X). (b) Generated sample paths
up to time t = ̂t of Brownian bridge.

Figure 5 shows a random path generated from (0, X0) to ( ̂t, X̂) and does not hit knock-in barrier. Let
ΩSamples = {ωi : ωn̂

i = X̂} be the set of the sample paths and Ωnot knock-in = {ωi ∈ ΩSamples : D < min0≤n≤n̂ωn
i }

be the set of the paths which do not pass knock-in barrier. Next, we define the following probability:

p = #Ωnot-knock-in
#ΩSamples

,

where # is the number of the elements. To find probability p, we perform the test that shows a effect of the
number of samples on probability p. To do the test, we take X̂ = 80 unless otherwise stated in this paper.

FromFigure6,we canfind that theprobability convergeswhen thenumber of samples is greater than104.
To ensure the accuracy, we set the number of samples to 105. Then, as shown in Figure 7, we perform the test
to calculate the probability that knock-in event does not occur for each different ̂t and X̂.
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Figure 5: Schematic illustration of a Brownian bridge which does not hit the knock-in barrier.
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Figure 6: Probability p which does not hit knock-in barrier at different ̂t with the different number of samples by using Brownian
bridge process.

0
100

0.2

2

0.4

80

P
ro

ba
bi

lit
y,

 p

0.6

1.5

0.8

1

1

60
0.5

40 0

Figure 7: Probability p which does not hit knock-in barrier at different ̂t and ̂X by using Brownian bridge process.
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Next, we compute the probability (0 ≤ p ≤ 1) which an underlying asset price never hits the knock-in
barrier until time t = ̂t.

Step 2: Calculate Vnk, Vk and weighted average Vw . In this step, we calculate two option prices, Vnk and Vk,
under the conditions without and with the knock-in event, respectively. Finally, we define the option value
with a weighted average, Vw = pVnk + (1 − p)Vk. See Algorithm 2 for more detailed description.

Algorithm 2. Proposed Monte Carlo simulation algorithm for one-asset ELS.
Require: Set Nm, T, Nt, ∆t = T/Nt, ̂t, n̂, X0 = 100, X̂( ̂t) we will evaluate on, F, σ, r, tj, and cj, Kj where
1 ≤ j ≤ 4, d, D, p.
Evaluating no knock-in price
Set Mk = 0 for k = 1, 2, 3, 4.
for i = 1 to Nm do

for n = n̂ to Nt − 1 do
⊳ Generate process of security as
Xn+1 = Xn exp((r − 0.5σ2)∆t + σ√∆tZn), where Zn ∼ N(0, 1)

end for
⊳ Check price of security at check dates
if X

tj
∆t ≥ Kj then Mj = Mj + (1 + cj)F where the smallest tj/∆t > n̂

else if
... then

else if X
t4
∆t ≥ K4 then M4 = M4 + (1 + c4)F

else if min {X} ≥ D then M4 = M4 + (1 + d)F
else M4 = M4 + FX

t4
∆t /X0

end if
end for
⊳ Sum all results and discount to present value.
Vnk(X̂( ̂t), ̂t) = ∑4k=1(e−rtkMk/Nm)
Evaluating Knock-in price
Set Mk = 0 for k = 1, 2, 3, 4.
for i = 1 to Nm do

for n = n̂ to Nt − 1 do
⊳ Generate process of security as
Xn+1 = Xn exp((r − 0.5σ2)∆t + σ√∆tZn), where Zn ∼ N(0, 1)

end for
⊳ Check price of security at check dates
if X

tj
∆t ≥ Kj then Mj = Mj + (1 + cj)F where the smallest tj/∆t > n̂

else if
... then

else if X
t4
∆t ≥ K4 then M4 = M4 + (1 + c4)F

else M4 = M4 + FX
t4
∆t /X0

end if
end for
⊳ Compute the option price.
Vk(X̂( ̂t), ̂t) = ∑4k=1(e−rtkMk/Nm)
⊳ Probability
weighted price.
Vw(X̂( ̂t), ̂t) = pVnk(X̂( ̂t), ̂t) + (1 − p)Vk(X̂( ̂t), ̂t)
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4 One-asset step-down ELS

4.1 ELS pricing for one-asset step-down ELS

We consider the one-asset step-down ELS option pricing at future intermediate times. Suppose that we want
to compute the option prices along a mean path which is the mean of stock processes:

wn =

{{{{{{{{
{{{{{{{{
{

meanNp
i=1{wn

i } if n∆t ∈ [0, t1),

meanNp
i=1{wn

i χ1(w
t1/∆t
i )} if n∆t ∈ [t1, t2),

meanNp
i=1{wn

i χ1(w
t1/∆t
i )χ2(w

t2/∆t
i )} if n∆t ∈ [t2, t3),

meanNp
i=1{wn

i χ1(w
t1/∆t
i )χ2(w

t2/∆t
i )χ3(w

t3/∆t
i )} if n∆t ∈ [t3, t4),

where

χj(w
tj/∆t
i ) =
{
{
{

0 if wtj/∆t
i ≥ Kj,

1 otherwise,

for j = 1, 2, 3.
Figures 8 (a), (b), and (c) represent themean path, the probability along themean path, and theweighted

one-asset step-down ELS price, respectively. Here, we set initial price X0 = 100, ∆t = 1
360 , r = 0.03, σ = 0.3.

