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Abstract. We present a simple and fast explicit hybrid numerical scheme for the
motion by mean curvature on curved surfaces in three-dimensional (3D) space. We

numerically solve the Allen-Cahn (AC) and conservative Allen-Cahn (CAC) equa-

tions on a triangular surface mesh. We use the operator splitting method and an
explicit hybrid numerical method. For the AC equation, we solve the diffusion term

using a discrete Laplace-Beltrami operator on the triangular surface mesh and solve
the reaction term using the closed-form solution, which is obtained using the sepa-

ration of variables. Next, for the CAC equation, we additionally solve the time-space

dependent Lagrange multiplier using an explicit scheme. Our numerical scheme
is computationally fast and efficient because we use an explicit hybrid numerical

scheme. We perform various numerical experiments to demonstrate the robustness

and efficiency of the proposed scheme.
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1. Introduction

The Allen-Cahn (AC) equation was first proposed by Allen and Cahn in 1979 [1] as

a mathematical model for antiphase domain coarsening in Fe-Al alloys
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∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆φ(x, t), x ∈ Ω, t > 0, (1.1)

where F (φ) = 0.25(φ2 − 1)2 and ǫ is the gradient energy coefficient. Here, φ is the

difference between the concentrations, i.e., φ = cA − cB , where cA and cB are the

mass fractions of components A and B in binary alloys. Therefore, the range of φ
is −1 ≤ φ ≤ 1. It is well known that the AC equation has a property that does not

conserve the total mass. The F (φ) is Ginzburg-Landau double-well potential energy

function with minimum values at −1 and 1 [12].

For the motion by mean curvature with conservation of area, the conservative AC

(CAC) equation [4,16] was proposed using the Lagrange multiplier, which depends on

not only time but also space, and is given by

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆φ(x, t) + β(t)

√

F (φ(x, t)), x ∈ Ω, t > 0, (1.2)

where Ω ⊂ R
d is a domain, φ is the order parameter,

√

F (φ) = 0.5|φ2−1|, ǫ is a constant

related to the interfacial thickness, and β(t) is given by

β(t) =

∫

Ω
F ′(φ(x, t))dx

ǫ2
√

∫

Ω
F (φ(x, t))dx

. (1.3)

It is well known that the non-standard time-space dependent Lagrange multiplier

β(t)
√

F (φ(x, t)) has a better area-preserving property than the standard time-only de-

pendent Lagrange multiplier. Further explanation of its derivation can be found in [4].

In this study, we present a simple explicit hybrid numerical scheme for the AC

type equations on curved surfaces in 3D space. First, let us consider the surface AC

equation [31]

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆Sφ(x, t), x ∈ S, t > 0, (1.4)

where S is a surface in R
3. Here, ∆S = ∇S · ∇S is the Laplace-Beltrami operator

on S and ∇S is the surface gradient. One of the definitions of surface gradient uses

a smooth extension [21]. Let N be a narrow embedding band around S, i.e., S ⊂ N .

Let φE : N → R be a smooth extension of φ : S → R. Then, the surface gradient is

defined as

∇Sφ := ∇φE − ∇ψ
|∇ψ|

( ∇ψ
|∇ψ|

)T

∇φE, (1.5)

where ψ is a function on N such that S = {x ∈ N |ψ(x) = 0}. Here, the gradient

is a column vector. More details about the Laplace-Beltrami operator can be found

in [21, 31]. The surface AC equation is a gradient flow in L2(S) for the total energy

functional

E(φ) =
∫

S

(

F (φ)

ǫ2
+

|∇Sφ|2
2

)

dA. (1.6)
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It can be shown that E decreases over time, i.e.,

dE(φ)
dt

= −
∫

S

φ2t dA ≤ 0. (1.7)

The proofs of strong and global well-posedness related to the surface AC equation

are presented in [7] and [17], respectively. The surface AC equation physically models

the phase separation on surfaces [20]. In [31], the authors present the stabilized semi-

implicit finite element method for the surface AC equation. Similarly, the surface CAC

equation is defined as

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆Sφ(x, t) + β(t)

√

F (φ(x, t)), x ∈ S, t > 0, (1.8)

where β(t) is given by

β(t) =

∫

S

F ′(φ(x, t))dA

ǫ2
√

∫

S

F (φ(x, t))dA

. (1.9)

There are many applications for solving partial differential equations on surfaces

such as texture synthesis on arbitrary surfaces [29], phase separation patterns for di-

block copolymers on spherical surfaces [28], denoising on the curved surfaces [2],

cardiac electrophysiology in medicine [25], cell division [9], and pattern formation on

animal skin [14]. Because it is not always possible to use analytic solutions on the

surfaces, numerical analysis is required.

