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a b s t r a c t 

In this study, we consider a robust optimal parameter estimation method for the Susceptible-Unidentified 

infected-Confirmed (SUC) epidemic dynamics model. One of the problems in determining parameter val- 

ues associated with epidemic mathematical models is that the optimal parameter values are very sensi- 

tive to the initial guess of parameter values. To resolve this problem, we fix the value of one parameter 

and solve an optimization problem of finding the other parameter values which best fit the confirmed 

population. The fixed parameter value can be obtained using data from epidemiological surveillance sys- 

tems. To demonstrate the robustness and accuracy of the proposed method, we perform various numeri- 

cal experiments with synthetic and real-world data from South Korea, the United States of America, India, 

and Brazil. The computational results confirm the potential practical application of the proposed method. 

© 2021 Elsevier Ltd. All rights reserved. 

1

h

T

s

v

i

d

h

m

t

i

p

e

s

p

i

s

s

u

h

I

e

S

K

S

s

t

a

i

p

e

c

m

a

M

t

m

B

a

c

h

0

. Introduction 

Recently, the coronavirus disease 2019 (COVID-19) pandemic 

as caused unprecedented global social and economic crisis [1] . 

he novel coronavirus, which acutely causes the severe respiratory 

yndrome, is more contagious and more survivable than any other 

irus [2] . To overcome the infectious disease, numerous researchers 

n various fields started virological and biological studies; and have 

eveloped treatment methods and vaccines [3–6] . Some studies 

ave identified the current states of the COVID-19 spread using 

athematical methods. Badr et al. defined a daily mobility ratio af- 

er analyzing mobility patterns using mobile phone data and stud- 

ed the statistical correlation between social distancing, mobility 

atterns, and COVID-19 cases [7] . In [8] , the author analyzed the 

pidemiological trend in India using mathematical methods. 

Mathematical modeling of COVID-19 has also been extensively 

tudied to predict the spread trend in order to prevent or pre- 

are for further damage in the serious pandemic situation that 

s not easily suppressed. Many existing epidemic models such as 

usceptible-infected (SI), susceptible-infected-removed (SIR), and 

usceptible-exposed-infectious-recovered (SEIR) models have been 

tilized [9] . The SI model is used for understanding complex be- 
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aviors and prediction of the spread of COVID-19 disease [10] . 

n [11] , Cooper et al. studied the spread of COVID-19 in differ- 

nt communities using a SIR model. Shaobo et al. studied the 

EIR model for COVID-19 depending on control strategies [12] . 

orolev [13] forecasted the future number of deaths using the 

EIR model with deaths for COVID-19. In [14,15] , the authors pre- 

ented the prediction of COVID-19 transmission dynamics using 

he SEIR model with consideration for hospital-quarantined cases, 

nd quantified the potential effects of strategies on school opening. 

There have also been studies on mathematical models that take 

nto account the quarantine or isolation by appending more com- 

artments to the SEIR model. Peter et al. [16] formulated a math- 

matical model under consideration of five compartments: sus- 

eptible, exposed, infected, quarantined, and recovered. Using the 

odel and real data in Pakistan, the authors estimated parameters 

nd performed numerical simulations to observe various features. 

emon et al. [17] included both the quarantined and isolated into 

he SEIR framework. In [18] , Musa et al. proposed a mathematical 

odel with the effect of health education knowledge on COVID-19. 

ased on the SEIR model, they incorporated awareness programs 

nd various hospitalization plans for mild and severe cases. More 

omplicated models were presented. In [19] , Khan and Atangana 

roposed a model representing the interaction between bats and 

nknown hosts in the early stages of the spread of COVID-19. They 

lso extended it considering both the quarantined and the isolated; 

nd predicted the dynamics of COVID-19 in China in Khan et al. 

20] . 

https://doi.org/10.1016/j.chaos.2021.111556
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111556&domain=pdf
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Table 1 

Description of the variables and parameters for the SUC model. 

Variable/parameter Description 

N Total population. Constant value. 

t Time 

S(t) Susceptible population at time t

U(t) Unidentified infected population at time t

C(t) Confirmed population at time t

β Average number of contacts made by an infected individual per time 

γ Inverse of the days taken for confirming the unidentified infected 

�t Time step size 

S n Susceptible population at time n �t for integer n = 0 , 1 , 2 , . . . 

U n Unidentified infected population at time n �t for integer n = 0 , 1 , 2 , . . . 

C n Confirmed population at time n �t for integer n = 0 , 1 , 2 , . . . 

