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We present a simple numerical solution algorithm for a gradient flow for the Modica–Mortola functional and numerically
investigate its dynamics.-e proposed numerical algorithm involves both the operator splitting and the explicit Euler methods.
A time step formula is derived from the stability analysis, and the goodness of fit of transition width is tested. We perform
various numerical experiments to investigate the property of the gradient flow equation, to verify the characteristics of our
method in the image segmentation application, and to analyze the effect of parameters. In particular, we propose an ini-
tialization process based on target objects. Furthermore, we conduct comparison tests in order to check the performance of our
proposed method.

1. Introduction

We consider a practical and efficient numerical method to
solve the following equation:

zϕ(x, t)

zt
� 2εΔϕ(x, t) −

π
ε
sin(2πϕ(x, t)), x ∈ Ω, t> 0,

(1)

where ϕ(x, t) is a phase-field function in space x and time t

and ϵ is a positive constant. Here,Ω is a bounded domain in
Rd (d � 1, 2). We apply the homogeneous Neumann
boundary condition n · ∇ϕ � 0 on zΩ, where n denotes the
unit normal vector to zΩ. Equation (1) depicts a gradient
flow equation in the L2(Ω)-norm for the Modica–Mortola
functional [1, 2]:

E(ϕ) ≔ 􏽚
Ω

ε|∇ϕ|
2

+
1
ε
sin2(πϕ)􏼔 􏼕dx. (2)

Figure 1 shows the multiple periodic well potential,
(1/ε)sin2(πϕ), given by the second term in equation (2).

Phase-field models have been actively studied until re-
cently in various fields [3, 4]. Bogosel et al. [5] proposed an
efficient phase-field method based on a multiphase Γ-con-
vergence. Oudet and Santambrogio [6] presented the
Modica–Mortola approximation for branched transport.
Conti et al. [7] investigated elastic shape optimization. Pegon
et al. [8] studied fractal shape optimization in branched
transport. Kang et al. [9] proposed a new clustering model
using regularized k-means. Furthermore, there are nu-
merous studies addressing image processing based on partial
differential equations (PDEs) using the variational method
[10–15]. Li [16] proposed a new multiphase image seg-
mentation considering the images’ morphological diversity.
In [17], the authors introduced a new image segmentation
method using multiphase segmentation based on binary
image segmentation. Hu et al. [18] presented the minimum
barrier superpixel segmentation which is capable of
achieving cutting-edge performance. Liu et al. [19] proposed
a graph-cut-based minimization method for image seg-
mentation. -e authors in [20] proposed a parametric snake
model for image segmentation. Image segmentation
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methods based on fractional calculus are popular emerging
methods [21, 22]. Recently, deep learning-based segmen-
tation methods have been actively studied in the image
segmentation [23–26].

Several research studies have been conducted for mul-
tiphase image segmentation. Inspired by the work of Jung
et al. [1], the authors in [27] presented a hybrid numerical
method for multiphase image segmentation using a phase-
field model. -ey used a periodic quartic polynomial instead
of a sinusoidal function. A simplified Modica–Mortola
functional was introduced for estimating piecewise-constant
solutions for Fredholm integral equations of the first kind
and a damped Newton method was employed to minimize
the functional [28]. Huska et al. [29] presented an extension
of the Mumford–Shah model for multiphase image seg-
mentation using alternating directions methods of
multipliers.

Most of the aforementioned methods use implicit
schemes which update a solution by solving a discretized
equation involving both the current state (n time level) of a
given system and later one (n + 1 time level). However, in
this study, we propose an explicit segmentation scheme
which directly updates the state of the given system at a
later time level from the state of the system at the current
time level without applying any iterative methods. -e
detailed process of the proposed explicit segmentation
scheme is described in Section 3.3.-emain purpose of this
paper is to present a simple explicit numerical solution
algorithm to the gradient flow for the Modica–Mortola
functional.

-is paper is organized as follows. In Section 2, we
propose the numerical solution algorithm. In Section 3, we
perform several characteristic numerical experiments to
demonstrate the efficiency of the proposed numerical
method. Finally, conclusions are provided in Section 5.

2. Numerical Solution Algorithm

We discretize equation (1) in two-dimensional space, i.e.,
Ω � (a, b) × (c, d). -e one-dimensional case is defined in
the same manner. Let Nx and Ny be positive integers, h �

(b − a)/Nx be the uniform mesh size, and Ωh � (xi, yj): xi􏽮

� a + (i − 0.5)h, yj � c + (j − 0.5)h, 1≤ i≤Nx, 1≤ j≤Ny}

be the discrete domain. Let ϕn
ij be approximations of

ϕ(xi, yj, nΔt), where Δt is the time step. Let

‖ϕ‖2 �

������������������

􏽐
Nx

i�1 􏽐
Ny

j�1 ϕ
2
ij/(NxNy)

􏽱

be the discrete l2-norm.
In [1], the authors developed a convex-splitting algo-

rithm for minimization of the nonconvex energy functional.
We propose the following operator splitting method (OSM)
[30] for equation (1). Let us rewrite equation (1) as

zϕ(x, t)

zt
� f1(ϕ(x, t)) + f2(ϕ(x, t)), (3)

where f1(ϕ(x, t)) � 2ϵΔϕ(x, t) andf2(ϕ(x, t)) � − (π /ε)sin
(2πϕ(x, t)). -en, OSM is as follows: we solve equation (4)
with ψ(x, 0) � ϕ(x, nΔt) for a given value ϕ(x, nΔt) to get
ψ(x,Δt).

zψ(x, t)

zt
� f1(ψ(x, t)). (4)

Next, using the solution obtained in the first step
ψ(x,Δt), we solve equation (5) with φ(x, 0) � ψ(x,Δt) to get
φ(x,Δt).

zφ(x, t)

zt
� f2(φ(x, t)). (5)

Finally, we set ϕ(x, (n + 1)Δt) � φ(x,Δt). Now, we de-
scribe the above procedure in discrete approximation. First,
we solve equation (4) using the explicit Euler method.

