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In this study, we propose a time-dependent susceptible-unidentified infected-confirmed (tSUC) epidemic mathematical model for
the COVID-19 pandemic, which has a time-dependent transmission parameter. Using the tSUC model with real confirmed data,
we can estimate the number of unidentified infected cases. We can perform a long-time epidemic analysis from the beginning to
the current pandemic of COVID-19 using the time-dependent parameter. To verify the performance of the proposed model, we
present several numerical experiments. ,e computational test results confirm the usefulness of the proposed model in the
analysis of the COVID-19 pandemic.

1. Introduction

Coronavirus disease 2019 (COVID-19) is the infectious
disease caused by the most recently discovered coronavirus,
which had not been previously identified. Many people
infected with the coronavirus have mild to moderate re-
spiratory problems and are naturally recovered without
special treatment. However, the older people and patients
with underlying medical conditions such as diabetes, car-
diovascular, and chronic respiratory diseases are more likely
to cause serious complications [1]. ,e serious problem with
COVID-19 is that there are asymptomatic (if symptoms are
very mild or no symptoms are identified) infections, and the
time from infection to the moment symptoms start is on
average 5-6 days and ranges from 1 to 14 days. Because the
most common symptom of COVID-19 is fever [2], body
temperature measurement is used as a means of detecting
infection with COVID-19. ,erefore, if an infected person is
asymptomatic or does not start showing symptoms, it is
difficult to determine whether an infected person is infected,
and in this situation, the rate of spread of COVID-19 can be
significantly increased. ,e authors of [3] use a susceptible-
infected-recovered (SIR) model and machine learning to
simulate the spread of COVID-19 in various scenarios. In

order to effectively reduce the scale of the epidemic, it is
essential to find and isolate the infected as soon as possible.

Figure 1 shows the sum of the global infected population
using country-specific infected population data published by
the World Health Organization (WHO) [4]. We can observe
the rapid increase in the number of confirmed infections
worldwide. If the number of COVID-19 infections continues
to rise, many people will die, and the disease will cause
enormous economic damage. ,erefore, to predict the
number of future COVID-19 infections and prepare a
prevention and intervention plan in advance, it is important
to estimate the unidentified infected cases. If we can estimate
the number of unidentified infections using the method
proposed in [5], it could help reduce the number of infected
cases by evaluating various countries’ COVID-19 inter-
vention strategies and adopting effective national inter-
vention strategies.

,e SIR model is one of the simplest and most robust
models of infectivity. In the traditional SIR model, β and 1/c
represent the average number of random contacts that an
individual has per unit time and the average time for an
infected individual to recover, respectively. ,e traditional
SIR model uses constant β and c and therefore represents
only simple characteristics for infectious diseases [6–8]. ,e
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model with constant parameter does not reflect external
factors that have a sharp impact on the change of the pa-
tient’s confirmation criteria or the national prevention
policy. Recently, to resolve this problem, a study on the SIR
model using β and c as time-dependent parameters was
conducted, and these research results showed more accurate
results for epidemic prediction than before [6, 7].

,e SIR model is variously modified and used to analyze
infectious diseases. Some researchers analyzed the spread of
COVID-19 using a new, nonmonotonous SIR model rather
than a monotonous SIR model, in which all susceptible
populations are infected and then recovered [9]. In addition,
the fractional-order epidemic model has a memory effect
and thus has a positive effect on epidemiologic modeling;
thus, the researchers developed a fractional-order suscep-
tible-exposed-infected-recovered-deaths (SEIRD) model
[10] and a susceptible-infected-recovered-deaths (SIRD)
model including multiple fractional features [11]. Some of
the other researchers analyzed epidemics and suggested
solutions to end them. ,e researchers compared and an-
alyzed data from multiple countries using a simple SIRD
model to show that cultural factors have a great influence on
the infection rate in each country and used the modified
SIRD model to analyze the epidemics in each country and
suggest solutions [12]. Recently, as research on machine
learning has become more active, epidemic prediction and
analysis using machine learning are also being actively
studied. Researchers used the SIR model and machine
learning to develop the epidemic model that provide smart
healthcare for prediction and prevention of COVID-19 [3].
Nonlinear neural network for predicting COVID-19 cases
has been developed [13]. More researchers modify or de-
velop epidemic models to end COVID-19.