β0 Initial guess value of β for the fitting function lsqcurvefit 

γ 0 Initial guess value of γ for the fitting function lsqcurvefit 

U 0 0 Initial guess value of U 0 for the fitting function lsqcurvefit 

Fig. 1. Compartmental diagram of the SUC model. 
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Many mathematical models are focused on predicting the num- 

er of confirmed cases. However, above all, in the case of a novel 

nfectious disease that has no cure and is highly contagious, such 

s COVID-19, it is the most important thing to find people who are 

nfected but not confirmed in the unprecedented situation where 

ommunity transmission and clusters of cases are the main issues 

f COVID-19. Because people who have already been confirmed are 

solated, the chances of transmission from the confirmed popula- 

ion are rare. On the other hand, the unidentified infected people 

re not isolated so that they can transmit COVID-19 to suscepti- 

le people. Accordingly, mathematical modelings for the unidenti- 

ed infected cases were developed [21–23] . For estimation of fu- 

ure situations using mathematical models, past and present data 

re necessary. Although the numbers of the confirmed, deaths, and 

ecovered cases are known in the real world, the numbers of the 

nidentified infected cases are unknown. Furthermore, there is no 

niqueness of the optimal parameter values for the models ow- 

ng to an underdetermined system of the epidemic equations with 

imited case data. 

In this study, we consider a method of robust optimal parame- 

er estimation for the Susceptible-Unidentified infected-Confirmed 

SUC) epidemic mathematical model for COVID-19 [23] : 

dS(t) 

dt 
= −β

S(t) U(t) 

N 

, (1) 

dU(t) 

dt 
= β

S(t) U(t) 

N 

− γU(t) , (2) 

dC(t) 

dt 
= γU(t) . (3) 

he variables and parameters are tabulated in Table 1 . The uniden- 

ified infected population can spread the disease and has not yet 

een confirmed. We assume the total population N is constant. The 

alues of βS(t) /N and γ are growth and decay rates of the uniden- 

ified infected population U(t ) at time t , respectively. Fig. 1 shows 

 compartmental diagram of the SUC model. 
2 
The SUC model is a fundamental building block equation. Al- 

hough the model is simple, it can capture the main epidemic dy- 

amics of COVID-19 using as little information as possible. The 

imple and basic model would be useful to utilize the estimated 

in health policies by policymakers who are not experts in math- 

matical modeling. However, in the cases of complex models with 

any variables and parameters, the models require generally many 

tted parameters and it is not easy to validate the robustness of 

he models. 

In [23] , a nonlinear curve-fitting function lsqcurvefit was em- 

loyed to find optimal parameters β, γ , and U(0) . The lsqcurvefit 

olver is a popular built-in function in MATLAB optimization tool- 

ox, which has been widely applied to find the best-fitted coeffi- 

ients in epidemic modeling [15,24,25] . The function depends on 

he initial guess values for the parameters to estimate because it is 

ased on an iterative method with local convergence [26] . 

The main purpose of this paper is to propose a robust method 

or parameter estimation using the SUC model. The proposed 

ethod is not sensitive to the initial guess values for the parame- 

ers. It is expected that unknown parameters are well fitted regard- 

ess of initial guesses and the accuracy of the estimation for the 

nidentified infected population will be improved. Furthermore, 

he estimated unidentified infected cases are potentially helpful for 

ealth authorities to establish social distancing policies or vaccine 

istribution strategies. 

The contents of this paper are as follows: in Section 2 , we 

resent the numerical solution algorithm for the robust optimal 

arameter estimation. Using the proposed algorithm, computa- 

ional experiments are performed in Section 3 . We first apply the 

roposed method to an example situation and verify it, and then 

e estimate the number of unidentified infected cases with real- 

orld confirmed data from several countries. We discuss the re- 

ults and the basic production number in Section 4 . In Section 5 ,

e provide our conclusions. Note that the MATLAB code for the 

omputational implementation is given in Appendix for interested 

eaders. 

. Numerical solution algorithm 

Let S n = S(n �t) , U n = U(n �t) , and C n = C(n �t ) , where �t is

 time step. The SUC model is solved using a finite difference 

cheme. For n = 0 , 1 , 2 , . . . , we have the following discrete equa-

ions: 

 n +1 = S n − �tβ
S n U n 

N 

, (4) 

 n +1 = U n + �t 

(
β

S n U n 

N 

− γU n 

)
, (5) 
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 n +1 = C n + �tγU n , (6) 

here β, γ , U 0 are the unknown parameters. To solve the dis- 

rete system of Eqs. (4) –(6) , we need to know these parameter 

alues. However, in the real-world population, the number of the 

nidentified infected cases U is unknown and only the cumulative 

umbers of the confirmed cases C are known. To estimate the un- 

nown unidentified infected cases U , we use the SUC model (4) –

6) and the fitting function lsqcurvefit in MATLAB R2020b, which 

s a nonlinear curve-fitting function in a least-squares sense [27] . 