ϕ∗ij − ϕn
ij

Δt
� 2εΔhϕ

n
ij, 1≤ i≤Nx, 1≤ j≤Ny, (6)

where Δhϕ
n
ij � (ϕn

i− 1,j + ϕn
i+1,j − 4ϕn

ij + ϕn
i,j− 1 + ϕn

i,j+1)/h
2.

Here, the homogeneous Neumann boundary condition [31]
is applied. Second, we solve equation (5) using the explicit
Euler method.

ϕn+1
ij − ϕ∗ij
Δt

� −
π
ε
sin 2πϕ∗ij􏼐 􏼑, 1≤ i≤Nx, 1≤ j≤Ny. (7)

For the stability of the scheme, we require a constraint
for the time step. From equation (6), we have Δt< h2/(8ε).
Because the right hand side term in equation (7) is periodic,
we only need to check the stability with 0<ϕ∗ij < 0.5. More
precisely, the sine function is 2π-periodic while the sign is
not important in the stability, and hence we only need to
consider a half cycle. For this ϕ∗ij, we require 0<ϕ

n+1
ij <ϕ

∗
ij.

-e inequality ϕn+1
ij < ϕ

∗
ij is consistently satisfied for any Δt,
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Figure 1: Multiple periodic well potential (1/ε)sin2(πϕ). Here, ϵ � 1 is used.
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as sin(2πϕ∗ij)> 0 for 0< ϕ∗ij < 0.5. -e inequality 0< ϕn+1
ij

implies

Δt<
εϕ∗ij

π sin 2πϕ∗ij􏼐 􏼑
, (8)

which is a monotonically increasing function with respect to
ϕ∗ij in (0, 0.5). If we take limit as ϕ∗ij⟶ 0 to the right hand
side term in equation (8), then we obtain

limϕ∗ij⟶ 0
εϕ∗ij

π sin 2πϕ∗ij􏼐 􏼑
�

ε
2π2

. (9)

-erefore, we can assume the time step to be
Δt � smin[h2/(8ε), ε/(2π2)], where 0< s< 1 is a safety
factor. For the one-dimensional case, we have
Δt � smin[h2/(4ε), ε/(2π2)].

3. Numerical Experiments

In this section, we perform various numerical experiments to
demonstrate the efficiency of the proposed method and to
investigate the property of the gradient flow equation. We
denoteN as the number of iterations, h as the size of spatial step,
and Δt as the time step scale. We terminate the main loop
whence the discrete l2-norm of the relative difference between
two consecutive solutions is less than a given tolerance level, i.e.,

1
NxNy

􏽘
i,j

ϕn
ij − ϕn+1

ij

ϕn
ij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< tol, (10)

for some n. Here, all the numerical experiments are con-
ducted on 2.70GHz CPU and 4GB DDR4 memory. We
employ MATLAB R2019a as our test tool.

3.1. Phase Evolution in One-Dimensional Computational
Domain. Unless specified otherwise, we fix h � 0.01 in this
section. Let ϕ∞ � ϕn+1 be taken as an equilibrium solution.
We compute xα and xβ using a linear interpolation. For
example, m depicts the index satisfying the condition
ϕ∞m ≤ 0.05< ϕ∞m+1, such that xα � xm + h(0.05 − ϕm)/(ϕm+1 −

ϕm) is shown in Figure 2(a). Similarly, xβ can be obtained in
a similar way. We define the transition thickness of ϕ∞ as
L � xβ − xα, which is schematically illustrated in Figure 2(b).
Here, ϕ∞(xα) ≈ 0.05, and ϕ∞(xβ) ≈ 0.95. Figure 2(c) shows
the numerical steady states with different ε � 2h, 4h, . . . , 20h

values. -e initial condition in the computational domain
Ω � (0, 1) is ϕ(x, 0) � 0 if x< 0.5, and ϕ(x, 0) � 1 otherwise.
-e tolerance tol � 1 e− 16 is used.

Table 1 lists the thickness (L � xβ − xα) of the interface
transition layer for various ϵ values.

Figure 3 shows the transition thickness L � xβ − xα
against ϵ. We observe the linear relationship between L and
ϵ. Fitting the data with a linear function, we have

ε(L) � 0.6158L + 0.0004. (11)

Note that we employ the linear regression based on the
least-squares method in order to find such a linear function.

-erefore, if we want to have L as the interface thickness,
then we can use equation (11) to define the value of ϵ.

Figure 4 shows the numerical steady states with initial
conditions ϕ(x, 0) � 0 if x< 0.5, and ϕ(x, 0) � m otherwise.
Figures 4(a), 4(b), 4(c), and 4(d) are the results with
m � 1, 2, 3, and 4, respectively. ε � ε(4h), tol � 1 e-16, and
Δt with s � 0.1 are used.

Figure 5 shows the numerical steady states with initial
conditions ϕ(x, 0) � 0 if x< 0.5, and ϕ(x, 0) � m otherwise.
Figures 5(a), 5(b), 5(c), and 5(d) are the results with
m � 1, 2, 3, and 4, respectively. ε � ε(8h), tol � 1 e− 16, and
Δt with s � 0.1 are used. Compared to the case with
ε � ε(4h), the width of the transition layer is larger in the
results with ε � ε(8h).

