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In this paper, we present benchmark problems for the numerical discretization of the Cahn–Hilliard equation with a source term.
If the source term includes an isotropic growth term, then initially circular and spherical shapes should grow with their original
shapes. However, there is numerical anisotropic error and this error results in anisotropic evolutions. )erefore, it is essential to
use isotropic space discretization in the simulation of growth phenomenon such as tumor growth. To test numerical discretization,
we present two benchmark problems: one is the growth of a disk or a sphere and the other is the growth of a rotated ellipse or a
rotated ellipsoid. )e computational results show that the standard discrete Laplace operator has severe grid orientation de-
pendence. However, the isotropic discrete Laplace operator generates good results.

1. Introduction

We consider the Cahn–Hilliard (CH) equation with the
reaction term:

zϕ(x, t)

zt
� Δμ(x, t) + c(ϕ(x, t)), x ∈ Ω, t> 0,

μ(x, t) � F′(ϕ(x, t)) − ϵ2Δϕ(x, t),

(1)

where ϕ(x, t) is the order parameter in the domain Ω ⊂ Rd,
d � 2, 3, F(ϕ) � 0.25(ϕ2 − 1)2, and ϵ is a constant. )e re-
action term c(ϕ) is specified in Section 3. In this paper, we
present two benchmark problems for the numerical dis-
cretization of theCH equationwith a source term in 2D and 3D.

)e CH equation without a source term was derived for
minimizing the interface in binary alloys [1, 2]. )is topic
has been studied in various fields such as multiphase flows
[3–5], image inpainting [6], phase-field model [7–10], and
microstructures with elastic inhomogeneity [11]. Since the
common behavior of the CH equation without source terms
is minimizing the interface, the anisotropic space

discretization error is not noticeable. However, in the case of
a growth model, anisotropic discretization may have critical
problems. In particular, tumor growth simulation with the
CH equation is one of the cases. Several research studies have
been conducted numerically by using the Galerkin finite
element method [12–15]. Fakih [16, 17] analyzed the as-
ymptotic behavior of the CH equation with source in both
Dirichlet and Neumann boundary conditions by using the
P1 element method. Khain and Sander [18] studied the
logistic growth model of the CH equation. In recent years,
many studies for tumor growth simulation using the finite
difference method have been actively conducted [19–23].

However, the conventional space discretization scheme
has a high probability of having grid-related artifact because
it has anisotropic properties. )erefore, we need to use the
isotropic discretization. For instance, Kumar introduced the
isotropic finite difference method [24]. We use the method
proposed by Kumar in this paper. )e isotropic finite dif-
ference scheme was derived for symmetric dendritic so-
lidification and reduces an observable computational bias of
the numerical anisotropy. In [25], the authors introduced
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different stencils for the Laplacian, bi-Laplacian, and gra-
dient Laplacian operators and emphasized the advantages of
using the isotropic stencils. Assadi [26] applied the isotropic
scheme to the Allen–Cahn-type equation.

)e main purpose of this work is to present benchmark
problems for the numerical discretization of the CH
equation with a source term.

)e rest of this article is organized as follows. In Section
2, we describe two discretization schemes of the CH
equation with a source term. We compare two schemes on
several numerical experiments in Section 3. In Section 4, we
provide a summary and present our conclusions.

2. Discretization Schemes

We consider the two discretization schemes of the CH
equation with a source term. To solve the CH equation
numerically, we first define a 2D discrete domain for
Ω � (a, b) × (c, d), i.e.,Ωh � (xi, yj): xi � a + (i − 0.5)h, yj

� c + (j − 0.5)h, 1≤ i≤Nx, 1≤ j≤Ny}, where Nx and Ny

are positive even integers, and h � (b − a)/Nx � (d − c)/Ny

is the grid size. Let ϕn
ij and μn

ij be approximations of
ϕ(xi, yj, tn) and μ(xi, yj, tn), respectively, where tn � nΔt
and Δt is the time step. We use the periodic boundary
condition for ϕ and μ as follows:

ϕi,0 � ϕi,Ny
,

ϕi,Ny+1 � ϕi,1,

ϕ0,j � ϕNx,j,

ϕNx+1,j � ϕ1,j,

μi,0 � μi,Ny
,

μi,Ny+1 � μi,1,

μ0,j � μNx,j,

μNx+1,j � μ1,j.