hat is, we obtain optimal parameters β, γ , U 0 which minimize 

he following cost function: 

(β, γ , U 0 ) = 

1 

2 

p ∑ 

i =1 

( ̂  C i − C n i ) 
2 , (7) 

here p is the number of the given real cumulative confirmed 

ase data ̂ C i (i = 1 , 2 , . . . , p) and C n i (i = 1 , 2 , . . . , p) are the numer-

cal solutions from Eqs. (4) –(6) at the corresponding times. How- 

ver, the optimal parameter values ( β , γ , U 0 ) estimated by using 

he fitting function strongly depend on the initial guess values of 

 β0 , γ 0 , U 

0 
0 

), which implies the non-uniqueness of the optimal pa- 

ameter values. 

To prove the existence of the non-uniqueness of the optimal pa- 

ameter values if only the cumulative confirmed case data is used, 

et us consider the following equations with γ ′ � = γ : 

d ̄S (t) 

dt 
= −β ′ S̄ (t) ̄U (t) 

N 

, (8) 

d ̄U (t) 

dt 
= β ′ S̄ (t) ̄U (t) 

N 

− γ ′ Ū (t) , (9) 

dC(t) 

dt 
= γ ′ Ū (t) . (10) 

Let us assume both Eqs. (4) –(6) and (8) –(10) best fit the cost 

unction (7) . By the assumption of the best fitting of the cumula- 

ive confirmed case data, γU(t) = γ ′ Ū (t) holds from Eqs. (6) and 

10) . By substituting Ū (t) = (γ /γ ′ ) U(t) into Eq. (9) , we have 

γ

γ ′ 
dU(t) 

dt 
= β ′ S̄ (t) 

N 

γ

γ ′ U(t) − γ ′ γ
γ ′ U(t) . 

fter simplifying, we have 

dU(t) 

dt 
= 

(
β ′ S̄ (t) 

N 

− γ ′ 
)

U(t) . 

herefore, from Eq. (5) , it holds that β ′ S̄ (t) /N − γ ′ = βS(t) /N − γ .

rom this reason, there is no guarantee that the solution of the 

overning equations is unique. 

To resolve this non-uniqueness problem, we fix the value of γ
nd compute the optimal parameter values of ( β, U 0 ) which min- 

mize the cost function (7) : 

 β, U 0 ] = lsqcurvefit ( ‘ SU Cmodel ’ , [ β0 , U 

0 
0 ] , Tdata , Cdata ) , (11) 

here [ β, U 0 ] are the optimized parameters and [ β0 , U 

0 
0 

] are the

nitial guess of parameters for SUCmodel; and Cdata is the real cu- 

ulative confirmed case data at times Tdata . Because γ is the in- 

erse of the average time until an unidentified infected individual 

s confirmed, we can approximately estimate γ value through epi- 

emiological investigation. 

. Numerical tests 

For all numerical computations, the time step size is taken as 

t = 0 . 001 . 
3 
.1. Comparison with the previous work 

The proposed method in this paper estimates two parameters 

and U 0 whereas three parameters, β, U 0 , and γ , were estimated 

n the previous work [23] . In this section, using an example case, 

imulations are performed to demonstrate the robustness of the 

roposed method by comparing the computational results between 

he proposed and previous methods. 

We first generate 7-day data of confirmed and unidentified in- 

ected population, listed in Table 2 , using the SUC model with the 

nitial parameters tabulated in Table 3 . The generated values of the 

nidentified infected and confirmed population are called as U ref 

nd C ref , respectively. The reason why we set γ = 1 / 4 is that it

akes approximately four days before being confirmed with COVID- 

9 [28,29] . 

First, we fix one of the two parameters, β and U 0 , as a refer-

nce value, and try to calculate the optimal values by changing 

he initial setting of the other value. Here, γ = 1 / 4 . 5 1 / 4 , 1 / 3 . 5 are

sed for the proposed method as shown in Fig. 2 (a) and (b); and
0 = 1 / 4 . 5 1 / 4 , 1 / 3 . 5 are used for the previous method as shown

n Fig. 2 (c) and (d). Fig. 2 (a) and (c) show the optimal β with the

nitial guess β0 from 1 / 30 to 10 / 3 and fixed U 

0 
0 

= 30 0 0 , respec-

ively; and Fig. 2 (b) and (d) show the optimal U 0 with the initial

 

0 
0 

from 300 to 30 , 0 0 0 and fixed β0 = 1 / 3 , respectively. While the

esults of the previous method imply a large difference depend- 

ng on the initial value, the results computed by the proposed one 

ean that the optimal values are not sensitive to the initial guess 

alues. 