Various numerical methods have been introduced to approximate solutions of par-

tial differential equations on surfaces. Macdonald and Ruuth presented the implicit

closest point method to solve partial differential equations on surfaces [19]. Merriman

and Ruuth [22] introduced a computational technique for the curvature-driven motion

of a curve constrained to move on a given surface. Mohammadi et al. [23] used the

radial basis function method to numerically solve the AC equation on surfaces. Further-

more, there exist many studies by using spectral element method [27], finite element

method [5,8,11,31,32], finite difference method [13,18], finite volume method [28],

closest point method [6,15,19], radial basis function [23], and linearly stabilized split-

ting scheme [30]. In [34], the authors present a new modeling of phase fields on

deforming shell surfaces. The phase changes are modeled by the Cahn-Hilliard equa-

tion, coupled with nonlinear thin shell theory. Isogeometric finite elements were used,

and a monolithic and fully implicit time-stepping method was used to solve the coupled

system simultaneously.

We solve the AC and CAC equations on the triangular surfaces mesh using the ex-

plicit hybrid numerical method that was developed by Jeong and Kim [13] on the full

computational domain (general Cartesian plane) and Choi et al. [6] on the narrow band

domain. The contents of the paper are organized as follows. In Section 2, we present

the numerical solution. In Section 3, we present numerical experiments. Finally, the

conclusions are presented in Section 4.
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2. Numerical solution

We use Xu’s discretization of the Laplace-Beltrami operator (LBO) over a surface

[33]. Let M be a triangular discretization of an arbitrary surface S, {xi}Ni=1 be the

vertex set of M with N points, and N1(i) = {i1, i2, . . . , in} be the set of vertex indices

of one-ring neighbors of xi with i1 = in (see Fig. 1(b)). For simplicity, let φi = φ(xi)
and Tj be a triangle with vertices xi, xj , and xj+, shown in Fig. 1(c).

The gradient on triangle Tj can be approximated by

∇Tj
φ =

1

4A2
j

{

φi[γ(xi, xj , xj+) + γ(xi, xj+, xj)]

+ φj [γ(xj, xi, xj+) + γ(xj , xj+, xi)]

+ φj+[γ(xj+, xj , xi) + γ(xj+, xi, xj)]
}

, (2.1)

where Aj is the area of Tj and

γ(xi,xj ,xk) = 〈xi − xj ,xj − xk〉 (xk − xi).

Here, < a,b > is the inner product of two vectors. The discrete gradient at vertex xi is

defined as a weighted average of the gradients on the neighboring triangles of xi

∇Mφi =
1

A(xi)

∑

j∈N1(i)

Aj∇Tj
φ, (2.2)

where the area is given as A(xi) =
∑

j∈N1(i)
Aj , shown in Fig. 1(b). Then, the nu-

merical approximation at vertex xi for the Laplacian over surface S can be defined

as

∆Sφi ≈ ∆Mφi =
1

2A(xi)

∑

j∈N1(i)

n
T
j [∇Mφj +∇Mφj+] ‖xj − xj+‖, (2.3)

where nj is the unit outward normal to edge xjxj+. Since nj is perpendicular to xjxj+,

< nj, xjxj+ >= 0. Here, two vectors, nj and xjxj+, can be expressed as combinations

(a)

xi6

xi3

xi4

xi2

xi5

xi1 = xin

xi

A(xi)

(b)

xj+

xj

xi

Tj

(c)

xi

xj
nj

xj+

(d)

Figure 1: Schematic of (a) triangular surface, (b) set of vertices of one-ring neighbors xi and area A(xi),
(c) triangle Tj with verticesxi, xj , xj+ , and (d) unit normal vector nj .
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of u and v. Thus, < su+ (1− s)v, u− v >= 0. It is given as

nj =
su+ (1 − s)v

‖su+ (1 − s)v‖ ,

where s =< v, v − u > /‖u − v‖2, u = xj − xi, and v = xj+ − xi, see Fig. 1(d).