,e main purpose of this paper is to propose a modified
susceptible-unidentified infected-confirmed (SUC) model

for long-time analysis of infectious diseases, such as
COVID-19, where unconfirmed infections must be
considered.

,e outline of this paper is as follows. Section 2 proposes
a time-dependent susceptible-unidentified infected-con-
firmed (tSUC) model. In Section 3, the computational so-
lution algorithm is presented. In Section 4, the
computational experiments are performed. Discussion of
various infectious disease models and methods of con-
firming infection of infectious diseases can be found in
Section 5. Conclusions are given in Section 6. In addition,
the MATLAB source code is given in Appendix for the
interested readers.

2. Proposed tSUC Epidemic Model

In this paper, we present the tSUC epidemic model for the
COVID-19 pandemic, which has a time-dependent trans-
mission parameter. Let S(t) be the susceptible; U(t) be the
unidentified infected; C(t) be the confirmed; β(t)(≥ 0) be a
transmission variable; and c (≥ 0) be the average number of
days taken before the unidentified infected are confirmed.
,en, U(t) is the population where S(t) is infected with
COVID-19 and has no confirmed infection, and C(t) is the
state where U(t) is confirmed to be infected and no longer
spreads the disease. ,erefore, S(t) is infected by
β(t)S(t)U(t)/N and decreased, U(t) is increased by
β(t)S(t)U(t)/N, C(t) is increased by cU(t) as confirmed
infections, and U(t) is decreased by cU(t). ,erefore, the
derivative of each parameter with respect to time is

dS(t)

dt
� −β(t)

S(t)U(t)

N
, (1)

dU(t)

dt
� β(t)

S(t)U(t)

N
− cU(t), (2)
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Figure 1: Number of populations infected with COVID-19 worldwide.
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dC(t)

dt
� cU(t). (3)

,e unidentified infected population can spread the
disease and has not yet been confirmed. ,e parameter β(t)

is a time-dependent transmission variable, but 1/c is con-
stant as the average number of days taken before the un-
identified infected are confirmed. We assume the total
population N is constant. We note that if β(t) is constant,
then the tSUC model becomes the SUC model [14]. Figure 2
shows schematic illustrations of differently classified groups
of the standard SIR and proposed tSUC models. Individuals
belonging to S, I, and R groups in the SIR model are sus-
ceptible, infected, and recovered, respectively, as shown in
the top row of Figure 2. We can subclassify I as UI and CI
which are unconfirmed-infected and confirmed-infected,
respectively; see the middle row of Figure 2. In the tSUC
model, U is UI and C is CI∪R (see the bottom row of
Figure 2).

In the standard SIR model, cSIR is the reciprocal of the
period during which an infected individual acquires anti-
bodies and heals. However, in the proposed tSUC model,
cSUC is the reciprocal of the period during which an un-
identified infected individual can spread an infectious dis-
ease until the infection is confirmed. Generally, 1/cSIR is
larger than 1/cSUC (see Figure 3).

3. Numerical Solution Algorithm

,e tSUC model can be solved by a fourth-order Run-
ge–Kutta (RK4) method. First, let us rewrite equations
(1)–(3) as follows:

dS(t)

dt
� f(β(t), S(t), U(t)),

dU(t)

dt
� g(c, β(t), S(t), U(t)),

dC(t)

dt
� h(c, U(t)),

S t0( 􏼁 � S0, U t0( 􏼁 � U0, C t0( 􏼁 � C0.