(2)

For simplicity, we take Eyre’s nonlinearly stabilized
splitting scheme [27]. )e first scheme is the following with
the standard discrete Laplace operator:

ϕn+1
ij − ϕn

ij

Δt
� ΔSμ

n+1
ij + c ϕn

ij ,

μn+1
ij � ϕn+1

ij 
3

− ϕn
ij − ϵ2ΔSϕ

n+1
ij ,

(3)

where the standard discrete Laplace operator ΔS is defined as

ΔSϕij �
ϕi−1,j + ϕi+1,j + ϕi,j−1 + ϕi,j+1 − 4ϕij 

h
2 . (4)

)e second scheme is the isotropic discretization of the
Laplace operator [24]:

ϕn+1
ij − ϕn

ij

Δt
� ΔIμ

n+1
ij + c ϕn

ij ,

μn+1
ij � ϕn+1

ij 
3

− ϕn
ij − ϵ2ΔIϕ

n+1
ij ,

(5)

where the isotropic discrete Laplace operator ΔI is defined as

ΔIϕij �
4 ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1  + ϕi+1,j+1 + ϕi−1,j+1 + ϕi−1,j−1 + ϕi+1,j−1 − 20ϕij 

6h
2

 
. (6)

Similarly, we can define both discrete Laplace operators
in a 3D discrete domain Ωh � (xi, yj, zk): xi � a + (i− 0.5)

h, yj � c + (j − 0.5)h, zk � e +(k − 0.5)h, 1 ≤ i≤ Nx, 1≤
j≤Ny, 1≤ k≤Nz} for Ω � (a, b) × (c, d) × (e, f), where

Nx, Ny, and Nz are positive even integers, and h � (b −

a)/Nx � (d − c)/Ny � (f − e)/Nz is the grid size. )e
standard discrete Laplace operator is defined as

ΔSϕijk �
ϕi−1,j,k + ϕi+1,j,k + ϕi,j−1,k + ϕi,j+1,k + ϕi,j,k−1 + ϕi,j,k+1 − 6ϕijk 

h
2 . (7)

)e isotropic discrete Laplace operator is defined as

ΔIϕijk � 20 ϕi−1,j,k + ϕi+1,j,k + ϕi,j−1,k + ϕi,j+1,k + ϕi,j,k−1 + ϕi,j,k+1 

+ 6 ϕi−1,j−1,k + ϕi−1,j+1,k + ϕi+1,j−1,k + ϕi+1,j+1,k + ϕi,j−1,k−1

+ ϕi,j−1,k+1 + ϕi,j+1,k−1 + ϕi,j+1,k+1 + ϕi−1,j,k−1 + ϕi−1,j,k+1
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+ϕi+1,j,k−1 + ϕi+1,j,k+1 + ϕi−1,j−1,k−1 + ϕi−1,j−1,k+1

+ ϕi−1,j+1,k−1 + ϕi−1,j+1,k+1 + ϕi+1,j−1,k−1 + ϕi+1,j−1,k+1

+ϕi+1,j+1,k−1 + ϕi+1,j+1,k+1 − 200ϕijk/ 48h
2

 
−1

.

(8)

We use the nonlinear multigrid method [28–30] to solve
the above discrete CH equations.