Figure 6 shows the temporal evolution of ϕwith an initial
condition on a computational domain Ω � (0, 1):

ϕ(x, 0) � 2rand(x) + 5(x − 0.5), (12)

where rand (x) is a random number between − 1 and 1. -e
parameters h � 0.01, ε � ε(4h), and Δt with s � 0.1 are used.
In Figure 6, the dotted, solid, and thick solid lines are the
initial profile, intermediate, and final solution after 100 it-
erations, respectively. While initial profile and intermediate
solutions have random values, we can observe some flat
regions with integer values at the final solution.

3.2. Phase Evolution in Two-Dimensional Computational
Domain. In this section, we begin our experiment in a two-
dimensional computational domain defined by
Ω � (0, 1) × (0, 1). To illustrate the robustness of the pro-
posed model, Figure 7 shows the temporal evolution of ϕ:
Figures 7(a), 7(b), and 7(c) are snapshots at t � 0, Δt, and
7Δt, respectively. -e initial condition in Ω is given by

ϕ(x, y, 0) � 0.5rand(x, y) + 5(x + y − 1), (13)

where rand (x, y) is a random number between − 1 and 1.
ε � ε(2h) and Δt with s � 0.99 are used.

Figure 8 shows the temporal evolution of ϕ: Figures 8(a),
8(b), and 8(c) represent snapshots at t � 0, Δt, and 4Δt,
respectively. -e initial condition is defined by perturbed
integers from 0, 1, 3, and 6 in 2 by 2 subdomains of Ω. -e
maximum amplitude of the random number is 0.5. ε � ε(2h)

and Δt with s � 0.99 are used.
In addition, we investigate the same problem in Figure 8

with different s values to examine the effect of the safety factor
s. Figure 9 shows the temporal evolutions of ϕ with s � 0.11.
Compared to the previous result, a small value of s brings out
the small time step; hence, it takes a long computational time.
-erefore, onemight use the value of s as large as possible that
is guaranteed to converge in order to gain fast convergence.

For the next step, we perform a test with a large variation
of ϕ and a larger value of s. Figure 10 shows the temporal
evolution of ϕ: Figures 10(a), 10(b), and 10(c) are snapshots
at t � 0, Δt, and 2Δt, respectively. -e initial condition is
defined by perturbed random integers between 0 and 26 in 5
by 5 subdomains of Ω. -e maximum amplitude of the
random number is 0.5. -e space step h � 0.01, ε � ε(2h),
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and Δt with s � 0.99 are used. Even though we use a large
value of s � 0.99, which is close to the critical value to the
numerical stability, we have a good result. Furthermore, we
get Figure 10(c) only after 2 iterations.

3.3. Image Segmentation Application. Image segmentation
plays a significant role in image unperceiving, computer vision,
medical image processing, and pattern identification [32–36].
We want to partition an image into several regions and make
each region have characteristics such as edges, color, and object.
-e segmentation results are mainly for better analysis and
meaningful interpretation of images. In this section, we apply

our method to multiphase image segmentation with a data-
fitting term. We assume that there are K + 1 phase fields for
minimization of the following Mumford–Shah energy func-
tional based on the Modica–Mortola functional:

E(ϕ) � 􏽚
Ω

ε|∇ϕ|
2

+
1
ε
sin2(πϕ) + GK ϕ, f0( 􏼁􏼒 􏼓dx. (14)

-e first term ε|∇ϕ|2 makes a smooth transition be-
tween phases and penalizes a large amount of oscillation.
-e reason is that minimizing the square of the gradient
indicates a diffusion phenomenon and restricts sudden
gradient changes, that is, the oscillation is suppressed
because a large amount of sharp interface disappears. -e
second term represents a multiple periodic well potential,
which derives the phase-field variable ϕ to the closest in-
teger value. Note that the reason for using the periodic
function as a nonlinear reaction term unlike other models
such as Mumford–Shah, Chan–Vese, and other snake
contour-based methods is that the multiphase separation
based on the multiple periodic well potential can be per-
formed with single-order parameter. -e third term is a
fitting term, which is defined as follows:

GK ϕ, f0( 􏼁 �
λ
2

􏽘

K

k�0
Ck − f0( 􏼁

2sinc2(ϕ − k), (15)

where f0 is the given image, λ is a positive parameter which
indicates degree of fidelity, and Ck is the average of f0 in the
k-level, where k � 0, 1, . . . , K, i.e.,

Ck �
􏽒Ωf0(x)sinc2(ϕ(x) − k)dx

􏽒Ωsinc
2
(ϕ(x) − k)dx

. (16)

Note that as the value of λ increases, the influence of the
edge-stopping function GK becomes stronger, and the
tendency to regress to the boundary of the original image
becomes stronger.

Here, sinc(ϕ) � sin(πϕ)/(πϕ), which is plotted by solid
line in Figure 11, and the dashed line represents function
sinc2(ϕ). Note that the square of the sinc(ϕ) plays the same
role as the delta function in k-level.

Subsequently, we obtain the following gradient descent
flow equation:
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0 xmxα xm+1

ϕ∞m+1

ϕ∞m

ϕ∞
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Figure 2: (a) Schematic illustration of linear interpolation evaluating xα. (b) Schematic illustration of transition thickness, L � xβ − xα.
(c) Equilibrium solutions with different ε � 2h, 4h, . . . , 20h values.

Table 1: -ickness (L � xβ − xα) of interface transition layer for
various ϵ values.

Case ϵ � 2 h ϵ � 4 h ϵ � 6 h ϵ � 8 h ϵ � 10 h

L 2.9903 h 6.5364 h 9.7668 h 12.9192 h 16.2230 h

Case ϵ � 12 h ϵ � 14 h ϵ � 16 h ϵ � 18 h ϵ � 20 h

L 19.4323 h 22.6640 h 25.9192 h 29.1198 h 32.3832 h
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Figure 3: Plot of interface transition thickness L � xβ − xα with
respect to ϵ.
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ϕt � 2εΔϕ −
π
ε
sin(2πϕ)

− λ 􏽘
K

k�0
Ck − f0( 􏼁

2 sin(2π(ϕ − k))

2π(ϕ − k)
2 −

sin2(π(ϕ − k))

π2(ϕ − k)
3􏼠 􏼡,

(17)

where we assume that Ck is constant.