(4)

Second, let Sn � S(nΔt), Un � U(nΔt), andCn � C(nΔt),
where Δt is a time step. For n � 0, 1, 2, . . ., we have the
following discrete equations:

Sn+1 � Sn +
1
6
Δt k11 + 2k12 + 2k13 + k14( 􏼁, (5)

Un+1 � Un +
1
6
Δt k21 + 2k22 + 2k23 + k24( 􏼁, (6)

Cn+1 � Cn +
1
6
Δt k31 + 2k32 + 2k33 + k34( 􏼁, (7)

tn+1 � tn + Δt,
where k11 � f βn, Sn, Un( 􏼁, k21 � g c, βn, Sn, Un( 􏼁, k31 � h c, Un( 􏼁,

k12 � f βn+1/2, Sn +
k11Δt
2

, Un +
k21Δt
2

􏼠 􏼡,

k22 � g c, βn+1/2, Sn +
k11Δt
2

, Un +
k21Δt
2

􏼠 􏼡, k32 � h c, Un +
k21Δt
2

􏼠 􏼡,

k13 � f βn+1/2, Sn + k12Δt/2, Un + k22Δt/2( 􏼁,

k23 � g c, βn+1/2, Sn +
k12Δt
2

, Un +
k22Δt
2

􏼠 􏼡, k33 � h c, Un +
k22Δt
2

􏼠 􏼡,

k14 � f βn+1, Sn + k13Δt, Un + k23Δt( 􏼁,

k24 � g c, βn+1, Sn + k13Δt, Un + k23Δt( 􏼁, k34 � h c, Un + k23Δt( 􏼁,

(8)
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Figure 2: Schematic diagram of the standard SIR and proposed
tSUC model.
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Figure 3: Schematic diagram for 1/c of the standard SIR and
proposed tSUC models.
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and c, βn, andU0 are the unknown parameters. To solve the
discrete system of equations (5)–(7), we need to know these
parameter values. However, in the real-world population, β,
c, and the number of the unidentified infected cases U are
unknown; and only the number of cumulative confirmed
cases C is known. To estimate the unknown unidentified
infected cases U, we use the tSUC model and the fitting
function lsqcurvefit in MATLAB R2021a, which is a non-
linear curve-fitting solver in a least-squares sense [15].

3.1. Data Smoothing. As a preprocessing of the epidemic
data, we take 7-day average data because the number of
testing COVID-19 is different day by day. First, the number
of new confirmed cases (ΔC) is calculated using the number
of cumulative confirmed cases as follows:
ΔCi � 􏽢Ci+1 − 􏽢Ci, i � 1, 2, . . . , p − 1, where p is the number of
the given real cumulative confirmed cases
􏽢Ci (i � 1, 2, . . . , p). Second, we calculate the 7-day simple
moving average of the number of new confirmed cases.
ΔaveCi � (ΔCi + ΔCi+1 + · · · + ΔCi+6)/7, i � 1, 2, . . . , p − 7.
Finally, the smoothed cumulative confirmed case data refC
are generated using the 7-day simple moving average of new
confirmed cases as follows:

C
ref
i � 􏽢C7 + 􏽘

i

j�1
ΔaveCj, i � 1, 2, . . . , p − 7. (9)

3.2. Estimating Parameters. Let β � [βn1
, βn2

, . . . , βnL
] be the

vector with sample transmission values at sample points
t � [tn1

, tn1
+ q, tn1

+ 2q, . . . , tnL
], where q is a sampling in-

terval, tn1
is the starting day, and tnL

is the last check day,
which will be less than or equal to the end day of the case
data.

Using the piecewise interpolation, we can obtain values
at between tn1

and tnL
. We obtain optimal parameters

c, β, U0 which minimize the following cost function:

E c, β, U0( 􏼁 �
1
2

􏽘

p−7

i�1
C
ref
i − Cni

􏼐 􏼑
2
, (10)

where Cni
(i � 1, 2, . . . , p − 7) are the numerical solutions

from equations (4) to (6) at the corresponding times. We
compute the optimal parameter values of (c, β, U0) that
minimize the cost function as

c, β, U0􏼂 􏼃 � lsqcurvefit ’tSUCmodel′, c
0
, β0, U

0
0􏽨 􏽩,T da ta,C da ta, lb, ub􏼐 􏼑, (11)

where [c, β, U0] are the optimized parameters and
[c, β0, U0

0] are the initial guess of parameters for the
tSUCmodel, C da ta is the real cumulative confirmed case
data at times T da ta, lb is the lower bound, and ub is the
upper bound.