Let φni = φ(xi, n∆t), where ∆t is the time step. Then, the proposed numerical

method for the surface AC equation is as follows: First, we solve the diffusion term

using the explicit Euler method

φ∗i − φni
∆t

= ∆Mφ
n
i , 1 ≤ i ≤ N (2.4)

and then solve the reaction term using the closed-form solution obtained from separa-

tion of variables

φn+1,∗
i =

φ∗i
√

[1− (φ∗i )
2]e−2∆t/ǫ2 + (φ∗i )

2
for 1 ≤ i ≤ N. (2.5)

Let φn+1
i = φn+1,∗

i be the numerical solution at time t = (n + 1)∆t for the surface AC

equation. Refer to [6, 13] for more details about the explicit hybrid numerical scheme

for the AC equation.

Next, for the numerical solution for the surface CAC equation, we take one more

following step in addition to Eq. (2.5):

φn+1
i = φn+1,∗

i + β

√

F
(

φn+1,∗
i

)

, (2.6)

where β is defined so as to satisfy the total mass conservation constraint, i.e.,

N
∑

i=1

φn+1
i

A(xi)

3
=

N
∑

i=1

φ0i
A(xi)

3
. (2.7)

Therefore, β is defined as

β =

N
∑

i=1

(

φ0i − φn+1,∗
i

)

A(xi)

N
∑

i=1

√

F
(

φn+1,∗
i

)

A(xi)

. (2.8)

We also note that we use an operator splitting method with an explicit time-stepping

scheme, although there are many monolithic and implicit methods for the AC-type

equations that have been considered in the literature. As demonstrated in [13], an

explicit scheme for the AC-type equations is better than an implicit scheme when we

consider the accuracy of the numerical solutions under an equivalent computational

cost.
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3. Numerical experiments

In this section, we perform various numerical experiments to demonstrate the effi-

ciency and accuracy of the proposed scheme. For the triangular mesh, we use DistMesh;

it is a MATLAB algorithm of the mesh generator [26] which was used in various stud-

ies [3, 24]. Let have be the average length of sides of triangles. First, we compare the

numerical Laplacian with spherical and toroidal Laplacian.

3.1. Comparison between numerical and spherical Laplacians

We consider a unit sphere S consisting of points (x, y, z) in three-dimensional Carte-

sian coordinates R3: x = sinψ cos θ, y = sinψ sin θ, z = cosψ. Here, θ is the azimuthal

angle with 0 ≤ θ < 2π and ψ is the polar angle with 0 ≤ ψ ≤ π. Using the DistMesh al-

gorithm, we make the following discrete unit sphere with a triangular mesh, as shown

in Fig. 2.

Let us consider a spherical Laplacian

∆Sφ =
1

sin2 ψ

∂2φ

∂θ2
+

1

sinψ

∂

∂ψ

(

sinψ
∂φ

∂ψ

)

. (3.1)

Then, we obtain the following spherical Laplacian for φ = z and z2, respectively:

∆Sz = −2z, (3.2)

∆Sz
2 = 2− 6z2. (3.3)

Fig. 3 presents the results from the numerical Laplacian (2.3) and spherical Lapla-

cian (3.2), (3.3) for (a) φ = z and (b) φ = z2. It is observed that the numerical results

become close to the theoretical values with the reduction in mesh size have.

(a) (b)

Figure 2: Discrete unit sphere for (a) have = 0.5163 and (b) have = 0.1055.
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(b)

Figure 3: Comparison between the spherical Laplacian ∆S and the numerical Laplacian ∆M for each have.
Here, (a) φ = z and (b) φ = z2 are used.