We present the operator splitting numerical algorithm to
solve the proposedmodel.We split the original equation (17)
into the following three equations:

zϕ(x, t)

zt
� − λ 􏽘

K

k�0
Ck − f0( 􏼁

2

×
sin(2π(ϕ(x, t) − k))

2π(ϕ(x, t) − k)
2 −

sin2(π(ϕ(x, t) − k))

π2
(ϕ(x, t) − k)

3􏼠 􏼡,

zϕ(x, t)

zt
� −

π
ε
sin(2πϕ(x, t)),

zϕ(x, t)

zt
� 2 εΔϕ(x, t).

(18)
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Figure 4: Numerical steady states with initial conditions ϕ(x, 0) � 0 when x< 0.5, and ϕ(x, 0) � m otherwise. (a), (b), (c), and (d) are the
results with m � 1, 2, 3, and 4, respectively. ε � ε(4h) is used.
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Figure 5: Numerical steady states with initial conditions ϕ(x, 0) � 0 when x< 0.5, and ϕ(x, 0) � m otherwise. (a), (b), (c), and (d) are the
results with m � 1, 2, 3, and 4, respectively. ε � ε(8h) is used.
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Figure 6: Temporal evolution of numerical solutions with initial condition, ϕ(x, 0) � 2rand(x) + 5(x − 0.5).
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Figure 7: Temporal evolution of numerical solution: (a), (b), and (c) represent snapshots at t � 0, Δt, and 7Δt, respectively.
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Figure 8: Temporal evolution of ϕ with s � 0.99: (a), (b), and (c) are snapshots at t � 0, Δt, and 4Δt, respectively.
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Figure 10: Temporal evolution of ϕ: (a), (b), and (c) are snapshots at t � 0, Δt, and 2Δt, respectively.
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Figure 9: Temporal evolution of ϕ with s � 0.11: (a), (b), and (c) are the snapshots at t � 0, 9Δt, and 36Δt, respectively.
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First, we solve the above three equations by applying the
fully explicit method with a known value ϕn, that is,

ϕn+1/3
ij − ϕn

ij

Δt
� − λ 􏽘

K

k�0
C

n
k − f0,ij􏼐 􏼑

2
×

π ϕn
ij − k􏼐 􏼑sin 2π ϕn

ij − k􏼐 􏼑􏼐 􏼑 − 2 sin2 π ϕn
ij − k􏼐 􏼑􏼐 􏼑

2π2 ϕn
ij − k􏼐 􏼑

3
+ δ

⎛⎜⎝ ⎞⎟⎠, (19)

ϕn+2/3
ij − ϕn+1/3

ij

Δt
� −

π
ε
sin 2πϕn+1/3

ij􏼐 􏼑, (20)

ϕn+1
ij − ϕn+2/3

ij

Δt
� 2ϵΔhϕ

n+2/3
ij , (21)

where we added a small value δ in the denominator to avoid
singularities.

Note that if we replace ϕn+1
ij by ϕn+2/3

ij on the right side of
equation (21), it becomes an implicit method, which gen-
erally needs an iterative method to solve it.

Now Cn
k is defined as follows:

C
n
k �

􏽐
Nx

i�1 􏽐
Ny

j�1 f0,ijsinc
2 ϕn

ij − k􏼐 􏼑

􏽐
Nx

i�1 􏽐
Ny

j�1 sinc
2 ϕn

ij − k􏼐 􏼑
. (22)

In the numerical experiments of image segmentation, we
normalize the selected image f as
f0 � f − fmin/fmax − fmin, where fmin and fmax are the
minimum and maximum values of the selected image, re-
spectively. For the initial phase-field value, we use the fol-
lowing formula:

ϕ0ij � n − 1 +
f0,ij − Tn− 1

Tn − Tn− 1
, if f0,ij ∈ Tn− 1, Tn􏼂 􏼃, (23)

where Tn for n � 0, 1, . . . , N are target levels of the image.
For example, if we have four target values,

T0 � 0, T1 � 0.3, T2 � 0.8, and T3 � 1, then we have the
initial phase-field value as illustrated in Figure 12. Note that
the target values can be randomly selected; however,
selecting them according to the distribution of the gray scale
of the image ensures fast convergence. As our proposed
method involves first observing the image and determining
the target values, it is intuitive to follow the distribution of
the gray scale of the image. Manual target selection [37–39]
is a traditional method and has been used so far.

3.4. Synthetic Image1. We test image segmentation using the
image with 5 phases of 240 × 240 mesh size [40]. We fix tol �

1 e− 7 unless otherwise specified. Figure 13 shows the image
segmentation using uniformly distributed 5 target values.
Here, s � 0.99, h � 1/240, ε � ε(2h), λ � 10, and
Δt � smin[h2/(8ε), ε/(2π2)] are used. Additionally, we use
5 target values: T0 � 0, T1 � 0.25, T2 � 0.5, T3 � 0.75, and
T4 � 1.We evaluate the discrete value of theMumford–Shah
energy functional as follows:

Ε ϕn
( 􏼁 � 􏽘

i,j

ε
ϕn

i+1,j − ϕn
ij􏼐 􏼑

2
+ ϕn

i,j+1 − ϕn
ij􏼐 􏼑

2

h
2

⎛⎝ ⎞⎠ +
1
ε
sin2 πϕn

ij􏼐 􏼑 +
λ
2

􏽘

K

k�0
C

n
k − f0,ij􏼐 􏼑

2
sin c

2 ϕn
ij − k􏼐 􏼑h

2⎛⎝ ⎞⎠, (24)

where Cn
k is described earlier in equation (22).