4. Numerical Tests

4.1. Convergence and Stability Tests. In this section, to verify
the accuracy of the proposed algorithm, we perform a
convergence test. We generate a reference solution using the
following initial data: N � 300000, C0 � 20000, U0 � 2000,
c � 1/4, and β(t) � 0.3 + 0.1t. Table 1 shows that the pro-
posed method has fourth-order accuracy. Here, the fol-
lowing definitions are used: Δt � 2− 2, the final time T � 4,
l2-error �

������������������������������������
(Sref − SNt

)2 + (Uref − UNt
)2 + (Cref − CNt

)2
􏽱

,
and Nt � T/Δt, where we use the reference solutions
Sref , Uref , Cref computed with sufficiently small Δtref � 2− 10.

Next, we numerically test the stability of the tSUCmodel.
Figures 4(a)–4(c) show the computational results for S, U,
and C, respectively. ,e results are obtained using Δt �

0.1, 1, 10 and β(t) � 0.3 + 0.1t/T up to time T � 30. ,e
proposed algorithm shows that it has nonnegative solutions
even with large time steps.

4.2. Simulation on Real Data. For all simulations, it is as-
sumed that the time step size Δt � 0.1, β and U0 are positive
real numbers, and the upper and lower bound of c are 1 and

1/14, respectively. Because c is the reciprocal of the average
time until an unidentified infected person is confirmed, it
can be inferred from the period of symptom onset and
epidemiological investigation. In this section, simulations
are performed to confirm that the proposed method can
estimate the optimal parameters for estimating the change
in the number of unidentified infected cases over a long
period of time and the change in the number of new
confirmed cases using actual confirmed cases. First, data
smoothing is performed on actual confirmed cases for
parameter estimation. ,e actual confirmed case data and
smoothed actual confirmed case data are called Craw and
Cref , respectively. Figure 5 shows Craw and Cref fromMarch
2, 2020, to July 23, 2021, in the Republic of Korea [4].

Next, we estimate the parameters beta and gamma using
smoothed Cref

i (i � 1, 2, . . . , 502) and the following initial
conditions: c0 � 1/4, β0 � [1/3, . . . , 1/3], and
U0 � 2(Cref

2 − Cref
1 ) � 771.71.

Figure 6 shows time-dependent β(t) when q � 60.
In equation (2), the rate of change of U is dependent on

the values of β(t)S/N − c. If β(t)S/N − c is positive, then U

increases, and if β(t)S/N − c is negative, then U decreases.
Figure 7 shows the change in the estimated value according
to q. In Figure 7(c), we can observe that the value of esti-
mated β(t)S/N − c according to q is different. When q is 2,
the number of checkpoints is very large, resulting in
overfitting. When q is 30, the number of checkpoints is
relatively small, showing simple characteristics. ,erefore,
we need to use appropriate q.
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Table 1: l2-norm error and convergence rates with various Δt.

Case Δt Rate Δt/2 Rate Δt/4 Rate Δt/8
l2-error 3.0679e− 3 3.98 1.9458e− 4 3.99 1.2243e− 5 4.00 7.6600e− 7
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Journal of Healthcare Engineering 5



We use q � 7 to characterize the epidemic in detail
without overfitting. Figure 8 shows the calculated results. It
can be observed that the estimated parameters represent the
characteristics of the epidemic in detail, and the β(t)S/N − c

values represent the changes in the new confirmed cases.

5. Discussion

In this section, we discuss the advantages and disadvantages
of the proposed method and future work. We proposed the
tSUC model which enables us to analyze long-time analysis;
thus, it is possible to estimate changes in the number of

unidentified infected cases over a long period of time and the
transmission over time and to estimate the number of
unidentified infected cases in the present and past. If we can
estimate the number of unidentified infected cases and its
long-time trend, then we can plan and prepare the number
of testing stations for COVID-19 testing, quarantine policies
according to the transmission, and incentives for COVID-19
testing and vaccines. However, limitations of the proposed
model are that it cannot represent changes in detailed factors
such as vaccines or cultural factors, and it does not consider
birth and death. ,e proposed model uses the least-squares
method because it is simple and easy to use. However, if a
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Figure 5: Raw confirmed data and confirmed data smoothed by the proposed method: (a) confirmed cases and (b) new confirmed cases.
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Figure 6: Schematic diagram of time-dependent β(t) when q � 60 of the proposed method.
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fitting function such as a deep learning neural network is
used, more effective results can be obtained for predicting
the future [13].