More specifically, to examine the changes according to the ini- 

ial guess values β0 and U 

0 
0 

, we compare the relative error E err de- 

ned as follows: 

 err = | max (P ) − min (P ) | / ̄P , 
here P is the optimal values β or U 0 for each initial guess value 

nd P̄ is the average value of P . Table 4 shows the relative errors of

he corresponding optimal values estimated by each initial guess 

alue when γ = 1 / 4 . 5 , 1 / 4 , 1 / 3 . 5 are used. The results indicate

hat the estimated parameters are almost constant. 

Next, we compute the number of unidentified infected patients 

sing arbitrary values of β, U 0 and the generated confirmed data 

n Table 2 . The parameters are taken as listed in Table 5 . 

We compare the estimation of unidentified infected population 

epending on the fixed value γ . Fig. 3 represents the computa- 

ional results of the unidentified infected and confirmed popula- 

ions. When γ is taken as the same as the reference value, the es- 

imated results of the unidentified infected and confirmed popula- 

ion are the same as the reference values. When different values of 

are used, only the estimated confirmed population are the same 

s the reference value. In these cases, the estimated unidentified 

nfected population are not the same owing to the non-uniqueness 

f the optimal parameters in the given model, nonetheless, those 

ynamics are considerably similar. Because the unidentified in- 

ected population in the real world is unknown, it is meaningful to 

stimate its dynamics using an appropriate fixed value of γ that is 

he inverse of the average time for confirming infected individuals. 

Table 6 lists the estimated values of U and γU with respect to 

. Depending on the γ value used, U takes different values, how- 

ver, γU is almost constant. 

Table 7 shows the estimated values of β, γ , βS 0 /N − γ , U 0 ,

nd γU 0 . Note that the values of βS 0 /N − γ are approximately con- 

tant despite using different values of γ . 

.2. Estimation with real-world data 

In this section, we estimate optimal parameters using the pro- 

osed method, and then analyze the results. Here, we use the con- 
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Table 2 

Generated data for the unidentified infected and confirmed patients. 

Days 0 1 2 3 4 5 6 

U ref 3000.0 3260.2 3542.9 3850.1 4184.0 4546.7 4940.8 

C ref 20000.0 20782.0 21631.9 22555.5 23559.1 24649.8 25835.0 

Fig. 2. Comparison of the optimal values between the (a) and (b) proposed and (c) and (d) previous methods depending on the initial guess values: (a) and (c) β; (b) and 

(d) U 0 . 

Fig. 3. Computational results using the generated confirmed data: (a) unidentified infected and (b) confirmed populations. 

4 
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Table 3 

Initial conditions for generating the data listed in 

Table 2 . 

Parameter Value 

N 5 × 10 7 

U 0 3000 

C 0 20 , 0 0 0 

S 0 N − U 0 − C 0 
β 1 / 3 

γ 1 / 4 

Table 4 

Relative error of the estimated U 0 and β . 

Case U 0 β

γ = 1 / 4 . 5 1.7e −10 2.0e −10 

γ = 1 / 4 . 0 3.1e −13 7.9e −13 

γ = 1 / 3 . 5 1.1e −10 1.9e −11 

Table 5 

Initial parameters for the SUC model. 

Parameter Value 

N 5 × 10 7 

U 0 0 2(C ref (1) − C ref (0)) = 1564 . 1 

C 0 C ref (0) = 20 , 0 0 0 

S 0 N − U 0 − C 0 
β0 0.5 

γ 1 / 3 . 5 , 1 / 4 , 1 / 4 . 5 

fi

o

W

o  

o

r

s

c

C

o

p

r

i

T  

u

w  

s

e

Table 7 

Estimated values according to the fixed parameter γ . 

Case β γ βS 0 /N − γ U 0 γU 0 

Reference 0.3333 0.2500 0.0832 3000.0 750.0 

γ = 1 / 4 . 5 0.3055 0.2222 0.0832 3375.0 750.0 

γ = 1 / 4 . 0 0.3333 0.2500 0.0832 3000.0 750.0 

γ = 1 / 3 . 5 0.3691 0.2857 0.0832 2625.0 750.0 

Table 8 

Confirmed cases data C ref used for computation. 