We define the discrete L2-norm as

‖φ‖2 =











N
∑

i=1
φ2iA(xi)

N
∑

i=1
A(xi)











1

2

(3.4)

and a relative error as

Ehave
=

‖∆Sφ−∆Mφ‖2
‖∆Sφ‖2

. (3.5)

The rate of convergence is defined as

log
(

Ehave

Eh′ave

)

log
(

have

h′
ave

) , (3.6)

where h′ave is a finer grid size than have. Table 1 lists the L2-norm error and the rate

of convergence. The result shows that the L2-norm errors decrease as have reduces.

Moreover, the convergence rates are between 1 and 2.

Table 1: L2-norm errors and convergence rates with respect to have.

Case (have) 0.4488 Rate 0.3890 Rate 0.2719 Rate 0.1935

φ = z 0.0858 1.41 0.0702 1.82 0.0366 1.93 0.0190

φ = z2 0.2524 1.29 0.2099 1.84 0.1087 1.98 0.0555

3.2. Comparison between the numerical and toroidal Laplacians

Let S be a torus surface with R, the distance from the center of the tube to the

center of the torus, and r, the radius of the tube, 0 < r < R. We define the angle
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(a) (b)

Figure 4: Discrete torus for (a) have = 0.6164 and (b) have = 0.3838.

0 ≤ θ, ψ ≤ 2π. The surface of torus S consists of points (x, y, z) in three-dimensional

Cartesian coordinates R3, where

x = (R− r cosψ) cos θ, y = (R− r cosψ) sin θ, z = r sinψ.

We study the motion by mean curvature on a surface of ring torus S. In Fig 4, we set

the radii at R = 3 and r = 1.

Now, we consider the following toroidal Laplacian [10]:

∆Sφ =
1

(R− r cosψ)2
∂2φ

∂θ2
+

1

r2 (R− r cosψ)

∂

∂ψ

(

(R− r cosψ)
∂φ

∂ψ

)

. (3.7)

Then, we obtain the following toroidal Laplacians for φ = z, and z2, respectively:

∆Sz =
z

r2ρ
(R− 2ρ) , (3.8)

∆Sz
2 =

2

r2ρ

(

r2ρ+ (R− 3ρ)z2
)

, (3.9)

where ρ =
√

x2 + y2. For φ = z and φ = z2, we compare the numerical Laplacian (2.3)

and toroidal Laplacian (3.8), (3.9). Fig. 5 shows that the smaller the have taken, the

more accurate are the numerical results.

Table 2 represents the L2-norm errors and convergence rates using Eqs. (3.5) and

(3.6). The L2-norm errors decrease as the have becomes smaller, and the convergence

rates are between 1 and 2.

Table 2: l2 norm errors and the convergence rates with φ = z and z2.

Case (have) 0.5547 Rate 0.4502 Rate 0.3658 Rate 0.2779

φ = z 0.1342 1.87 0.0908 1.73 0.0635 1.76 0.0391

φ = z2 0.3154 1.74 0.2193 1.80 0.1508 1.81 0.0918
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Figure 5: Comparison between the toroidal Laplacian ∆S and the numerical Laplacian ∆M for each have:
(a) φ = z and (b) φ = z2. Here, R = 3 and r = 1 are used.

3.3. Allen-Cahn equation

We consider the motion by mean curvature on a sphere. The analytic solution [6]

is obtained using the concepts of curvature and tangential component

r(t) =
√

R2 − (R2 − r20) e
2t/R2 , (3.10)

where R = 1 is the radius of sphere, r(t) is the radius of the spherical cap at time t, and

r0 is the initial radius of the spherical cap. In Fig. 6, the initial condition is defined as

φ = tanh

√

x2 + y2 − z√
2ǫ

(3.11)

and we set the initial radius r0 = 0.7064, time step ∆t = 1.0e-5, and ǫ = 0.3. Fig. 6

presents the temporal evolution of surface view for time (a) t = 0, (b) t = 10000∆t,
and (c) t = 20000∆t. The black solid line represents the circle that is set with the zero

values. As time goes on, the circle radius indicated by the black line shrinks according

to the motion by mean curvature.

(a) (b) (c)

Figure 6: Temporal evolution: (a) initial condition, (b) t = 10000∆t, and (c) t = 20000∆t.