,e fractional-order epidemic model for the proposed
model has a memory effect because it uses past history; thus,
we think it is a more effective method for epidemic models
such as COVID-19 with an incubation period [10, 11]. ,e
proposed model is affected by the period during which
infection of an unidentified infected person is confirmed.
,e method of confirmation of COVID-19 infection with

X-ray images by the hybrid model using the deep learning
technique can confirm the infection quickly, simply, and
accurately [16]. ,erefore, we consider the following future
work. First, we use deep learning neural networks to solve
the tSUC model to analyze infectious diseases such as
COVID-19 and predict the future. Second, we propose a
model specialized for infectious diseases with an incubation
period by modifying it to the fractional order of the pro-
posed model. Finally, we propose a modified tSUC model
that considers birth and death.

0

0.5

1

1.5

2
×105

8 100 200 300 400 500
days

C

q = 7
q = 30q = 2

Cref

(a)

0

500

1000

1500

2000

9 100 200 300 400 500
days

q = 7
q = 30q = 2

∆Cref

∆C

(b)

-0.2

-0.1

0

0.1

0.2

8 100 200 300 400 500
days

q = 7
q = 30

q = 2

β S
N

–γ

(c)

Figure 7: Numerical solutions: (a) confirmed cases, (b) new confirmed cases, and (c) calculated results.
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6. Conclusion

We proposed a long-time analysis of a tSUC model for the
COVID-19 pandemic.,e parameters of an epidemic model
are important indicators of the characteristics of an epi-
demic. ,e parameters of an epidemic model change over
time due to several factors. ,erefore, estimating epidemic
parameters and fixing them as a single value can represent
only simple characteristics; also, it is difficult to express
detailed characteristics or long-time analysis. To solve the
problem of time-varying epidemic parameters, one of the
parameters can be made time-dependent to estimate the
optimal parameters for long-time epidemic analysis,
allowing detailed characterization of epidemics over time.
We demonstrated the effectiveness of the proposed method
by estimating epidemic parameters using real data and
performing several tests to confirm that the estimated pa-
rameters are characteristics of real data. It can be confirmed
that the parameters estimated from the numerical results are
suitable for long-time analysis of the epidemic, and detailed
data analysis can be performed in the long term than the
methods used in the existing SUC model studies.

Appendix

,e following code is the main program, which is available
from the corresponding author’s web page (https://
mathematicians.korea.ac.kr/cfdkim/open-source-codes/).

clear all; close all; clc; global N C0 checkTime.
datatable� readtable(’WHO_Korea_data.xlsx’);
Daydata� datatable{:,1}; OriCdata� datatable{:,6};
sp� 60; ep� 568; p� ep-sp+1;
refTdata� [1:p]; NewTdata� [2:p]; Tdata� [8:p];
N� 5.0e+7;
for i� 1:p.
rawC(i)�OriCdata(sp-1+i);
end.
rawdC� diff(rawC);
for i� 1:p-7.
refdC(i)�mean(rawdC(i:i+6));
refC(i)� rawC(7) + sum(refdC(1:i));
end.
Cdata� refC;
q� 7;
checkTime� unique([Tdata(1):q:Tdata(end)
Tdata(end)]);
g0�1/4; b0�1/3∗ones(length(checkTime),1);
U0� 2.0∗(Cdata(2)-Cdata(1)); C0 � Cdata(1);
param� lsqcurvefit(@tSUCmodel, [g0; b0; U0; ],
[Tdata], [Cdata],. . ..
[1/14; 0∗b0; 0∗U0; ], [1]);
g � param(1); U(1)� param(end); C(1)�C0; S(1)�

N–C(1)-U(1);