As shown in Figure 13(c), the synthetic image with 5
uniformly distributed target values is segmented to 5 phases.
Moreover, we further consider a normalized ratio of
E(ϕn)/E(ϕ0) in the segmentation process. Figure 13(d) shows
the energy plot E(ϕn), and the criterion for convergence is
n � 5, which is determined by
|(E(ϕn) − E(ϕn− 1))/E(ϕ0)|< tole. -is threshold tole is set
equal to 1e− 4 for the tests with the synthetic image unless
otherwise specified.-erefore, numerical steady state is achieved
at the intersection of two types of stopping criteria, relative
consecutive errors, and normalized decaying energy ratios.

Note that the important point is that the target values are
set as hyperparameters in the case of real image or automat-
ically set through the distribution of gray-scale values of image.
-erefore, uniformly distributed target values used in Figure 13
are nothing special, i.e., these can be nonuniformly distributed.

To illustrate the robustness of the proposed model with
respect to noise, we conduct an image segmentation ex-
periment for the 5% random noise from the uniform dis-
tribution added to the image at first. In this test, we choose
the initial image with levels 0, 0.2, 0.4, 0.7, and 1. -e image
corrupted by 5% noise and the mesh plot of the image are
shown in Figures 14(a) and 14(b), respectively. After 15
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iterations, we confirm the converged phase field as shown in
Figure 14(c) by using Figure 14(d). Compared to
Figure 13(d), there is no significant difference in the degree
of energy decaying; however, 10 more iterations are needed
because the random noise is added, and therefore the
convergence of relative consecutive errors takes more iter-
ations relatively.

Subsequently, we generate a kind of impulsive noise,
which is called salt and pepper noise, in the synthetic image.
Figure 15 depicts the segmentation results with salt and
pepper noise. Note that we change the corresponding values
of parameters, s � 0.1 and λ � 500, in this case.

Since relatively small s is used, the number of iterations
has to increase to achieve a similar level of segmentation as

T3 = 1

T2 = 0.8

T1 = 0.3

T0 = 0

f0

3

2

1

0

ϕ0

Figure 12: Initialization of multiphase image segmentation.
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Figure 13: Image segmentation process with 5 phases. (a) Initial gray-scale image with 5 uniformly distributed target values. (b) Mesh plot
of the initial image. (c) Converged phase field after 5 iterations. (d) Energy decrease plot and corresponding snapshots.
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shown in Figure 14. -e value of s is concerned with the
accuracy of solutions in this case, which is covered in more
detail in the parameter test section below. -e boundaries
tend to be relatively smeared rather than the results of
randomly perturbed noise image segmentation as shown in
Figure 14. Another type of impulsive noise is anisotropic
noise which is concentrated in specific area. In this case, we
generate anisotropically the 20% random noise value from
the standard normal distribution. Moreover, we conduct a
similar examination for periodic noise. Figure 16 shows the
segmentation results initially corrupted by anisotropic and
periodic noises. For the anisotropic noise case, we adjust the
target values since the specified areas occupy a small portion
of the entire area, which implies that the outliers are scaled
together when scaling process is done; hence, one may create
a buffer as 0.2 to both sides, 0 and 1. We take 0.2, 0.35, 0.5,
0.65, and 0.8 as the target values. -is is the reason why
Figure 16(a) has a slightly different colormap from others in
noise-corrupted images. We further change the value of
fidelity, λ � 100, and the others are the same as those of salt
and pepper noise case. On the other hand, we adopt the same
target values described in Figure 14 for periodic noise case

and just vary the parameters s � 0.1, λ � 10. Note that we
omit mesh plots and energy plots since they are duplicated as
the results listed in Figure 15.

As can be seen from the above results, the segmentation
results using our proposed method are robust. Furthermore,
we present the long time numerical energy stability for
equations (19)–(21) in Figure 17. Here, we use all the same
parameters listed above for Figure 14, but for the number of
iterations to 500, the final time is T � 500Δt ≈ 30.895.

According to Figure 17, our method has long-term
energy stability, which asserts nonoscillation asymptotic
behaviors.

-ough a phase-field modeling itself does not include an
optimizing algorithm, we examine the value of intersection
over union (IoU) to measure the accuracy of segmentation.
Figure 18 shows original and predicted bounding boxes with
respect to different ϵ values, and Table 2 lists the value of IoU
for each case.

In this test, we use the parameter values s � 0.1, λ � 100,
and the others are the same as used in Figure 14. Note that ϵ
is concerned with transition width and the number of pixels
in this image is 240 for each axis. -erefore, IoU might be
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Figure 14: Image segmentation process of the noise-corrupted image with 5 phases. (a) Initial gray-scale image corrupted by 5% random
noise from the uniform distribution with 5 nonuniformly distributed target values. (b) Mesh plot of the initial image. (c) Converged phase
field after 15 iterations. (d) Energy decrease plot and corresponding snapshots.
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similar for ϵ values exceeding a certain scale in diffuse-in-
terface models due to the lack of the number of pixels.-is is
the reason why we have similar values for ε(4h) and ε(8h).

Moreover, we verify the dullness of edge of our proposed
method. Figure 19 shows the dullness of edge with respect to
various ϵ values. According to this result, the boundaries
become smooth enough as ε increases; it may result in a
drawback such as a smeared boundary problem. -e the-
oretical details of both diffuse-interface and sharp-interface
limits can be checked in the following references [41, 42] and
can be also found in the references therein.