3. Numerical Results and Discussion

3.1. Convergence Test. We start with numerical convergence
tests of two discrete Laplace schemes. We consider the 2D
heat equation with the periodic boundary condition (3) on a
domain Ω � (0, 1) × (0, 1):

ut(x, y, t) � Δu(x, y, t), for (x, y) ∈ Ω, t> 0. (9)

For example, we use the following initial condition for
equation (9):

u(x, y, 0) � cos(2πx)cos(2πy). (10)

)en, the exact solution is u(x, y, t) � e− 8 π2t cos
(2πx)cos(2πy). Numerical convergence tests of two dif-
ferent schemes, standard and isotropic schemes, are per-
formed with Nx � Ny � 2n and h � 1/Nx, Δt � 10− 9. )e
final time is T � NtΔt for n � 3, 4, 5, and 6. Here, Nt � 20 is
used. Let eh

ij: � u
Nt

ij − u(xi, yj, T) be the numerical error in
Ωh. We define the discrete l2-norm of the error as

‖e‖2 �

������������������


Nx

i�1 
Ny

j�1 e2ij/(NxNy)



. )en, the rate of conver-
gence is log2(‖eh‖2/‖eh/2‖2). Table 1 shows the discrete
l2-norm of errors and the rates of convergence with the two
different formulas. Numerical experimentation suggests that
both schemes are second-order accurate in space.

3.2. Comparison of the Two Schemes for an Isotropic Initial
Shape. We consider the tumor growth simulation param-
eters in [12]:

c(ϕ) � λg(1 + ϕ)
2
(1 − ϕ)

2
−
λd

2
(1 + ϕ), (11)

where λg and λd are the growth and death coefficients,
respectively. We use λg � 280 and λd � 92.

Figure 1 shows a plot of c(ϕ) � 280 (1 + ϕ)2 (1 − ϕ)2

−46(1 + ϕ). Note that c(ϕ) � 0 when ϕ � −1 and
ϕ ≈ − 0.957109, 0.688032, 1.26908.

3.2.1. 2D Case. We present the evolution of a disk by using
the two types of schemes: standard and isotropic. )e initial
condition in the domain Ω � (−0.6, 0.6) × (−0.6, 0.6) is
given by

ϕ(x, y, 0) � tanh
0.1 −

������

x
2

+ y
2



�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠. (12)

In this test, the uniform space step size h � 1.2/128, the
time step size Δt � 10h2, and ϵ � 0.0125 are used. Figure 2
shows the circular evolution of the disk with standard and
isotropic schemes, respectively, up to the final time
t � 1200Δt at every 120Δt.

)ere is a significant computational bias for diagonal
directions in the case with the standard scheme. On the other
hand, the computational bias in the case with the isotropic
scheme seems not large. In order to compare both schemes
in more detail, we compare the ratios such as

rd �
l
2

4πA
, (13)

where l implies the perimeter of zero-level contour and A

implies the area enclosed by the contour. Note that rd ≈ 1 if
an evolution maintains the form of the disk. Figure 3 shows
the ratios rd of the standard scheme and the isotropic
scheme.

)us, we can confirm that an initially circular shape
actually evolves closer to the original shape with the iso-
tropic scheme while the standard scheme does not.

3.2.2. 3D Case. We further present the evolution of sphere
in Ω � (−0.6, 0.6)3 by using both standard and isotropic
schemes with the initial condition given by

ϕ(x, y, z, 0) � tanh
0.1 −

����������

x
2

+ y
2

+ z
2



�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠. (14)

Figure 4 shows isosurfaces ϕ � 0 of the evolution of
equation (6) with both schemes. Here, we use the uniform
step size h � 1.2/128, the time step Δt � 10h2, ϵ � 0.0125,
and the final time t � 1600Δt.

Obviously, as shown in Figure 4(b), it was tested using the
isotropic scheme that grew closer to the shape of the initial
condition. For the next step, we use the ratios rs such as each
surface area over volume with appropriate scaling to compare
evolutionary detail of both schemes, and hence rs is defined as

rs �
S
3

36πV
2,

(15)

where S is a surface area of sphere and V is a volume of
sphere. Note that rs ≈ 1 if an evolutionmaintains the form of
the sphere. Figure 5 shows the ratios rs of both schemes.
)us, we conclude that the isotropic scheme is relatively
unbiased and has a correct evolution.

