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A B S T R A C T

We present an explicit conservative Saul’yev finite difference scheme for the Cahn–Hilliard (CH) equation,
which models a phase separation phenomenon in binary alloys. The CH equation has been successfully
used in various scientific and practical applications. A variety of numerical algorithms were developed to
efficiently calculate the CH equation. Because of the highly nonlinear term and the biharmonic operator,
numerical methods were mostly implicit schemes. Although a fully explicit scheme is very simple, the time-
step restriction is very stringent and the stable time step size is not practicable in high-dimensional spaces. To
overcome this severe time-step restriction and retain the simplicity of the explicit method for the CH model,
we develop an explicit conservative numerical method based on the Saul’yev method. The proposed scheme
has four main merits: (i) the phase-field variable can be directly updated without iterative algorithms; (ii) the
numerical solution remains stable even if relatively larger time steps are used; (iii) the mass conservation of
the CH equation can be satisfied; and (iv) the simulations in complex domains are easy to implement. The
computational experiments confirm the superior performance of the proposed algorithm.
1. Introduction

In this study, we present an explicit conservative computational
scheme for the Cahn–Hilliard (CH) equation [1]. The CH equation was
originally developed for modeling a phase separation phenomenon in
binary alloys. Recently, the CH model has been successfully applied
to a variety of scientific and practical applications such as phase-
field model with logarithmic free energy [2], block copolymer [3,4],
vector-valued dynamics [5,6], multi-phase fluid flows [7–13], phase
separation on curved surfaces [14,15], image inpainting [16], and
volume reconstruction, etc. The CH equation is given as follows:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛥
[

𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2𝛥𝜙(𝐱, 𝑡)
]

, 𝐱 ∈ 𝛺, 𝑡 > 0,

𝐧 ⋅ ∇𝜙(𝐱, 𝑡) = 0, 𝐧 ⋅ ∇𝛥𝜙(𝐱, 𝑡) = 0, 𝐱 ∈ 𝜕𝛺, 𝑡 > 0,

where 𝜙(𝐱, 𝑡) is a phase-field, which generally takes the values 1 and
−1 in two immiscible components, 𝜖 is a parameter, 𝐹 (𝜙) = (𝜙2−1)2∕4,
and 𝐧 is outer unit normal vector.

The physical phenomena with interfaces extensively exist in mate-
rial, biology, and fluid fields. The CH equation is a practical model
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to simulate interfacial problems because of its flexibility in handling
the topological changes of interface. Please refer to [17–22] for the
many applications of the CH equation. In particular, the immiscible
multi-component fluid flows are very common in fluid mechanical engi-
neering and some typical works are as follows. Zhang et al. [23] studied
the transitions of compound sessile droplets by using the ternary CH
system. Xu et al. [24] investigated the effect of temperature on the
self-rewetting droplets on a solid substrate, where the CH equation was
adopted to capture the interfacial position. Mu et al. [25] numerically
investigated the interfacial instability of a single liquid thread in a co-
flow focusing device. Yang and Kim [26] used the axisymmetric CH
model to study the dynamics of binary Rayleigh instability, where the
effect of solid fiber was considered. Later, Yang et al. [27] studied the
dynamics of compound liquid threads by using the three-component CH
equations. By considering the effect of solid wall boundary of water–
oil separator, Yang et al. [28] investigated the different dynamics
of Rayleigh–Taylor instability. Liu et al. [29] studied the maximal
spreading of compound droplets impacting on a spherical substrate.
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It is well known that the exact solution of the CH model is hard
to find in general. A variety of computational techniques have been
developed to efficiently solve the CH type equations in recent years.
Dehghan and Abbaszadeh [30] proposed a local collocation radial basis
functions (RBF) method to efficiently solve the multi-dimensional CH
model. Later, Abbaszadeh et al. [31] developed a direct meshless local
collocation method to treat the stochastic CH model in space and
the temporal discretization was performed by using a finite difference
scheme. Liu et al. [32] numerically compared the different dynamics
of the time-fractional CH and AC equations, where an efficient finite
difference and Fourier spectral methods were adopted to treat the
increased memory requirement. Because of the highly nonlinear term
and the biharmonic operator, the numerical methods were mostly
implicit schemes [33–37]. The linear stabilization and convex splitting
methods are two typical approaches to treat the CH equation in implicit
manners. In the linear stabilization method, the nonlinear term is
treated explicitly and an appropriate stabilization term is added to
stabilize the computation. Please refer to [38–41] for the theoretical
investigations of the linear stabilization method. In the convex splitting
method, the nonlinear term is split into convex and concave parts; and
then we solve the convex part implicitly and concave part explicitly.
By using the Taylor expansion, we can prove that the convex splitting
method leads to unconditionally energy-stable schemes for the CH
equation, see [42] for some details. