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In this study, we present an accurate and efficient nonuniform finite difference method for the three-dimensional (3D) time-
fractional Black–Scholes (BS) equation. The operator splitting scheme is used to efficiently solve the 3D time-fractional BS
equation. We use a nonuniform grid for pricing 3D options. We compute the three-asset cash-or-nothing European call option
and investigate the effects of the fractional-order α in the time-fractional BS model. Numerical experiments demonstrate the
efficiency and fastness of the proposed scheme.

1. Introduction

We consider the following 3D version of the time-fractional
Black–Scholes (BS) model [1]:

∂αu
∂tα

x, y, z, tð Þ +LBSu x, y, z, tð Þ
= 0 for x, y, z, tð Þ ∈Ω × 0, T½ Þ,

ð1Þ

u x, y, z, Tð Þ = uT x, y, zð Þ, ð2Þ

where uðx, y, z, tÞ is the option value at time t and uTðx, y, zÞ
is the payoff function at time t = T ,
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Here, x, y, and z, and σx, σy, and σz are the prices and
volatilities of the underlying assets x, y, and z, respectively.
Additionally, ρxy, ρyz , and ρzx are the correlation values
between two subscript asset variables, and r is the interest
rate. Black and Scholes published in 1973 their paper which
described the BS model and option pricing formula [2]. This
has become an important fundamental topic for studying
financial engineering and financial theory. However, the
option pricing formula is based on the assumption that the
returns of asset prices follow a Gaussian distribution. This
means that the volatility of the underlying asset price is
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constant until the time to maturity of the option contracts.
This has become a weakness of this formula. Many
researchers and traders have found that rare events such
as drastic drops in financial markets are much more fre-
quent than would be anticipated based on Gaussian distri-
butions and that the distribution of the returns of asset
prices has a fat tail. Therefore, in real financial markets,
many researchers have begun to develop models that more
accurately reflect real market. The study of stable distribu-
tion has arisen naturally during the study of heavy-tailed
distributions and has been applied in finance to develop
models of extreme events that occur rarely. Because a sta-
ble probability distribution captures unpredictable events
well, it is now more suitable for financial markets than
the BS model. Time-fractional analysis is closely connected
to stable probability distributions [3]. Many researchers in
the financial field have attempted to generalize the BS
model in the fractional-order based on the fact that frac-
tional derivatives and integrals provide powerful tools for
explaining the memory and hereditary traits of different
substances. The use of the fractional BS model for the
high volatility of the stock market is one such generaliza-
tion. There are two types of fractional derivatives as
space-fractional [4, 5] and time-fractional derivatives [6, 7].
Regarding the time-fractional model, researchers have focused
on the analytical [8–10] and numerical [11–13] methods. The
finite difference method (FDM) is known as the most famous
evaluation tool in quantitative finance and is more stable than
Monte Carlo simulation (MCS). FDM has been applied in var-
ious studies [14, 15]. One researcher who has solved a two-
dimensional time-fractional BS model using an implicit
FDM proposed a fast biconjugate gradient stabilized scheme
to solve the linear system to speed up computation and save
storage space [16]. Option derivatives, European vanilla

options [17], and double barrier options [18] are analytically
priced under the time-fractional BS equation. In [19], the
authors developed a homotopy perturbation method to obtain
the analytical solutions for the fractional BS equation. Khajeh-
nasiri and Safavi presented the Boubaker operation matrix for
the time fractional derivative which approximates the solution
of the fractional BS [20]. The authors in [21] proposed a novel
operator splitting scheme for pricing American options using
the time-fractional BS equation. They provided the effects of
the fractional orders and the comparison of fractional equa-
tions through the numerical analysis. The paper also used
the FDM of the Crank–Nicolson scheme for pricing European
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Figure 1: Three-dimensional nonuniform mesh.
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Figure 2: Schematic illustration of the linear boundary condition.
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options based on the fractional BS equation [22]. They dem-
onstrated that the proposed scheme has unconditional stabil-
ity and convergent property through the numerical results.
In [23], the authors represented that the fractional partial dif-
ferential equation (PDE) has been successfully applied in
option pricing problems and it is more suitable for empirical
financial markets. They used a fast preconditioned iterative
method for pricing rainbow options based on a two-
dimensional fractional PDE. This method demonstrated the
accuracy and efficiency of numerical studies. The author in
[24] proposed the application of homotopy analysis method
(HAM) for pricing European call option based on time-
fractional BS equation. He demonstrated the accuracy, effec-
tiveness, and suitability of HAM through comparative tests.
The pricing equation based on a space-time fractional PDE
is presented in [25]. The author calculated European call and
put options based on space-time fractional BS equation using
the technique of Adomian decomposition method under the
FDM. In [26], option derivatives were numerically priced
using the θ-method for the time-fractional BS equation. These
schemes are both first-order and second-order accurate in
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Figure 3: Numerical results for cash-or-nothing option for different fractional-orders α = 0:4,0:6,0:8, and 1:0 with maturity times (a) T = 0:1
and (b) T = 2:5.
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Figure 4: Differences in the numerical solutions between α = 1:0 and α = 0:4,0:6,0:8, and 1.0 for maturity times (a) T = 0:1 and (b) T = 2:5.

0 0.5 1 1.5 2 2.5
40

60

80

100

0.02 0.04 0.06
50

52

54

56

2.46 2.48 2.5
46

47

48

49

𝛼 = 0.4
𝛼 = 0.6

𝛼 = 0.8
𝛼 = 1.0

T

𝛼

U
N
𝜏

10
1

Figure 5: Numerical solution at x = 100 for maturity 0 ≤ T ≤ 2:5
with α = 0:4,0:6,0:8, and 1.0.
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time and space, respectively. De Staelen and Hendy [27]
improved the spatial fourth-order scheme with a temporal
accuracy order of 2 − α and performed stability and conver-
gence analysis on their proposed scheme. Golbabai and Nikan
[28] numerically solved the time-fractional BS equation using
the moving least-squares method. The authors in [29] solved
the fractional three-dimensional (3D) chaotic process using
the Adams–Bashforth–Moulton (ABM) method. They imple-
mented an alternative numerical method based on the ABM
method to reduce the computational cost and demonstrated
that the proposed method is efficient and effective. She et al.
[30] modified an L1 scheme to solve the time-fractional BS
equation. The modified L1 time method is based on a change
of variable and then obtains optimal error estimates. In [31],
the authors removed the convection term with exponential
transformation, transforming the time-fractional BS model
into a time-fractional subdiffusion model, and then applied L
1 -2 formula for the Caputo time-fractional derivative. This
scheme applied a quadratic B-spline collocation scheme for
space. By using the compact quadratic spline collocation
(QSC) scheme, this scheme yields 3 − α-order and 4-order
convergence in time and space, respectively. The complexity
of calculations and CPU time are very important when apply-
ing numerical methods to solve high-dimensional problems.
Although numerical studies have been conducted on the
one-asset [26–28] and two-asset [16, 32] options, there is a
lack of research on higher-dimensional numerical methods
of more than two assets. Therefore, in this paper, we present
the 3D time-fractional BS equation for pricing three-asset
cash-or-nothing European call option. Let us consider the fol-
lowing change of the variable τ = T − t; then,

∂αu
∂tα

x, y, z, tð Þ = 1
Γ 1 − αð Þ

d
dt

ðT
t

u x, y, z, ξð Þ − u x, y, z, Tð Þ
ξ − tð Þα dξ

= −1
Γ 1 − αð Þ

d
dτ

ðT
T−τ

u x, y, z, ξð Þ − u x, y, z, Tð Þ
ξ − T + τð Þα dξ

= −1
Γ 1 − αð Þ

d
dτ

ðτ
0

u x, y, z, T − ηð Þ − u x, y, z, Tð Þ
τ − ηð Þα dη,

ð5Þ

where η = T − ξ is used. Let Uðx, y, z, τÞ = uðx, y, z, T − τÞ;
then, Equation (5) becomes

−1
Γ 1 − αð Þ

d
dτ

ðτ
0

U x, y, z, ηð Þ −U x, y, z, 0ð Þ
τ − ηð Þα dη

= −1
Γ 1 − αð Þ

d
dτ

ðτ
0

U x, y, z, ηð Þ
τ − ηð Þα dη −

d
dτ

ðτ
0

U x, y, z, 0ð Þ
τ − ηð Þα dη

� �
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d
dτ
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U x, y, z, ηð Þ
τ − ηð Þα dη −

U x, y, z, 0ð Þ
τα

� �
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Γ 1 − αð Þ

d
dτ

ðτ
0

∂U x, y, z, ηð Þ
∂η

τ − ηð Þ1−α
1 − α

dη

= −1
Γ 1 − αð Þ

ðτ
0

∂U x, y, z, ηð Þ
∂η

τ − ηð Þ−αdη,

ð6Þ

where we have used the integration by parts and the Leibniz
integral rule. Therefore, after the change of variables, Equation
(1) becomes

1
Γ 1 − αð Þ

ðτ
0
τ − ηð Þ−α ∂U x, y, z, ηð Þ

∂η
dη =LBSU x, y, z, τð Þ,

ð7Þ

with the initial condition Uðx, y, z, 0Þ = uTðx, y, zÞ for ðx, y, z
, τÞ ∈Ω × ð0, T�. When we solve the 3D time-fractional BS
equation, there are difficulties in terms of memory shortage
and computational cost because of the nonlocal property of
the temporal derivative, which is the left hand side term in
Equation (7). Therefore, we need efficient numerical schemes
for this type of time-fractional PDE. First, the numerical
scheme should be stable so that relatively large time steps
can be used; otherwise, the computational cost will increase
exponentially. Second, at each time step, the numerical solu-
tion scheme should be fast. To satisfy these conditions, in this
study, we present an accurate and efficient nonuniform finite
difference method for the 3D time-fractional BS model.

This paper is organized as follows. In Section 2, the pro-
posed numerical scheme is described. In Section 3, numeri-
cal results are presented. In Section 4, conclusions are
drawn. In the appendix, we provide the MATLAB code for
the numerical implementation for the three-asset cash-or-
nothing option.

2. Numerical Solutions

Let Ω = ð0, LxÞ × ð0, LyÞ × ð0, LzÞ be the computational

domain discretized in nonuniform intervals hxi = xi+1 − xi,
hyj = yj+1 − yj, and hzk = zk+1 − zk for i = 1,⋯,Nx − 1, j = 1,

H H H Hh h h

x2 x3 xi–1 xi+1 xi+2 xNx–2 xNx–1 xNx = Lxix1 = 0 K

K–0.5h K+0.5h

Figure 6: Mesh with a mesh size h for the convergence test.

Table 1: Three-asset cash-or-nothing option prices with varying h
and time step Δτ:

h = 8 h = 4 h = 2 h = 1
Δτ = 0:1/10 21.5301 22.6046 22.9076 22.9860

Δτ = 0:1/20 21.4572 22.5433 22.8548 22.9358

Δτ = 0:1/40 21.4689 22.5894 22.9176 23.0039

Δτ = 0:1/80 21.5070 22.6675 23.0157 23.1082

Δτ = 0:1/160 21.5490 22.7479 23.1167 23.2161
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⋯,Ny − 1, and k = 1,⋯,Nz − 1. Here, x1 = y1 = z1 = 0, xNx

= Lx, yNy
= Ly , and zNz

= Lz . Δτ = T/Nτ is the time step,

and Nτ is the number of time steps. Figure 1 illustrates an
example of a three-dimensional nonuniform mesh.

Let Un
ijk be the numerical approximation of Uðxi, yj, zk,

nΔτÞ and τp = pΔτ. The left hand side term in Equation
(7) can be approximated by the following numerical quadra-
ture formula:

1
Γ 1 − αð Þ

ðτn+1
0

τn+1 − ηð Þ−α
∂U xi, yj, zk, η

� �
∂η

dη

= 1
Γ 1 − αð Þ〠

n+1

p=1

ðτp
τp−1

τn+1 − ηð Þ−α
∂U xi, yj, zk, η

� �
∂η

dη

≈
1

Γ 2 − αð Þ〠
n+1

p=1
τn+1 − τp−1
� �1−α − τn+1 − τp

� �1−αh i

� U
p
ijk −Up−1

ijk

Δτ
= 1

Δτð ÞαΓ 2 − αð Þ〠
n+1

p=1
n + 2 − pð Þ1−α�

− n + 1 − pð Þ1−α	 Up
ijk −Up−1

ijk

� �
:

ð8Þ

Therefore, we propose the following discretization of
Equation (7) using Equation (8).

1
Δτð ÞαΓ 2 − αð Þ〠

n+1

p=1
n + 2 − pð Þ1−α�

− n + 1 − pð Þ1−α	 Up
ijk −Up−1

ijk

� �
= Lx

BSUð Þn+ 1/3ð Þ
ijk + L

y
BSU

� �n+ 2/3ð Þ
ijk

+ Lz
BSUð Þn+1ijk ,

ð9Þ

where

Lx
BSUð Þn+ 1/3ð Þ

ijk = σxxið Þ2
2 DxxU

n+ 1/3ð Þ
ijk + rxiDxU

n+ 1/3ð Þ
ijk

+ σxσyρxyxiyjDxyU
n
ijk + σyσzρyzyjzkDyzU

n
ijk

+ σzσxρzxzkxiDzxU
n
ijk −

1
3 rU

n+ 1/3ð Þ
ijk ,

L
y
BSU

� �n+ 2/3ð Þ
ijk

=
σyyj

� �2

2 DyyU
n+ 2/3ð Þ
ijk + ryjDyU

n+ 2/3ð Þ
ijk

−
1
3 rU

n+ 2/3ð Þ
ijk ,

Lz
BSUð Þn+1ijk = σzzkð Þ2

2 DzzU
n+1
ijk + rzkDzU

n+1
ijk −

1
3 rU

n+1
ijk :

ð10Þ

The numerical derivatives are defined as

DxUijk = −
hxi Ui−1,jk

hxi−1 hxi−1 + hxið Þ +
hxi − hxi−1ð ÞUijk

hxi−1h
x
i

+
hxi−1Ui+1,jk

hxi hxi−1 + hxið Þ ,

DxxUijk =
2Ui−1,jk

hxi−1 hxi−1 + hxið Þ −
2Uijk

hxi−1h
x
i
+

2Ui+1,jk
hxi hxi−1 + hxið Þ ,

DxyUijk =
Ui+1,j+1,k −Ui−1,j+1,k −Ui+1,j−1,k +Ui−1,j−1,k

hxi h
y
j + hxi−1h

y
j + hxi h

y
j−1 + hxi−1h

y
j−1

,

ð11Þ

and the other terms are similarly defined. Additional details
can be found in [33, 34]. We solve the discrete Equation (9)
using the operator splitting method. First, let

1
Δτð ÞαΓ 2 − αð Þ〠

n+1

p=1
n + 2 − pð Þ1−α − n + 1 − pð Þ1−α� 	

� Up
ijk −Up−1

ijk

� �
= Fn

ijk +
Un+1

ijk −Un
ijk

Δτð ÞαΓ 2 − αð Þ ,
ð12Þ

H H H H8h 8h4h 4h2h 2hh

x1 x2 x3 x4 xi xi+1xd3– xd2
– xd2+ xd3+

xNx–3 xNx–2 xNx–1 xNxxd2++1 xd3++1xd3
–+1 xd2

–+1 K

L0 K –0.5h K+0.5h

Figure 7: Piecewise-uniform mesh Ωx .

Table 2: Option prices with respect to α.

α 0.1 0.2 0.3 0.4 0.5

Price 20.6535 21.3818 22.0402 22.6076 23.0786

α 0.6 0.7 0.8 0.9 1.0

Price 23.4597 23.7645 24.0086 24.2053 24.3633
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where

Fn
ijk =

1
Δτð ÞαΓ 2 − αð Þ〠

n

p=1
n + 2 − pð Þ1−α�

− n + 1 − pð Þ1−α	 Up
ijk −Up−1

ijk

� �
:

ð13Þ

Let δτ = ðΔτÞαΓð2 − αÞ for simplicity of exposition; then
we sequentially solve the following equations [34]:

Un+ 1/3ð Þ
ijk −Un

ijk

δτ
= Lx

BSUð Þn+ 1/3ð Þ
ijk − Fn

ijk, ð14Þ

Un+ 2/3ð Þ
ijk −Un+ 1/3ð Þ

ijk

δτ
= L

y
BSU

� �n+ 2/3ð Þ
ijk

, ð15Þ

Un+1
ijk −Un+ 2/3ð Þ

ijk

δτ
= Lz

BSUð Þn+1ijk , ð16Þ

for 1 ≤ i ≤Nx, 1 ≤ j ≤Ny, and 1 ≤ k ≤Nz . Note that if we sum
up these three equations (14)–(16), then we obtain Equation
(9). For the detailed numerical solution, algorithm with
source program code of Equations (14)–(16) can be found
in [34]. We use the linear boundary condition, specifically,
for example, in the case of Equation (14) (see Figure 2):

Un+ 1/3ð Þ
1jk = 2Un+ 1/3ð Þ

2jk −Un+ 1/3ð Þ
3jk ,

Un+ 1/3ð Þ
Nx jk

= 2Un+ 1/3ð Þ
Nx−1,jk −Un+ 1/3ð Þ

Nx−2,jk,
 for j = 2,⋯,Ny − 1, k = 2,⋯,Nz − 1,

Un+ 1/3ð Þ
i1k = 2Un+ 1/3ð Þ

i2k −Un+ 1/3ð Þ
i3k ,

Un+ 1/3ð Þ
iNyk

= 2Un+ 1/3ð Þ
i,Ny−1,k −Un+ 1/3ð Þ

i,Ny−2,k,
 for i = 1,⋯,Nx, k = 2,⋯,Nz − 1,
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Figure 9: CPU time and price of three-asset cash-or-nothing option for nonuniform mesh with m1 = 1,m2 = 2, and m3 = 3,m4 = 1 and
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Figure 10: Nonuniform mesh in a comparison test.
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Un+ 1/3ð Þ
ij1 = 2Un+ 1/3ð Þ

ij2 −Un+ 1/3ð Þ
ij3 ,

Un+ 1/3ð Þ
ijNz

= 2Un+ 1/3ð Þ
ij,Nz−1 −Un+ 1/3ð Þ

ij,Nz−2 ,
 for i = 1,⋯,Nx, j = 1,⋯,Ny:

ð17Þ

3. Numerical Experiments

Numerical experiments were conducted using MATLAB
R2020b software on an Intel(R) Core(TM) i7-7700 CPU
@3.60GHz machine with 8GB of memory.

3.1. Effect of Fractional-Order α. In this subsection, we inves-
tigate the effects of the fractional-order α by considering
one-asset cash-or-nothing European call option. The payoff
function of cash-or-nothing European call option is defined
as

U0 xð Þ =
c, if C ≥ K ,
0, otherwise,

(
ð18Þ

where the strike price is K = 100 and the cash is C = 100. The
parameter values are r = 0:03, σ = 0:3, and Δτ = 1/365. We
use a uniformmesh h = 1with L = 200. Let αUn

i be the numer-
ical approximation of the solution, where i = 1,⋯,Nx, n = 0,
⋯,Nτ, and 0 < α ≤ 1. A linear boundary condition can be
applied. Figure 3 illustrates the numerical solutions of cash-
or-nothing European call option for different fractional-
orders α = 0:4,0:6,0:8, and 1:0. Figures 3(a) and 3(b) show
the numerical results with a relatively short maturity T = 0:1
and long maturity T = 2:5, respectively. We can observe the
different solution profiles according to α.

Figures 4(a) and 4(b) show the differences in the numer-
ical solutions between α = 1:0 and α = 0:4,0:6,0:8,1:0, i.e.,
1:0UNτ−αUNτ, for T = 0:1 and T = 2:5, respectively. The
lower the α for a short maturity option, the higher the price
of the option is in in the money (ITM) and undervalued in
out of the money (OTM), see Figure 4(a). However, for long
maturity option, the result is contrary to the result of short
maturity option (see Figure 4(b)).

Figure 5 shows numerical solutions at x = 100 with α =
0:4,0:6,0:8, and 1.0 as maturity increases, 0 ≤ T ≤ 2:5. For
short maturity times, the solutions with lower α values dif-
fuse rapidly, but as the maturity time increases, the solutions
with lower α values diffuse slowly. The results of the two
subaxes in Figure 5 can be interpreted similarly to Figure 4.

3.2. Three-Asset Options with Nonuniform Mesh

3.2.1. Cash-or-Nothing Option. We investigated three-asset
cash-or-nothing European call option with the following

payoff function:

U0 x, y, zð Þ =
c, if x ≥ K1, y ≥ K2, z ≥ K3,
0, otherwise,

(
ð19Þ

where the strike prices are K1 = K2 = K3 = 100 and the cash
is c = 100. The parameter values are T = 0:1, r = 0:03, L =
M =N = 200, σx = 0:3, σy = 0:3, σz = 0:3, and ρxy = 0:5, ρyz
= 0:5, and ρzx = 0:5. Figure 6 shows the mesh structure with
a mesh size h for the convergence test. Note that we straddle
the strike point such that the strike point is in the middle of
two neighboring points. If x2 < h, then we reset x2 = 0:5x3 so
that we can apply the linear boundary condition. Similarly, if
xNx

− xNx−1 < h, then we reset xNx−1 = 0:5ðxNx
+ xNx−2Þ.

Table 1 presents the three-asset cash-or-nothing Euro-
pean call option prices with various variable h and time step
Δτ. Here, we use α = 0:5. We can confirm that the option
prices obtained with each h value converge as the time
step Δτ becomes smaller. We adopt the reference solution
Uðxi, yj, zk, TÞ which uses h = 1 and time step Δτ = 0:1/80.

We consider the piecewise-uniform mesh Ωx =Ω1 ∪Ω2
∪Ω3 ∪Ω4 ∪Ω5 with

Ω1 = D−
1 ,D−

1 + h,D−
1 + 2h,⋯,D+

1f g,
Ω2 = D−

2 ,D−
2 + 2hð Þ,⋯,D−

1f g ∪ D+
1 ,D+

1 + 2hð Þ,⋯,D+
2f g,

Ω3 = D−
3 ,D−

3 + 4hð Þ,⋯,D−
2f g ∪ D+

2 ,D+
2 + 4hð Þ,⋯,D+

3f g,
Ω4 = D−

4 ,D−
4 + 8hð Þ,⋯,D−

3f g ∪ D+
3 ,D+

3 + 8hð Þ,⋯,D+
4f g,

Ω5 = 0,0:5D−
4 ,D−

4f g ∪ D+
4 ,D+

4 + 0:5 L −D+
4ð Þ, Lf g:

ð20Þ

Here, D±
i are the upper and lower bounds of each uni-

form mesh and are defined as follows:

D−
1 = K1 − 0:5 +m1ð Þh,D+

1 = K1 + 0:5 +m1ð Þh,
D−

2 =D−
1 − 2hð Þm2,D+

2 =D+
1 + 2hð Þm2,

D−
3 =D−

2 − 4hð Þm3,D+
3 =D+

2 + 4hð Þm3,
D−

4 =D−
3 − 8hð Þm4,D+

4 =D+
3 + 8hð Þm4,

ð21Þ

where 2 ×mi is the number of points in mesh Ωi for i = 1,
2, 3, 4. In particular, m4 = bD−

3 /ð8hÞc − 1 where bxc is the
maximum integer not greater than x. From now on, we
use m1 = 5, m2 = 5, and m3 = 4 in our numerical experi-
ments. Figure 7 shows the piecewise-uniform mesh structure
defined as Ωx for pricing the three-asset cash-or-nothing
option considered in this section. d±i , which is defined in
Figure 7, is an index of the point x with the D±

i values
defined above.

x1 = 0

m1

K1 K6 x0 xNx–1 xNx

m1 m2 m2...
...

...

D/2 D L

Figure 12: Nonuniform mesh for the three-asset ELS.

7Journal of Function Spaces



1 c l e a r ; c l c ;
2 L=200; x v o l=0. 3 ; y v o l=0. 3 ; z v o l=0. 3 ; r=0. 0 3 ; rho xy=0. 5 ; rho yz=0. 5 ;
3 rho zx=0. 5 ;K1=100;K2=100;K3=100;T=0.1 ; dt=0.1 /80;Nt=c e i l (T/dt ) ;
4 h=1;m1=5;m2=5;m3=4; xr=K1+0. 5 ∗h : h :K1+0. 5 ∗h+m1;
5 xr=[ xr (1:end -1) xr(end): 2 ∗ h : xr(end)+2∗h∗m2 ] ;
6 xr=[ xr (1:end -1) xr(end): 4 ∗ h : xr(end)+4∗h∗m3 ] ;
7 m4=f l o o r ( (L- xr(end)) /8) ;
8 xr=[ xr (1:end -1) xr(end): 8 ∗ h : xr(end)+8∗h∗m4 ] ;
9 i f xr(end)<L
10 xr(end)=(xr ( end -1 )+L) / 2 ; xr ( end+1)=L;
11 end
12 x=[ f l i p l r (L- xr ) xr ] ; y=x ; z=x ;
13 Nx=length ( x ) ;Ny=length ( y ) ;Nz=length ( z ) ; hx=d i f f ( x ) ; hy=d i f f ( y ) ;
14 hz=d i f f ( z ) ;
15 U=z e r o s (Nx,Ny,Nz ,Nt+1) ;U( x>=K1, y>=K2, z>=K3, 1 ) =100;V=U;
16 alp=0. 5 ; s=1. 0 /( dtˆ alp ∗gamma(2 - alp ) ) ;
17 ax=z e r o s (1 ,Nx-2 ) ; dx=ax ; cx=ax ;
18 f o r i =2:Nx-1
19 ax ( i -1 )=r ∗x ( i ) ∗hx( i ) /(hx( i -1 ) ∗(hx ( i -1 )+hx ( i ) ) ) . . .
20 - ( x v o l ∗x ( i ) ) ˆ2/(hx ( i -1 ) ∗( hx( i -1 )+hx ( i ) ) ) ;
21 dx ( i -1 )=s+( x v o l ∗x ( i ) ) ˆ2/(hx( i -1 ) ∗hx ( i ) ) . . .
22 - r ∗x ( i ) ∗( hx( i ) -hx( i -1 ) ) /(hx ( i -1 ) ∗hx( i ) )+r / 3 ;
23 cx ( i -1 )=- r ∗x ( i ) ∗hx ( i -1 ) /(hx ( i ) ∗(hx ( i -1 )+hx( i ) ) ) . . .
24 - ( x v o l ∗x ( i ) ) ˆ2/(hx ( i ) ∗(hx ( i -1 )+hx ( i ) ) ) ;
25 end
26 dx ( 1 )=dx ( 1 )++2∗ax ( 1 ) ; cx ( 1 )=cx ( 1 ) - ax ( 1 ) ;
27 ax (Nx-2 )=ax (Nx-2 ) - cx (Nx-2 ) ; dx (Nx-2 )=dx(Nx-2 )++2∗cx (Nx-2 ) ;
28 bx=ax ; by=ax ; bz=ax ;
29 f o r n=1:Nt
30 F=z e r o s (Nx-2 ,Ny-2 ,Nz -2 ) ;
31 i f n>1
32 f o r j =1:n -1
33 F=F+((n - j+1) ˆ(1 - alp ) - (n - j ) ˆ(1 - alp ) ) ∗(U( 2 :Nx-1 , 2 :Ny-1 , 2 :Nz -1 , j+1) . . .
34 -U( 2 :Nx-1 , 2 :Ny-1 , 2 :Nz -1 , j ) ) ;
35 end
36 end
37 V( : , : , : , n)=U( : , : , : , n) ;
38 f o r j =2:Ny-1
39 f o r k=2:Nz -1
40 f o r i =2:Nx-1
41 bx ( i -1 )=s ∗V( i , j , k , n) - s ∗F( i -1 , j -1 , k -1 ) . . .
42 +( rho xy ∗ x v o l ∗ y v o l ∗x ( i ) ∗y ( j ) ∗(V( i +1, j +1,k , n)+V( i -1 , j -1 , k , n) . . .
43 -V( i -1 , j+1,k , n) -V( i +1, j -1 , k , n) ) / ( ( hx ( i ) ∗hy( j ) )+(hx ( i -1 ) ∗hy ( j ) ) . . .
44 +(hx( i ) ∗hy( j -1 ) )+(hx ( i -1 ) ∗hy( j -1 ) ) ) . . .
45 +rho yz ∗ y v o l ∗ z v o l ∗y ( j ) ∗z ( k ) ∗(V( i , j+1,k+1,n)+V( i , j -1 , k -1 , n) . . .
46 -V( i , j -1 , k+1,n) -V( i , j +1,k -1 , n) ) / ( ( hy ( j ) ∗hz ( k ) )+(hy ( j -1 ) ∗hz ( k ) ) . . .
47 +(hy( j ) ∗hz ( k -1 ) )+(hy ( j -1 ) ∗hz ( k -1 ) ) ) . . .
48 +rho zx ∗ x v o l ∗ z v o l ∗x ( i ) ∗z ( k ) ∗(V( i +1, j , k+1,n)+V( i -1 , j , k -1 , n) . . .
49 -V( i -1 , j , k+1,n) -V( i +1, j , k -1 , n) ) / ( ( hx ( i ) ∗hz ( k ) )+(hx ( i -1 ) ∗hz ( k ) ) . . .
50 +(hx( i ) ∗hz ( k -1 ) )+(hx ( i -1 ) ∗hz ( k -1 ) ) ) ) ;
51 end
52 U( 2 :Nx-1 , j , k , n+1)=thomas3 ( ax , dx , cx , bx ) ;
53 end
54 end
55 U( 1 , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗U( 2 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
56 -U( 3 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;
57 U( : , 1 , 2 :Nz -1 , n+1)=2∗U( : , 2 , 2 :Nz -1 , n+1) -U( : , 3 , 2 :Nz -1 , n+1) ;
58 U( : , : , 1 , n+1)=2∗U( : , : , 2 , n+1) -U( : , : , 3 , n+1) ;
59 U(Nx , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗U(Nx-1 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
60 -U(Nx-2 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;