Days Date S. Korea USA India Brazil 

0 4/24 116033.6 31451885.1 15656055.4 13997593.7 

1 4/25 116714.3 31511586.7 15966350.1 14055397.0 

2 4/26 117390.3 31569361.0 16287956.4 14113700.4 

3 4/27 118061.0 31625391.1 16618701.9 14170517.0 

4 4/28 118737.1 31679185.1 16958864.3 14227049.6 

5 4/29 119405.3 31731814.9 17308229.9 14283976.3 

6 4/30 120054.0 31783169.9 17665270.0 14340904.0 

7 5/1 120681.3 31833766.0 18030196.9 14401290.4 

8 5/2 121303.1 31883181.4 18401237.6 14461566.6 

9 5/3 121923.4 31931706.3 18774443.4 14521246.6 

10 5/4 122547.9 31979742.9 19152518.6 14580407.0 

11 5/5 123159.0 32028297.4 19533644.4 14638993.6 

12 5/6 123755.1 32075840.6 19919485.3 14698325.7 

13 5/7 124331.9 32121991.6 20309288.4 14756739.1 

14 5/8 124919.1 32166005.3 20698960.9 14815722.7 

15 5/9 125500.4 32208815.1 21090240.4 14876213.9 

16 5/10 126078.1 32249867.1 21481236.3 14936200.1 

17 5/11 126651.4 32289473.9 21868334.0 14997611.6 

18 5/12 127218.7 32327645.1 22250589.7 15059106.0 

19 5/13 127806.1 32364411.0 22625769.0 15119937.0 

20 5/14 128425.3 32399782.3 22990799.1 15181253.3 

Table 9 

Initial values used in this section. 

Country N U 0 0 C 0 S 0 β0 

S. Korea 5 × 10 7 1361.4 116033.6 N − U 0 − C 0 1 / 3 

USA 3 . 3 × 10 8 119403.1 31451885.1 N − U 0 − C 0 1 / 3 

India 13 . 6 × 10 8 620589.4 15656055.4 N − U 0 − C 0 1 / 3 

Brazil 2 . 1 × 10 8 115606.6 13997593.7 N − U 0 − C 0 1 / 3 

fi

u

w

r

i

f

s

t

rmed case data in the South Korea (S. Korea), the United States 

f America (USA), India, and Brazil obtained from the data of the 

HO Coronavirus dashboard from April 18, to May 14, 2021, as 

f June 1, 2021 [30] . Note that the average values of seven days

f the confirmed data including each observation date, which are 

ounded to the second place after the decimal point, are used in- 

tead of the reported numbers of confirmed patients each day be- 

ause of the difference in the number of people being tested for 

OVID-19 on weekdays and weekends. Refer to Table 8 for 21 days 

f the confirmed cases data C ref for each country used in the ex- 

eriments. 

We compute the unidentified infected population on the cur- 

ent date, i.e., April 30, and both the confirmed and unidentified 

nfected cases in the next two weeks using the first 7 days in 

able 8 . The confirmed case data of the last 14 days in Table 8 is

sed to verify the prediction. In all subsequent computations, 

e set U 0 = 2(C ref (1) − C ref (0)) and C 0 = C ref (0) unless otherwise

tated. 

First, we estimate and compare the unidentified infections for 

ach value of γ using the confirmed population data that is the 
Table 6 

Numbers of the unidentified infected population and tho

values of γ . 

Days 0 1 2 

U

Reference 3000.0 3260.2 3542.9

γ = 1 / 4 . 5 3375.0 3667.7 3985.8

γ = 1 / 4 . 0 3000.0 3260.2 3542.9

γ = 1 / 3 . 5 2625.0 2852.7 3100.1

γU

Reference 750.0 815.0 885.7 

γ = 1 / 4 . 5 750.0 815.0 885.7 

γ = 1 / 4 . 0 750.0 815.0 885.7 

γ = 1 / 3 . 5 750.0 815.0 885.7 

5 
rst 7-day data in Table 8 . We compare the estimation of the 

nidentified infected population depending on the fixed value γ
hen 7-day data is used. We use the following initial parameters 

eferred to in Table 9 and γ = 1 / 3 . 5 , 1 / 4 , 1 / 4 . 5 . 

Fig. 4 represents the computational results of the unidentified 

nfected and confirmed populations. The estimated unidentified in- 

ected population is observed according to the fixed values of γ as 

hown in Fig. 4 (a) while the estimated and real confirmed popula- 

ions are consistent as shown in Fig. 4 (b). 
se multiplied by γ with respect to different fixed 

3 4 5 6 

 3850.1 4184.0 4546.7 4940.8 

 4331.4 4707.0 5115.0 5558.4 

 3850.1 4184.0 4546.7 4940.8 

 3368.9 3661.0 3978.3 4323.2 

962.5 1046.0 1136.7 1235.2 

962.5 1046.0 1136.7 1235.2 

962.5 1046.0 1136.7 1235.2 

962.5 1046.0 1136.7 1235.2 
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Table 10 

Seven-day data of each country: numbers of unidentified infected cases and those multiplied by γ . 