3.3. Comparison of the Two Schemes for an Anisotropic Initial
Shape. In Section 3.2, we have performed evolutions of a
sphere by using standard and isotropic schemes. In order to
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get a more detailed look at the grid effect, we now perform a
benchmark test on an anisotropic initial shape.

3.3.1. 2D Case. We investigate tumor growth of an elliptical
shape in 2D with 0° and 45° rotations in clockwise direction
in Ω � (−2.4, 2.4) × (−2.4, 2.4), where initial conditions are
given, respectively, as follows:

ϕ(x, y, 0) � tanh
0.1 −

�����������

2x
2

+ 0.25y
2



�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, (16)

ϕ(x, y, 0) � tanh
0.1 −

�����������
2X

2
+ 0.25Y

2


�
2

√
ϵ

⎛⎝ ⎞⎠, (17)

where X and Y are defined as

Table 1: l2-norm of the errors and convergence rates of standard and isotropic schemes.

Standard Isotropic
h l2 error Order l2 error Order

1/8 3.976 × 10− 8 7.636 × 10− 8

1/16 1.009 × 10− 8 1.978 1.998 × 10− 8 1.934
1/32 2.533 × 10− 9 1.994 5.054 × 10− 9 1.983
1/64 6.340 × 10− 10 1.999 1.267 × 10− 9 1.996

-100

0

100

200

300
γ 

(ϕ
)

-0.5 0 0.5 1-1
ϕ

Figure 1: Plot of c(ϕ) � 280(1 + ϕ)2(1 − ϕ)2 − 46(1 + ϕ).
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Figure 2: (a, b) Zero-level contours for the circular evolution in equation (12) with standard and isotropic schemes up to t � 1200Δt at every
120Δt, respectively.
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Figure 3: Plot of rd among standard and isotropic schemes.
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Figure 5: Plot of rs from standard and isotropic schemes.
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Figure 4: (a) Overlapped isosurfaces ϕ � 0 for evolution in equation (14) with the standard scheme at t � 0 and t � 1600Δt. (b) Overlapped
isosurfaces ϕ � 0 for evolution in equation (14) with the isotropic scheme at t � 0 and t � 1600Δt.
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X

Y
  �

cos θ sin θ

−sin θ cos θ
 

x

y
 . (18)

Here, θ � −π/4, h � 4.8/512, Δt � h2, and ϵ � 0.0125 are
used. We show four stages of tumor growth: t � 0, 15000Δt,
35000Δt, and 50000Δt. We can see a difference of tumor
growth in two kinds of space discretization. Figure 6 shows
evolutions of ellipse with the standard scheme. Snapshots
of zero-level contours for evolution over time in equation
(16) are listed in the first row of Figure 6, and those in
equation (17) are in the second row of Figure 6. )e final
row shows overlapped contours for each column at t � 0,
15000Δt, 35000Δt, and 50000Δt. )e results under the same
conditions by using the isotropic scheme are given in
Figure 7.

3.3.2. 3D Case. We further investigate the evolution of el-
lipsoidal shape in Ω � (−1.0, 1.0)3, where initial conditions
are given, respectively, as follows:

ϕ(x, y, z, 0) � tanh
0.2 −

���������������

0.5x
2

+ 2y
2

+ 2z
2



�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, (19)

ϕ(x, y, z, 0) � tanh
0.2 −

���������������
0.5X

2
+ 2Y

2
+ 2Z

2


�
2

√
ϵ

⎛⎝ ⎞⎠, (20)

where X, Y, and Z are defined as

X

Y

Z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � RxRyRz

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (21)

Note that Rx, Ry, and Rz are rotation matrices as follows:

Rx �

1 0 0

0 cos θ sin θ

0 −sin θ cos θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(a) (b) (c) (d) (e)

(f ) (g) (h)

45°
0°

(i)

45°
0°

(j)

45°
0°

(k)

45°
0°

(l)