3.5. Complex Image. For the following step, we use a more
complex image. We fix tol � 1 e− 6 and tole � 1 e− 4 unless
otherwise specified. We take a brain MRI image used in [43]
as the first example. In medical science, there are cases in
which diagnostic results are obtained by tracking and ob-
serving areas that have the same color in the image.
-erefore, the brain MRI image is suitable for checking the
performance of our method. We convert the brain MRI
image to gray scale, which ranges from 0 to 1, and choose the
pixels as target values T as our region of interest. Fast

convergence of the explicit scheme is therefore generally
ensured, and one may not continuously select the pixels that
have almost the same gray-scale distribution values in re-
ality. If we want to segment regions of intensity at (ik, jk) for
k � 0, 1, . . . , K, then we define Ck as the local mean of the
near 8 cells and itself.

Ck �
1
9

􏽘
a,b�− 1,0,1

f0,ik+a,jk+b. (25)

Note that we fix these defined values until completion of
the segmentation process. Here, we use s � 0.3, h � 1,
ε � ε(2h), λ � 1, Δt � smin[h2/(8ε), ε/(2π2)], and K � 3.
-e size of image is 290 × 320. Figures 20(a) and 20(b) show
the original image and the image with Ck positions for
k � 0, 1, 2, 3, respectively. Figures 20(c) and 20(d) show
mesh plots of the original brain MRI and the segmented
phase field, respectively. Figures 20(e)–20(h) show the
sectional segmentation images for each k-level.

Note that the expression in black and white colors is just
to clarify the visualization. -erefore, the gray texture in the
image can be obtained in exactly the same way. Similarly, the
numerical energy stability for the proposed method with
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Figure 15: Image segmentation process of the noise-corrupted image with 5 phases. (a) Initial gray-scale image corrupted by salt and pepper
noise with 5 nonuniformly distributed target values. (b) Segmented image after 150 iterations. (c) Converged phase field after 150 iterations.
(d) Energy decrease plot and corresponding snapshots.
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Figure 17: Energy plot of the Mumford–Shah energy functional obtained with proposed method equations (19)–(21) with the initial
condition in Figure 14.

(a) (b)

(c) (d)

Figure 16: Image segmentation process of noise-corrupted image with 5 phases. (a) Initial gray-scale image anisotropically corrupted by
20% random noise from the standard normal distribution. We use 5 uniformly distributed target values with buffer. Note that the noise
occurs in red boxes. (b) Segmented image after 150 iterations. (c) Initial gray-scale image corrupted by periodic noise with 5 nonuniformly
distributed target values. (d) Segmented image after 150 iterations.
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local mean Ck is presented in Figure 21. Here, we use all the
same parameters listed above for Figure 20, except for the
number of iterations (500).

3.6. Parameter Test. We perform parameter tests on image
with low contrast and high-level noise in this section. We
employ the 132 × 641 sized vertebral image listed in [44],
which has low contrast near the boundaries of the object. We
initially transform the image into gray scale and perturb with
random noise about ±30% within [− 1, 1]. Figure 22 shows
both original and noise perturbed vertebral MRI images.

We have targeted the spines within the image to seg-
ment, and K � 3 is adopted for convenience. Recall that K is
a hyperparameter, and hence there is an adequate value of K

to achieve fast computation as well as the target values. We
fix the default set of parameters as s � 0.6, h � 0.1, λ � 200,

and ε � ε(12h). Figure 23 depicts the effect of parameters.
We set the tolerance levels for relative consecutive errors to
tol � 1 e− 5 and for normalized energy ratios to tole � 1 e− 3,
respectively.

As depicted in Figures 23(a)–23(c), the details near the
boundaries of object are captured as the value of s is small.
Since s affects the scale of time step Δt, this numerical result
of the dynamics of phase field with small value of s fits well
with theoretical predictions. However, there is a drawback of
segmenting the wrong areas around the boundaries of object
if the noise is severe. -e effect of space step h is shown in
Figures 23(d)–23(f ). It affects the time step size like s;
however, it simultaneously affects the value of ϵ. Since we
analyzed theoretically the derivation of ϵ for h � 0.01, rel-
atively large value of h leads to a torn segmented image.
Figures 23(g)–23(i) illustrate the effect of λ. If λ is small, then
the segmented image has a smeared boundary, while the
image has a sharp interface with large value of λ. It implies
that the fidelity force is dominant if the value of λ is large;
therefore, unintended boundaries can be generated inside of
object. Note that boundaries in phase-field models are
represented by an average level of transition region.
-erefore, these have sharp-interface limits asymptotically

Table 2: IoU for different ϵ values (note that the values are rounded
up from the fifth decimal place).

ε(H) H � h H � 2h H � 4h H � 8h

IoU 0.9832 0.9430 0.8980 0.8980

(a) (b)

(c) (d)

Figure 18: Bounding boxes of both original and segmented images: (a) ε � ε(h), (b) ε � ε(2h), (c) ε � ε(4h), and (d) ε � ε(8h). Note that the
yellow boxes are original, and the green boxes are predicted.
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and are smoothly smeared. Figures 23(j)–23(l) describe the
effect of ϵ. -e small value of ϵmakes the transition width to
be narrow, resulting in jagged edges due to inconsistent

separation depending on the shape of boundary while larger
ϵ values make the boundaries too smooth, making them
more blunt than the actual shapes.

f 0
є (h)
є (2 h)

є (4 h)
є (8 h)

Figure 19: Dullness of edge of our proposed method with respect to ε(m), where m � h, 2h, 4h, 8h.
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Figure 20: (a) Initial image of brain MRI. (b) Locations of Ck for k � 0, 1, 2, 3. (c) Mesh plot of initial image. (d) Segmentation results.
Sectional image segmentation process of brain MRI: (e) ϕ � 0, (f ) ϕ � 1, (g) ϕ � 2, and (h) ϕ � 3.
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3.7. Comparison Test. We compare the segmented images
followed by using different schemes with respect to the
results followed by using our method in this section.
Figure 24 shows the segmented images using our method
and the methods listed in [27, 45]. For more detailed in-
formation on the methods, refer to [27, 45] and the ref-
erences therein.