Country Days 0 1 2 3 4 5 6 

S. 

Korea 

U γ = 1 / 4 . 5 3076.5 3057.1 3037.9 3018.8 2999.7 2980.8 2962.0 

γ = 1 / 4 . 0 2734.7 2717.5 2700.3 2683.3 2666.4 2649.6 2632.9 

γ = 1 / 3 . 5 2392.8 2377.8 2362.8 2347.9 2333.1 2318.4 2303.8 

γU γ = 1 / 4 . 5 683.7 679.4 675.1 670.8 666.6 662.4 658.2 

γ = 1 / 4 . 0 683.7 679.4 675.1 670.8 666.6 662.4 658.2 

γ = 1 / 3 . 5 683.7 679.4 675.1 670.8 666.6 662.4 658.2 

USA U γ = 1 / 4 . 5 272401.6 264001.7 255852.6 247947.3 240279.0 232841.0 225626.9 

γ = 1 / 4 . 0 242131.5 234667.8 227425.7 220399.1 213582.0 206968.6 200553.4 

γ = 1 / 3 . 5 211861.4 205334.0 198998.8 192850.8 186884.9 181096.2 175479.9 

γU γ = 1 / 4 . 5 60533.7 58667.0 56856.1 55099.4 53395.3 51742.5 50139.3 

γ = 1 / 4 . 0 60532.9 58667.0 56856.4 55099.8 53395.5 51742.2 50138.4 

γ = 1 / 3 . 5 60531.8 58666.9 56856.8 55100.2 53395.7 51741.8 50137.1 

India U γ = 1 / 4 . 5 1383330.3 1423169.6 1464058.7 1506019.5 1549073.9 1593243.9 1638551.3 

γ = 1 / 4 . 0 1229603.6 1265035.6 1301393.6 1338696.1 1376961.4 1416208.1 1456454.5 

γ = 1 / 3 . 5 1075876.8 1106901.7 1138728.6 1171372.7 1204849.0 1239172.3 1274357.6 

γU γ = 1 / 4 . 5 307406.7 316259.9 325346.4 334671.0 344238.7 354054.2 364122.5 

γ = 1 / 4 . 0 307400.9 316258.9 325348.4 334674.0 344240.4 354052.0 364113.6 

γ = 1 / 3 . 5 307393.4 316257.6 325351.0 334677.9 344242.6 354049.2 364102.2 

Brazil U γ = 1 / 4 . 5 261279.2 259958.4 258628.0 257288.5 255940.1 254583.0 253217.6 

γ = 1 / 4 . 0 232243.0 231073.4 229893.4 228703.3 227503.4 226294.1 225075.6 

γ = 1 / 3 . 5 203206.9 202188.5 201158.8 200118.1 199066.8 198005.2 196933.6 

γU γ = 1 / 4 . 5 58062.0 57768.5 57472.9 57175.2 56875.6 56574.0 56270.6 

γ = 1 / 4 . 0 58060.8 57768.4 57473.4 57175.8 56875.9 56573.5 56268.9 

γ = 1 / 3 . 5 58059.1 57768.1 57473.9 57176.6 56876.2 56572.9 56266.7 

Table 11 

When using the first 7-day data of each country, the estimated values according to the fixed parameter γ . 

Country Case β γ βS 0 /N − γ U 0 γU 0 

S. 

Korea 

γ = 1 / 4 . 5 0.2164 0.2222 −0.0063 3076.5 683.7 

γ = 1 / 4 . 0 0.2443 0.2500 −0.0063 2734.7 683.7 

γ = 1 / 3 . 5 0.2801 0.2857 −0.0063 2392.8 683.7 

USA γ = 1 / 4 . 5 0.2112 0.2222 −0.0313 272401.6 60533.7 

γ = 1 / 4 . 0 0.2419 0.2500 −0.0313 242131.5 60532.9 

γ = 1 / 3 . 5 0.2814 0.2857 −0.0313 211861.4 60531.8 

India γ = 1 / 4 . 5 0.2538 0.2222 0.0284 1383330.3 307406.7 

γ = 1 / 4 . 0 0.2819 0.2500 0.0284 1229603.6 307400.9 

γ = 1 / 3 . 5 0.3181 0.2857 0.0285 1075876.8 307393.4 

Brazil γ = 1 / 4 . 5 0.2330 0.2222 −0.0050 261279.2 58062.0 

γ = 1 / 4 . 0 0.2628 0.2500 −0.0050 232243.0 58060.8 

γ = 1 / 3 . 5 0.3011 0.2857 −0.0050 203206.9 58059.1 

Table 12 

Description of parameters for the basic reproduction number. 

Model Parameters Description 

SIR S SIR Susceptible population 

I SIR Infected population 

R SIR Removed population 

βSIR Average number of contacts made by an infected individual per time 

γSIR Recovery rate 

R 0 Basic reproduction number in the SIR model 

D R Average period of time until an infected person is recovered ( =1 /γSIR ) 

SUC S Susceptible population 

U Unidentified infected population 

C Confirmed population 

β Average number of contacts made by an infected individual per time 

γ Rate that the unidentified infected individuals become confirmed 

D C Average period of time until an unidentified infected person is confirmed ( =1 /γ ) 

6 
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Fig. 4. Computational results from the first 7-day confirmed data of (a) S. Korea, (b) USA, (c) India, and (d) Brazil in Table 8 : the unidentified infected (left) and confirmed 

(right) populations. 
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Table 10 lists the estimated values of U and γU with respect to 

from the confirmed data of four countries. Depending on the γ
alue used, U 0 takes different values, however, γU 0 is almost con- 

tant. 

Table 11 shows the estimated values of β, γ , βS 0 /N − γ , U 0 ,

nd γU 0 of the four countries using the first 7-day data. Note that 

he values of βS 0 /N − γ and γU 0 are approximately constant de- 

pite using different values of γ . 

Now, we predict the confirmed and unidentified infected pop- 

lation for the next two weeks from April 30, using the same ini- 

ial settings and the optimal parameters ( β, U 0 ) obtained from 

he above test, that is, from the recent 7-day confirmed case data. 
7 
ig. 5 (a) shows the computational results using the confirmed data 

f each country. Since we obtain the optimal parameters for fit- 

ing the predicted and actual numbers of confirmed cases from our 

roposed method, the confirmed data for the next two weeks is 

ell predicted as shown in the left column of Fig. 5 (a). In addi-

ion, when γ = 1 / 4 , the predicted data of U is shown in the right

olumn of Fig. 5 (b). 

. Discussion 

We presented the robust method for parameter estimation us- 

ng the SUC model that is a building block model for evaluating 
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Fig. 5. Prediction of the confirmed population (left column) and the unidentified infected population (right column) when γ = 1 / 4 in the four countries: (a) S. Korea, (b) 

USA, (c) India, and (d) Brazil. 
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he unidentified infected population U . The basic and simple SUC 

odel captures the main dynamics of COVID-19 instead of complex 

odels which consider detailed information or divide the entire 

opulations into multiple subgroups by specific criteria. A complex 

odel that considers more various variables may reflect the real 

orld better, however, it is difficult to collect data suitable for the 

odel, and there are difficulties in that there are many parameters 
8 
o be fitted. On the other hand, using the SUC model that contains 

nly essential variables, the published data is sufficient as the in- 

ut data and the fitted parameters are minimized. 

In the COVID-19 pandemic situation, where community trans- 

ission and clusters of cases are dominant, quickly isolating peo- 

le who are infected but not confirmed (i.e., the unidentified in- 

ected cases) is of paramount importance to prevent the spread 
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Table 13 

Basic reproduction numbers of four countries. 

Country β γ β/γ R 0 

S. Korea 0.2443 0.2500 0.9771 3.4198 

USA 0.2419 0.2500 0.9678 3.3873 

India 0.2821 0.2500 1.1285 3.9497 

Brazil 0.2628 0.2500 1.0512 3.6791 
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f the infectious disease. Estimating the number of U can provide 

uidelines for government policies such as the scale of hospital 

eds, medical staff, and medicine and medical supplies to be se- 

ured. In addition, the estimated trend of U can be used as a refer- 

nce for social distancing policies or vaccine distribution strategies. 

onsequently, the SUC model is so intuitive and persuasive that 

an be understood by public health authorities and health profes- 

ionals who are not experts in mathematical modeling. 

Although the SUC model has such advantages, there is no 

niqueness of the optimal parameter values for the model ow- 

ng to an underdetermined system of the epidemic equations with 

imited case data. Our focus concentrated on developing the ro- 

ust method for fitting the unknown parameters and estimating U . 

ence, the proposed method is not sensitive to the initial guesses 

or the parameters. It was verified through comparison with the 

revious work [23] and the computational experiments performed 

ith data from four countries where the spread of COVID-19 was 

eriously progressing. In future work, we present theoretical anal- 

sis such as a backward bifurcation analysis [6] for the advanced 

UC model which introduces the fractional derivatives or includes 

ore variables for reflection of the real-world situation [19,20] . 