T� length(Tdata)-1; dt� 0.1; Nt� round(T/dt);
t� linspace(Tdata(1),Tdata(end),Nt+1);
b� interp1(checkTime, param(2:end-1),t,’pchip’);
F�@(b,S,U) -b∗S∗U/N; G�@(g,b,S,U) b∗S∗U/N-
g∗U; H�@(g,U) g∗U;
for i� 1:Nt.
k11� F(b(i),S(i),U(i));
k21�G(g,b(i),S(i),U(i));
k31�H(g,U(i));
k12� F((b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k11,U(i)+0.5∗dt∗k21);
k22�G(g,(b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k11,U(i)+0.5∗dt∗k21);
k32�H(g,U(i)+0.5∗dt∗k21);
k13� F((b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k12,U(i)+0.5∗dt∗k22);
k23�G(g,(b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k12,U(i)+0.5∗dt∗k22);
k33�H(g,U(i)+0.5∗dt∗k22);
k14� F(b(i+1),S(i)+dt∗k13,U(i)+dt∗k23);
k24�G(g,b(i+1),S(i)+dt∗k13,U(i)+dt∗k23);
k34�H(g,U(i)+dt∗k23);
S(i+1)� S(i)+dt∗(k11 + 2∗k12 + 2∗k13 + k14)/6;
U(i+1)�U(i)+dt∗(k21 + 2∗k22 + 2∗k23 + k24)/6;
C(i+1)�C(i)+dt∗(k31 + 2∗k32 + 2∗k33 + k34)/6;
end.
dC� diff(C(1 : Nt/(length(Tdata)-1):end));
figure 1; hold on; box on;
plot(Tdata, Cdata,’k--’); plot(t,C); title(’Confirmed
cases’)
figure 2; hold on; box on;
plot(Tdata(2:end),refdC(2:end),’k--’); plot(Tdata(2:
end),dC);
title(’New Confirmed cases’)
figure 3; hold on; box on;
plot(Tdata(2:end),dC/g,’k--’); plot(t,U);
title(’Unidentified infected cases’)
figure 4; hold on; box on;
plot(t,(b.∗S)/N-g); yline(0,’--’); title(’∖beta(S/N)-
∖gammâ{∖prime})
function f� tSUCmodel(Parameter, Tdata).
global N C0 checkTime;
g �Parameter(1); U(1)�Parameter(end); C(1)�C0;
S(1)�N–C(1)-U(1); T� length(Tdata)-1; dt� 0.1;
Nt� round(T/dt);
t� linspace(Tdata(1),Tdata(end),Nt+1);
b� interp1(checkTime, Parameter(2:end-1),t,’pchip’);
F�@(b,S,U) -b∗S∗U/N; G�@(g,b,S,U) b∗S∗U/N-
g∗U; H�@(g,U) g∗U;
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for i� 1:Nt.
k11� F(b(i),S(i),U(i));
k21�G(g,b(i),S(i),U(i));
k31�H(g,U(i));
k12� F((b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k11,U(i)+0.5∗dt∗k21);
k22�G(g,(b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k11,U(i)+0.5∗dt∗k21);
k32�H(g,U(i)+0.5∗dt∗k21);
k13� F((b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k12,U(i)+0.5∗dt∗k22);
k23�G(g,(b(i)+b(i+1))∗
0.5,S(i)+0.5∗dt∗k12,U(i)+0.5∗dt∗k22);
k33�H(g,U(i)+0.5∗dt∗k22);
k14� F(b(i+1),S(i)+dt∗k13,U(i)+dt∗k23);
k24�G(g,b(i+1),S(i)+dt∗k13,U(i)+dt∗k23);
k34�H(g,U(i)+dt∗k23);
S(i+1)� S(i)+dt∗(k11 + 2∗k12 + 2∗k13 + k14)/6;
U(i+1)�U(i)+dt∗(k21 + 2∗k22 + 2∗k23 + k24)/6;
C(i+1)�C(i)+dt∗(k31 + 2∗k32 + 2∗k33 + k34)/6; s.
end.
f� interp1(t,C,Tdata);
end.
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