mean path

(a)

No knock-in price
Knock-in price
Weighted price

(b)

(c)

Figure 8: (a) Mean path, (b) no knock-in price (dashed line), knock-in price (dash-dotted line), weighted price, and (c) probability
never hitting knock-in barrier (solid line).
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4.2 Greeks for one-asset step-down ELS

In this subsection, we calculate the delta (∆ = ∂V0

∂S ) and gamma (Γ =
∂2V0

∂S2 ) of the ELS. To compute Greeks, we
apply the central finite difference method, i.e.,

∆ ≈ 1
2∆S [V

0(S + ∆S) − V0(S − ∆S)] and Γ ≈ V
0(S − ∆S) − 2V0(S) + V0(S + ∆S)

∆S2
,

where V0 is the ELS price, S is the underlying asset, and ∆S = 1. As stock price increases, the values of
the delta and gamma converge. Figures 9 (a), (b), and (c) represent price, delta and gamma of one-asset
step-down ELS, respectively.
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Figure 9: (a) ELS price at maturity before a month. (b) Delta of ELS at maturity before a month performer the stock process of
process under condition and each conditioned price. (c) Gamma of ELS at maturity before a month performer the stock process
of process under condition and each conditioned price.

5 Two-asset step-down ELS

5.1 ELS pricing for two-asset step-down ELS

We consider the pricing of a two-asset step-down ELS. Let X1 and X2 be the first and the second underlying
stock process, respectively. σ1 and σ2 are the corresponding volatilities of each process. Most ELS products
traded in South Korea consist of two- or three-asset. Thus, we need to generate correlated normal random
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numbers. Let ρ12 denote coefficient correlation between underlying two processes. In this paper, we use
Cholesky decomposition [6, 19] to generate correlated normal random numbers:

Xn+1
1 = X

n
1 exp((r − 0.5σ

2
1)∆t + σ1√∆tZ

n
1),

Xn+1
2 = X

n
2 exp((r − 0.5σ

2
2)∆t + σ2√∆tZ

n
2),

where Zn1 = W
n
1 , Z

n
2 = ρ12W

n
1 +√1 − ρ

2
12W

n
2 and Wn

1 , W
n
2 ∼ N(0, 1). The payoff of two-asset step-down ELS

is determined by the worst performer of the two underlying assets. Figure 10 shows example of the worst
performer of the two underlying assets. LetWPn denote min{Xn

1 , X
n
2}. Figure 11 (a) shows two cases of paths

at the first redemption time: The solid line and dash-dotted line mean that there is no early redemption and
early redemption, respectively. Figure 11 (b) represents Brownian bridge path which does not hit knock-in
barrier of (X̂1, X̂2) at time ̂t.

Figure 12 (a) shows the mean path of two stock processes until t = 2. Here, we set the initial price
(X1(0), X2(0)) = (100, 100), ∆t = 1

360 , r = 0.03, σ1 = 0.2, σ2 = 0.4, and ρ12 = 0.5. Figure 12 (b) and (c) rep-

0 20 40 60 80 100 120 140 160 180 200
90

95

100

105

110

115

Figure 10: The circle-dash line is the worst performer of two underlying assets. Dotted line and dashed-dotted line are
underlying asset 1 and 2, respectively.

(a) (b)

Figure 11: (a) Two cases of paths at the first redemption time: Solid line and dash-dotted line mean that there is no early
redemption and early redemption, respectively. (b) Not hitting knock-in barrier Brownian bridge path of ( ̂X1 , ̂X2) at time ̂t.
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(a) (b)

No knock-in price
Knock-in price
Weighted price

(c)

Figure 12: (a) Mean path of two-asset, (b) probability never hitting knock-in barrier of two-asset, and (c) no knock-in price of
two-asset (dashed line), knock-in price of two-asset (dash-dotted line), weighted price of two-asset (solid line).

resent the probability along the mean path of two-assets and the weighted two-assets step-down ELS price,
respectively. In Figure 12 (b), probability p is 0 after t = 1.5 because mean path of X2(t) is under knock-in
barrier. Thus, Knock-in price remains only.