Next, let us consider the basic reproduction number R 0 , one 

f the important indicators to quantify the transmission potential 

or infectious diseases. R 0 is defined as the number of secondary 

nfections caused by one infectious individual in a completely sus- 

eptible population during the infectious period [31,32] . We con- 

ider the basic reproduction number in the SUC model using the 

efinition of R 0 in the SIR model [33] . Table 12 lists the descrip-

ion of parameters for the basic reproduction number in the SIR 

nd SUC models. 

The basic reproduction number in the SIR model is R 0 = 

SIR / γSIR , and it can be rewritten as follows because β implies the 

ame concept in both SIR and SUC models: 

 0 = 

βSIR 

γSIR 

= 

β

γ
· γ

γSIR 

. 

ote that γSIR = 1 /D R and γ = 1 /D C . Thus, it holds that 

 0 = 

β

γ
· D R 

D C 

. (12) 

ere, D R is known to be around 14 days [33] and D C is approxi-

ately 4 days [28,29] . Therefore, using Eq. (12) and γ = 1 / 4 , we

ompute and list the basic reproduction numbers R 0 of four coun- 

ries, S. Korea, USA, India, and Brazil, in Table 13 . The countries 

ere investigated in Section 3.2 . 

The computed R 0 from Eq. (12) may be different from the value 

rom other models because the SUC model is one of the most sim- 

le and basic and the unidentified infected cases are unknown in 

he real world. 

. Conclusion 

We presented a robust optimal parameter estimation for the 

UC epidemic model. In order to predict the future dynamics of 
9 
nfectious disease, it is first necessary to obtain the optimal val- 

es of the parameters required for the epidemic model. However, 

he uniqueness of the optimal parameters cannot be guaranteed 

n the model due to the limitation of the given information, and 

hen there is a problem that the predicted result varies depending 

n the initial setting. To overcome a problem in finding optimal 

arameters, we solved an optimization problem of determining 

he other parameter values which best fit the reported confirmed 

opulation while one parameter was fixed. We demonstrated that 

he effectiveness of the proposed method through several compu- 

ational experiments with the manufactured and real-world data. 

rom the numerical results, the sensitivity to the initial conditions 

as greatly reduced. Therefore, it is able to estimate the num- 

er of the unidentified infected population more reasonably than 

he method used in the previous study of the SUC model. In fu- 

ure work, we will introduce the fractional derivatives into the SUC 

odel such as Ref. [19,20] . Depending on the fractional order, it is 

xpected that the estimated values are fitted better. Moreover, we 

ill extend the SUC model by taking into account more variables 

elated to the real trend of the pandemic. The SUC model currently 

n use assumes many strict restrictions, that is, there are no rein- 

ections, births and deaths, vaccines, etc. For more accurate esti- 

ation, we plan to develop a model with additional appropriate 

ariables. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Chaeyoung Lee: Data curation, Formal analysis, Funding ac- 

uisition, Investigation, Methodology, Software, Validation, Visu- 

lization, Writing – original draft, Writing – review & editing. 

oobin Kwak: Data curation, Investigation, Software, Validation, 

isualization, Writing – original draft, Writing – review & edit- 

ng. Sangkwon Kim: Data curation, Investigation, Validation, Vi- 

ualization, Writing – original draft. Youngjin Hwang: Data cu- 

ation, Investigation, Validation, Visualization, Writing – original 

raft. Yongho Choi: Funding acquisition, Investigation, Validation, 

riting – original draft, Writing – review & editing. Junseok Kim: 

onceptualization, Formal analysis, Funding acquisition, Investiga- 

ion, Methodology, Project administration, Software, Supervision, 

alidation, Writing – original draft, Writing – review & editing. 

cknowledgments 

The first author (C. Lee) was supported by the National Re- 

earch Foundation (NRF), Korea , under project BK21 FOUR. The au- 

hor (Y. Choi) was supported by the National Research Foundation 

f Korea (NRF) grant funded by the Korea government (MSIT) (No. 

RF2020R1C1C1A0101153712 ). The corresponding author (J.S. Kim) 

as supported by Korea University Research Grant. The authors ap- 

reciate the reviewers for their constructive comments, which have 

mproved the quality of this paper. 

ppendix 

The following code is the main program, which is available 

rom the corresponding author’s webpage: https://mathematicians. 

orea.ac.kr/cfdkim/open-source-codes/ . 

https://doi.org/10.13039/501100003725
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