Listing 1: Continued.
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Given the same option, Table 2 lists the option prices
with respect to α. Here, h = 1 and Δτ = 0:1/80 are taken
and the other parameters are the same as in the test above.
The code for the numerical implementation for this test is
provided in the appendix.

Figure 8 shows the option prices according to the value of
α. For T = 0:1, the option prices obtained tend to be underva-
lued as α decreases, as is the case with one underlying asset.

Figure 9 shows the CPU time and prices of three-asset
cash-or-nothing option. In Figure 9, the dotted curve is the
reference price of using the uniform mesh with mesh size
h = 1. We use the maturity time T = 0:1, and the other
parameters are the same as in the tests previously. In
Figure 9, the solid and dashed curves are the CPU time
and prices, respectively, with respect to uniform mesh with
mesh size h = 2, 3,⋯, 8. Here, the uniform mesh is

61 U( : ,Ny , 2 :Nz -1 , n+1)=2∗U( : ,Ny-1 , 2 :Nz -1 , n+1) -U( : ,Ny-2 , 2 :Nz -1 , n+1) ;
62 U( : , : ,Nz , n+1)=2∗U( : , : ,Nz -1 , n+1) -U( : , : ,Nz -2 , n+1) ;
63 f o r k=2:Nz -1
64 f o r i =2:Nx-1
65 f o r j =2:Ny-1
66 by ( j -1 )=s ∗U( i , j , k , n+1) ;
67 end
68 V( i , 2 :Ny-1 , k , n+1)=thomas3 ( ax , dx , cx , by ) ;
69 end
70 end
71 V( 1 , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗V( 2 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
72 -V( 3 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;
73 V( : , 1 , 2 :Nz -1 , n+1)=2∗V( : , 2 , 2 :Nz -1 , n+1) -V( : , 3 , 2 :Nz -1 , n+1) ;
74 V( : , : , 1 , n+1)=2∗V( : , : , 2 , n+1) -V( : , : , 3 , n+1) ;
75 V(Nx , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗V(Nx-1 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
76 -V(Nx-2 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;
77 V( : ,Ny , 2 :Nz -1 , n+1)=2∗V( : ,Ny-1 , 2 :Nz -1 , n+1) -V( : ,Ny-2 , 2 :Nz -1 , n+1) ;
78 V( : , : ,Nz , n+1)=2∗V( : , : ,Nz -1 , n+1) -V( : , : ,Nz -2 , n+1) ;
79 f o r j =2:Ny-1
80 f o r i =2:Nx-1
81 f o r k=2:Nz -1
82 bz (k -1 )=s ∗V( i , j , k , n+1) ;
83 end
84 U( i , j , 2 :Nz -1 , n+1)=thomas3 ( ax , dx , cx , bz ) ;
85 end
86 end
87 U( 1 , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗U( 2 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
88 -U( 3 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;
89 U( : , 1 , 2 :Nz -1 , n+1)=2∗U( : , 2 , 2 :Nz -1 , n+1) -U( : , 3 , 2 :Nz -1 , n+1) ;
90 U( : , : , 1 , n+1)=2∗U( : , : , 2 , n+1) -U( : , : , 3 , n+1) ;
91 U(Nx , 2 :Ny-1 , 2 :Nz -1 , n+1)=2∗U(Nx-1 , 2 :Ny-1 , 2 :Nz -1 , n+1) . . .
92 -U(Nx-2 , 2 :Ny-1 , 2 :Nz -1 , n+1) ;
93 U( : ,Ny , 2 :Nz -1 , n+1)=2∗U( : ,Ny-1 , 2 :Nz -1 , n+1) -U( : ,Ny-2 , 2 :Nz -1 , n+1) ;
94 U( : , : ,Nz , n+1)=2∗U( : , : ,Nz -1 , n+1) -U( : , : ,Nz -2 , n+1) ;
95 end
96 f i g u r e ( 1 ) ; c l f ; colormap ( [ 0 0 0 ] ) ;
97 mesh ( x , y ,U( : , : , min ( f i n d ( z>100) )++1,n+1) ) ;
98 Pr i c e=i n t e rp 3 (y , x , z ,U( : , : , : , Nt+1) ,K1,K2,K3)
99 f u n c t i on x=thomas3 ( alpha , beta ,gamma, f )
100 n=length ( f ) ;
101 f o r i =2:n
102 mult=alpha ( i ) / be ta ( i -1 ) ;
103 be ta ( i )=be ta ( i ) -mult∗gamma( i -1 ) ;
104 f ( i )=f ( i ) -mult∗ f ( i -1 ) ;
105 end
106 x (n)=f (n) / be ta (n) ;
107 f o r i=n -1 : -1 : 1
108 x ( i )=( f ( i ) -gamma( i ) ∗x ( i+1) ) / be ta ( i ) ;
109 end
110 end