We adopt the parameters ϵ � 0.01, Δt � 0.25h2, and μ �

100 for both quadratic regularization and superlinear
models. As depicted in Figure 24, the segmented results
using our proposed method do not differ significantly from
the results using existing methods.

Furthermore, we compare the performance of our
simple method to the implicit method used in [27] in terms

of the CPU time. We measured the elapsed time until both
the stopping criteria are satisfied. Two different time step
sizes are used: Δt � 0.5sε/π2 ≈ 0.0187 with a safety factor s �

0.3 and Δtref � 1e− 5. We fix ε � ε(2h) for both the schemes.
We use the following initial value ϕ0, ϕ0ij � Kf0,ij, where K �

3, 4 and target values as T0 � 0.01, T1 � 0.35, T2 � 0.66, T3 �

0.92 in the case ofK � 3 andT0 � 0.004,T1 � 0.23,T2 � 0.52,
T3 � 0.77, T4 � 0.94 in the case of K � 4. Here, K is the
number as described in equation (15). Furthermore, we resize
the size of image used in Figure 20 to 256 × 256 since the
reference method employs the multigrid method. Table 3
shows the result of the CPU time performance test. If we use
Δtref , then we have similar CPU times for both the methods.
However, if we use a larger time step, then the CPU time is

(a) (b) (c)

Figure 22: (a) Original image of vertebral MRI with low contrast near boundaries of object. (b) Perturbed image of vertebralMRI with ±30%
noise from the uniform distribution. (c) Segmented image using (b) with default parameters.
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Figure 21: Energy plot of the Mumford–Shah energy functional using our proposed method with local mean Ck.
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reduced by one order of magnitude. -is result implies
that we can achieve fast computation speed via the pro-
posed method with the moderate time step proposed in
Section 2.

4. Geometric Active Segmentation

For approximation of the geometric active segmentation for
multiphase image, the governing equation is given as
follows:

zϕ(x, t)

zt
] � g f0(x)( 􏼁 2εΔϕ(x, t) −

π
ε
sin(2πϕ(x, t))􏼒 􏼓

+ λg
2

f0(x)( 􏼁ϕ(x, t)
1
ε
sin2(πϕ(x, t)),

x ∈ Ω, 0< t≤T,

(26)

where f0(x) for x � (x, y) is a given image, g is an edge-
stopping function, ϕ(x, t) is an order parameter, ϵ is a
positive constant, and λ is a constant parameter. Ω, in
particular, is a domain bounded in Rd(d � 1, 2). Note that
we restrict ϕ(x, t)≥ 0 for convenience. In equation (26),
g(f0(x)) is the edge-stopping function and is defined as

g f0(x)( 􏼁 �
1

1 + ∇ Gσ ∗f0( 􏼁(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p, (27)

where (Gσ ∗f0)(x) is the convolution of the given image f0
and the Gaussian function

Gσ �
1

2πσ2
e

− x2+y2/2σ2
. (28)

Here, we will use p � 2.-e function g(f0(x)) is close to
1 in homogeneous regions and is close to 0, when the
gradient of the image is large. We present the operator
splitting numerical algorithm to solve the proposed model.
We split the original equation (26) into the following three
equations:

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 23: (a)–(c) verify the effect of s on the image segmentation. (d)–(f) verify the effect of h on the image segmentation. (g)–(i) verify the
effect of λ on the image segmentation. (j)–(l) verify the effect of ϵ on the image segmentation.
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zϕ(x, t)

zt
� λg

2
f0(x)( 􏼁ϕ(x, t)

1
ε
sin2(πϕ(x, t)),

zϕ(x, t)

zt
� −

π
ε

g f0(x)( 􏼁sin(2πϕ(x, t)),

zϕ(x, t)

zt
� 2εg f0(x)( 􏼁Δϕ(x, t).

(29)

First, we solve the above three equations by applying the
fully explicit method with a known value ϕn, that is,

ϕn+1/3
ij − ϕn

ij

Δt
� λg

2
ijϕ

n
ij

1
ε
sin2 πϕn

ij􏼐 􏼑,

ϕn+2/3
ij − ϕn+1/3

ij

Δt
� −

π
ε
gij sin 2πϕn+1/3

ij􏼐 􏼑,

ϕn+1
ij − ϕn+2/3

ij

Δt
� 2εgijΔhϕ

n+2/3
ij .

(30)

Also, the edge function g(f0) with k � 2 can be nu-
merically computed by

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 24: (a)–(d) Segmented images using our proposedmethod. (e)–(h) Segmented images using implicit method followed by Li and Kim
[27]. (i)–(l) Segmented images using quadratic regularization method followed by Kang and March [45]. (m)–(p) Segmented images using
the superlinear model followed by Kang and March [45].
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g f0( 􏼁ij �
1

1 + Gσ ∗f0( 􏼁
2
x,ij + Gσ ∗f0( 􏼁

2
y,ij

, (31)

where (Gσ ∗f0)x,ij � [(Gσ ∗f0)i+1,j − (Gσ ∗f0)i− 1,j]/(2h)

and (Gσ ∗f0)y,ij � [(Gσ ∗f0)i,j+1 − (Gσ ∗f0)i,j− 1]/(2h).
Here, (Gσ ∗f0)ij can be computed using a 3 × 3 smoothing
kernel as

Gσ ∗f0( 􏼁ij � 􏽘
i+1

m�i− 1
􏽘

j+1

n�j− 1

f0mn

2πσ2
e

− (i− m)2+(j− n)2[ ]h2/2σ2
. (32)

As mentioned above, the homogeneous Neumann
boundary condition is applied to the domain.