5.2 Greeks for two-asset step-down ELS

In this section, we calculate the delta (∆ = ∂V0(WP)
∂S ) and gamma (Γ = ∂2V0(WP)

∂S2 ) of the ELS. To compute Greeks,
we apply the central finite difference method, i.e.,

∆ ≈ V
0(WP + ∆WP) − V0(WP − ∆WP)

2∆S
and

Γ ≈ V
0(WP − ∆WP) − 2V0(WP) + V0(WP + ∆WP)

∆S2
,

∆S = 1. As stock price increases, the values of the delta and gamma converge. Figures 13 (a), (b), and (c)
represent price, delta and gamma of two-asset step-down ELS, respectively.
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Figure 13: (a) ELS price at maturity before a month. (b) Delta of ELS at maturity before a month performer of two sample paths
process under condition and each conditioned price. (c) Gamma of ELS at maturity before a month performer of two stock
processes under condition and each conditioned price.

6 Three-asset step-down ELS

6.1 ELS pricing for three-asset step-down ELS

Let X1, X2, and X3 be the first, second, and third underlying stock process, respectively. The payoff structure
of three-asset step-down ELS is similar to that of the two-asset step-down ELS. Stock processes are as follows:

Xn+1
1 = X

n
1 exp((r − 0.5σ

2
1)∆t + σ1√∆tZ

n
1),

Xn+1
2 = X

n
2 exp((r − 0.5σ

2
2)∆t + σ2√∆tZ

n
2),

Xn+1
3 = X

n
3 exp((r − 0.5σ

2
3)∆t + σ3√∆tZ

n
3),

where
Zn1 = W

n
1 , Zn2 = ρ12W

n
1 +√1 − ρ212W

n
2 ,

Zn3 = ρ13W
n
1 +

ρ23 − ρ13ρ12
√1 − ρ212

Wn
2 +√

1 + 2ρ23ρ12ρ13 − ρ212 − ρ
2
13 − ρ

2
23

1 − ρ212
Wn

3

andWn
1 , W

n
2 , W

n
3 ∼ N(0, 1). Figure 14 shows example of the worst performer of underlying three stock pro-

cesses. Three-dimensional Cholesky decomposition [6, 19] is used to generate correlated normal random
numbers. ρij represents correlation coefficient of underlying for ith and jth stock processes, 1 ≤ i, j ≤ 3.
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Figure 14: The circle-dash line is the worst performer of three underlying assets. Dotted line, dash-dot line and dash line are
the first, second and third underlying asset respectively.

(a) (b)

Figure 15: (a) Two cases of paths at the first redemption time: Solid line and dash-dotted line mean that there is no early
redemption and early redemption, respectively. (b) Brownian bridge paths of ( ̂X1 , ̂X2 , ̂X3) at time ̂t.

In Figure 15 (a), movement of three processes for initial price (X1(0), X2(0), X3(0)) = (100, 100, 100) is
represented. Similar to the previous cases, we need to calculate the conditional probabilities. Figure 15 (b)
represents Brownian bridge paths of (X̂1, X̂2, X̂3) at time ̂t. As we did in previous section, we are going to deal
with the mean of three stock processes and prices which are knock-in, no knock-in, and weighted cases onto
mean of stock process.

We set ∆t = 1
360 , r = 0.03, σ1 = 0.2, σ2 = 0.4, σ3 = 0.6, ρ12 = 0.5, ρ13 = 0.5, ρ23 = 0.5. Figure 16 (a), (b)

and (c) show themean path of three stock processes until t = 2, the probability along themean path of three-
asset and the weighted three-asset step-down ELS price, respectively. Results are almost similar to case of
two-asset ELS.

6.2 Greeks for three-asset step-down ELS

In this section, we calculate the delta (∆ = ∂V0(WP)
∂S ) and gamma (Γ = ∂2V0(WP)

∂S2 ) of the ELS. To compute Greeks,
we apply the central finite difference method, i.e.,

∆ ≈ V
0(WP + ∆WP) − V0(WP − ∆WP)

2∆S and Γ ≈ V
0(WP − ∆WP) − 2V0(WP) + V0(WP + ∆WP)

∆S2
,
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Figure 16: (a) Mean path of three-asset, (b) probability hitting knock-in barrier of three-asset, and (c) no knock-in price of
three-assets (dashed line), knock-in price of three-asset (dash-dotted line), weighted price of three-asset (solid line).
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Figure 17: (a) ELS price at maturity before a month. (b) Delta of ELS at maturity before a month performer of three stock
processes under condition and each conditioned price. (c) Gamma of ELS at maturity before a month performer of three stock
processes under condition and each conditioned price.

∆S = 1. As stock price increases, the values of the delta and gamma converge. Figures 17 (a), (b), and (c)
represent price, delta and gamma of three-asset step-down ELS, respectively.

7 Conclusion
In this article, we proposed numerical algorithm for predicting prices and Greeks of ELS with Monte Carlo
simulationbyusingBrownianbridge at intermediate time ̂t. In theproposedalgorithm,wegenerated the large
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number of sample paths and calculated probability p and two option prices Vnk and Vk. Andwe predicted the
option valuewithweighted average Vw = pVnk + (1 − p)Vk. We presented the detailed algorithm in Section 3.
Numerical experiments demonstrated that as the number of samples increases, the probability p converges.
In the similar way, as stock price increases, delta and gamma converge.
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