806 Y. Choi et al.

0 0.01 0.02 0.03 0.04 0.05

0.67

0.68

0.69

0.7

0.71
analytic radius
numerical radius

Figure 7: Comparison between analytic radius and numerical radius.

Fig. 7 shows the change in length of the radius over time. The solid line represents

the calculation of Eq. (3.10), and the circle symbol indicates the numerical radius over

the evolution of time. The decreasing numerical radius over time is approximately

equal to the analytic radius.

The discrete total energy is defined as

Ed(φ) =
N
∑

i=1

(

F (φi)

ǫ2
+

|∇Mφi|2
2

) A(xi)

3
. (3.12)

Fig. 8 illustrates the normalized discrete total energy over time with the initial condition

(3.11) and the same parameters as those in the earlier test were used. We verify that

the total energy decreases monotonically from the numerical result.

Next, we consider the convergence of the surface AC equation. Let

φ(x, y, z, t) = z2 cos(t) (3.13)

be a manufactured solution for the following surface AC equation with a source term:

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ǫ2
+∆Sφ(x, t) + f(x, t), x ∈ S, t > 0. (3.14)

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Figure 8: Decrease in discrete total energy over time.
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Therefore, the source term is defined as

f(x, t) =
∂φ(x, t)

∂t
+
F ′(φ(x, t))

ǫ2
−∆Sφ(x, t)

= −z2 sin(t) + F ′(z2 cos(t))

ǫ2
+

(

6z2 − 2
)

cos(t).

The initial condition is φ(x, y, z, 0) = z2 and the parameters are ∆t = 1.0e-5 and

ǫ = 0.3. After 100 iterations, the L2-norm errors and convergence rates are listed in

Table 3. We calculate the L2-norm errors by decreasing have and the convergence rates.

Table 3 shows that the convergence rates are between 1 and 2.

Table 3: L2-norm errors and the convergence rates with respect to have.

Case (have) 0.4488 Rate 0.3895 Rate 0.2719 Rate 0.1783

φ = z2 1.0482e-3 1.44 8.5801e-4 1.89 4.3319e-4 1.87 1.9690e-4

3.4. Conservative Allen-Cahn equation

We solve the CAC equation in this test with the same simulation parameters that

were used in Fig. 6. To set a smooth initial condition, we choose it as the result of

Eq. (3.11) at t = 2000∆t. We use the time step ∆t = 1.0e-6, thickness of transition

layer ǫ = 0.1, have = 0.044, and initial radius r = 0.7069. Fig. 9 shows the temporal

evolution for (a) initial condition and (c) t = 2000∆t. Fig. 9(b) represents the changes

in radius and normalized mass for each iteration. We inferred that mass is conserved,

and the radius is retained. In Fig. 10, we used the same parameters as the Fig. 9 except

the initial condition. The initial condition is defined as

φ(x, y, z, 0) = tanh

(

max(|x| − 0.5, |z − 1| − 0.5)√
2ǫ

)

. (3.15)

Eq. (3.15) represents the modified rectangular shape on the unit spheres as shown

in Fig. 10(a). Figs. 10(b), 10(c), and 10(d) show the shape of rounded rectangular,

ellipsoidal, and circular on the unit sphere, respectively, with time evolution.

(a)

500 1000 1500 2000

0.7069

0.8

0.9

1

mass
radius

(b) (c)

Figure 9: (a) Initial condition, (b) changes in mass and radius for each iteration, and (c) t = 2000∆t.
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(a) (b) (c) (d)

Figure 10: Temporal evolutions with the rectangle shape φ(x, y, z, t) on the unit sphere: (a) initial condition,
(b) 5000∆t, (c) 15000∆t, and (d) 35000∆t.

4. Conclusions

In this study, we presented a simple and fast explicit hybrid numerical scheme for

motion by mean curvature on a surface in 3D space. We numerically solve the AC

and CAC equations on a triangular surface mesh. The proposed numerical method is

computationally fast and efficient because we use an explicit hybrid numerical scheme.

We performed various numerical experiments to demonstrate the robustness and effi-

ciency of the proposed scheme. In future work, we will extend the proposed method

to include fluid flows so that we can simulate the multi-phase fluid flows on curved

surfaces.
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