4.1. Synthetic Image 2. We apply our proposed method to a
synthetic image. -e synthetic image consists of three rect-
angles and one circle. -at is, we try to separate into four

phases. -e initial contour is set to the median of two con-
secutive numbers of 0, 1, 2, 3, and 4. -e size of the image is
256 × 256. -e parameters are chosen as ε � ε(3h), Δt � 5
e− 6, T � 10000Δt, and λ � 1 e2. -e results of the synthetic
image segmentation can be seen in Figure 25. Figure 25(a)
shows the initial contour-shaped rectangular. While
Figure 25(b) shows the result at t � 2000Δt, Figure 25(c) shows
the result at final time, T � 10000Δt. Figure 25(d) shows the
result of multiphase image segmentation in a mesh plot.

4.2. Segmentation with Real-World Images. In this section,
we applied the proposed method on the real-world images,
which are chosen from the CMU-Cornell iCoseg Dataset
[46], to demonstrate the robustness of the segmentation.
Figure 26 shows the comparison results. Figure 26(a) shows the
real-world images of CMU-Cornell iCoseg Dataset.
Figure 26(b) shows the results of the proposed method.
Figure 26(c) shows the ground truth of the color images. As can

Table 3: Elapsed times taken by the proposed method and the reference method [27].

Cases Proposed method (Δt) Proposed method (Δtref ) Reference (Δtref )

K � 3 0.315 s 2.297 s 2.843 s
K � 4 0.403 s 2.896 s 3.062 s
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Figure 25: Snapshots of contours are shown in (a), (b), and (c) at t � 0, t � 2000Δt, and t � 10000Δt, respectively. Mesh plot of (c) is shown
in (d).
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be seen from the results, the proposed method can preserve the
original shape of the object and shows good performance in
image segmentation. Comparing ground truth of the images, we
can clearly see that details have been preserved by the proposed
method.

4.3. Measurement of Quality of the Segmentation. As quan-
titative measures of the ability to restore damaged finger-
prints to the proposed algorithm, we use peak signal-to-
noise ratio (PSNR) and structural similarity index map
(SSIM), which are defined as follows:

(a)

(b)

(c)

Figure 26: Segmentation with the real-world images chosen from the CMU-Cornell iCoseg Dataset: (a) color images, (b) results of the
proposed method, and (c) ground truth of the color images.
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Figure 27: Time evolution of a quantitative measure of the segmentation of the proposed method.
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PSNR � 10log10
Imax2

􏽐
Nx

i�1 􏽐
Ny

j�1 Iij − Kij􏼐 􏼑
2
/ NxNy􏼐 􏼑

,

SSIM �
2μIμK + c1( 􏼁 2σIK + c2( 􏼁

μ2I + μ2K + c1􏼐 􏼑 σ2I + σ2K + c2􏼐 􏼑
,

(33)

where Iij � fij/(fmax − fmin), Kij � 0.5(ϕij + 1); μI, μK

denote the average of I and K, respectively; and σ2I , σ2K are
the variances of I and K, respectively. Here, σIK is the
covariance of I and K, c1 � (0.01L)2, and c2 � (0.03L)2 with
L � 1. High PSNR and SSIM values indicate a good seg-
mentation of the images.
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Figure 28: (a) Original image. (b) Edge-stopping function g. (c) Edge-stopping function g2.
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Figure 29: Snapshots of contours at (a) t � 0, (b) t � 500000Δt, and (c) t � 1400000Δt. Mesh plot of (c) is shown in (d).
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To verify the efficiency of the proposed method, we
compute the average PSNR of the proposed method with the
CMU-Cornell iCoseg Dataset, which is shown in Figure 27.
From the result, we can see that the curve is increasing,
which indicates that the proposed method works well for the
image segmentation.

4.4. X-Ray Example. We perform the multiphase image
segmentation using a knee X-ray as the original image. -e
size of given image is 128 × 128. -e original image and
scalar fields of function g and g2 are given in Figure 28.
Figure 29 shows the result of multiphase image segmenta-
tion in two ways: contour and mesh plot. Here, we use ε �

ε(6h) for the width of interfacial region, Δt � 1 e− 7,
T � 1400000Δt, and λ � 1 e2. Initial contours are set to
medians between each assigned discrete value of 0, 1, 2, and
3 so that we can get each initialized value (hence only one)
between each two successive integers, respectively.

-e results yield that the edge-stopping functions g and
g2 work well and one can easily extract each activated
contour only using multiple-well potential.

5. Conclusion

In this paper, we present a simple numerical solution
algorithm for the gradient flow for the Modica–Mortola
functional and numerically investigate its dynamics. We
figure out the property of the corresponding gradient flow
equation and analyze the effect of parameters. Especially,
we analyze the stability of scheme for time step size to our
method and examine the goodness of fit of linear rela-
tionship for various ϵ values. -e results indicate that
proper phase separations are achieved via our simple
explicit method. -e proposed numerical algorithm can
be applied to multiphase image segmentation problems.
We performed various numerical experiments with syn-
thetic and actual MRI images to show the characteristics of
our proposed method. We compared the proposed
method to several other existing methods and confirmed
that the segmented results are not quite different from
those of existing methods. In particular, the implicit
method using the multigrid method has a mesh size re-
striction in common, which is of a multiple of 2; however,
our method has the advantage of being free to the mesh
size. In addition, our proposed method produces good
results in less time even though it has a limitation of time
step size. Our method can segment objects of simple color
images as shown in Section 4.2. However, it is difficult to
achieve good results when segmenting complex color
images. -erefore, for future work, we plan to extend the
current model to applications, such as complex nature
image segmentation [47, 48] and video co-segmentation
[49].
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