Figure 6: (a–d) Snapshots of zero-level contours for evolution in (16) using the standard scheme at t � 0, 15000Δt, 35000Δt, and 50000Δt,
respectively. (e–h) Snapshots of zero-level contours for evolution in (17) using the standard scheme at t � 0, 15000Δt, 35000Δt, and
50000Δt, respectively. (i–l) Overlapped zero-level contours for each column at t � 0, 15000Δt, 35000Δt, and 50000Δt, respectively.
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Ry �

cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Rz �

cos θ sin θ 0

−sin θ cos θ 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(22)

where θ � −π/4 and rotations are based on x-, y-, and
z-axes, respectively. We use the uniform step size
h � 2.0/128, the time step size Δt � 10h2, ϵ � 0.0125, and

the final time 1000Δt. Figure 8 shows evolutions of ellipsoid
over time t � 0, 600Δt, and 1000Δt with the standard
scheme. Snapshots of isosurface ϕ � 0 for evolution over
time in equation (9) are listed in the first row of Figure 8,
and those in equation (10) are listed in the second row of
Figure 8. )e final row shows overlapped isosurfaces ϕ � 0
for each column at t � 0, 600Δt, and 1000Δt, respectively.
Note that we use rotation matrices to align the axes of θ �

−π/4 case with those of θ � 0, so we could overlap iso-
surfaces on identical axes. )e results under the same
conditions by using the isotropic scheme are listed in
Figure 9. Unlike the isotropic scheme, there is a compu-
tational bias in the standard scheme. )is is the reason why
we should use the isotropic scheme in tumor growth
simulation.

(a) (b) (c) (d) (e)

(f ) (g) (h)

45°
0°

(i)

45°
0°

(j)

45°
0°

(k)

45°
0°

(l)

Figure 7: (a–d) Snapshots of zero-level contours for evolution in equation (16) using the isotropic scheme at t � 0, 15000Δt, 35000Δt, and
50000Δt, respectively. (e–h) Snapshots of zero-level contours for evolution in equation (17) using the isotropic scheme at t � 0, 15000Δt,
35000Δt, and 50000Δt, respectively. (i–l) Overlapped zero-level contours for each column at t � 0, 15000Δt, 35000Δt, and 50000Δt,
respectively.
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(a) (b) (c)

(d) (e) (f )

θ = 0
θ = –π/4

(g)

θ = 0
θ = –π/4

(h)

θ = 0
θ = –π/4

(i)

Figure 8: (a–c) Snapshots of isosurface ϕ � 0 for evolution in equation (9) using the standard scheme at t � 0, 600Δt, and 1000Δt,
respectively. (d–f) Snapshots of isosurface ϕ � 0 for evolution in equation (10) using the standard scheme at t � 0, 600Δt, and 1000Δt,
respectively. (g–i) Overlapped isosurfaces ϕ � 0 for each column at t � 0, 600Δt, and 1000Δt, respectively. Note that the axes are limited to
show only (−0.6, 0.6)3.
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(a) (b) (c)

(d) (e) (f )

θ = 0
θ = –π/4

(g)

θ = 0
θ = –π/4

(h)

θ = 0
θ = –π/4

(i)

Figure 9: (a–c) Snapshots of isosurface ϕ � 0 for evolution in equation (9) using the isotropic scheme at t � 0, 600Δt, and 1000Δt,
respectively. (d–f) Snapshots of isosurface ϕ � 0 for evolution in equation (10) using the isotropic scheme at t � 0, 600Δt, and 1000Δt,
respectively. (g–i) Overlapped isosurfaces ϕ � 0 for each column at t � 0, 600Δt, and 1000Δt, respectively. Note that the axes are limited to
show only (−0.6, 0.6)3.
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4. Conclusions

We presented two benchmark problems for the numerical
discretization of the CH equation with a source term. )e
first benchmark problem is the growth of a disk or a sphere.
If the source term is isotropic, then the growth should be
isotropic. )e second benchmark problem is the growth of a
rotated ellipse or a rotated ellipsoid. Ideally, the growth
should be independent of rotation. )erefore, it is essential
to satisfy these two benchmark problems if a numerical
discretization is reliable and accurate.
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