Listing 1: MATLAB code for cash-or-nothing.
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constructed as shown in Figure 6. Figure 10 was constructed
in a similar manner to Figure 7. Here, we add a piecewise-
uniform mesh with a step size 16h. Likewise, we define D±

5
=D±

4 ± ð16hÞm5, and m5 = bD−
4 /ð16hÞc − 1. We compute

the CPU time and price of using the nonuniform mesh with
m1 = 1,m2 = 2,m3 = 3, and m4 = 1, which is constructed in
Figure 10. We can confirm that the difference between the
reference and numerical solutions obtained with each mesh
is greater when using the uniform mesh, despite using the
number of same grid points when the uniform mesh size is
h = 8. Additionally, the elapsed time is similar to using the
uniform mesh. In other words, nonuniform meshes are fas-
ter and more accurate compared to uniform mesh.

3.2.2. Equity-Linked Security. We consider a three-asset
equity-linked security (ELS) option that contains knock-in-
barrier (D). The complex profit structure of ELS complicates
pricing. To briefly explain return of ELS on one asset, if the
underlying asset price is higher than the predetermined
exercise prices (K1, K2,⋯, K6) on the early exercise date
before maturity, the contract provides the specific returns
(c1, c2,⋯, c6) and is terminated. Otherwise, the contract will
continue on the next early exercise date. If the contract is not
terminated by maturity, it depends on whether the underly-
ing asset touched the knock-in-barrier. If the underlying
asset did not touch the knock-in-barrier, it provides dummy
return (d) and otherwise suffers losses. The payoff structure
of ELS is illustrated in Figure 11.

For α = 0:8, we performed the comparison test with the
uniform mesh under the same conditions considered in
Section 3.2 [35] on the nonuniform mesh. For additional
information on numerical testing, please refer to the thesis
[35]. The nonuniform mesh was constructed using the
piecewise-uniform mesh, as shown in Figure 12, with fixed
points (0,D/2,D, K1, K2,⋯, K6, x0, L) and m1 = 5,m2 = 20,
where x0 is the current underlying price.

When using a nonuniform grid as shown in Figure 12,
the ELS price is 8767 and the elapsed time is 15.3783. When
comparing this result to the result obtained using the uni-
form mesh (h = 2), the relative error of the price is 0.0205
and the elapsed time is 470 times shorter.

4. Conclusions

In this study, we presented an efficient and accurate non-
uniform FDM for the 3D time-fractional BS equation. In
numerical experiments, we investigated the effects of the
fractional-order α by considering one-asset cash-or-nothing
European call option. The lower the value of α, and the shorter
the maturity of the option, and the larger the difference in
option prices between the α = 1:0 and α < 1:0 except for at
the money (ATM). Because of the complexity of calcula-
tions and CPU time for computation on high-dimensional
options takes longer, there is a lack of research on higher-
dimensional numerical methods with more than three assets
in the time-fractional BS equation. We used the nonuniform
implicit FDM with operator splitting scheme for pricing
three-asset cash-or-nothing options and ELS. Here, we use
the operator splitting method to solve the discrete system of

equations and linear boundary conditions efficiently. Based
on the use of the nonuniform implicit FDM, the numerical
solution computation could be fast, and the numerical
scheme could be stable even if relatively large time steps are
used. Our results suggest that the proposed method is faster
and more accurate than the uniformmesh. We demonstrated
the efficiency and fastness of the proposed method through
numerical experiments. Although there have been theoretical
analyses (stability analysis, truncation error, and conver-
gence analysis) of the one-dimensional time-fractional BS
equation [1, 27], there is a lack of research on multidimen-
sional theoretical analysis of the time-fractional BS equation.
Therefore, for future work, we will perform the theoretical
analysis of the multidimensional time-fractional BS equation
and compute various financial assets based on the multidi-
mensional time-fractional BS equation using the proposed
method and continue to improve our method.

Appendix

The following Listing 1 is a MATLAB code for pricing the
three-asset cash-or-nothing European call option.
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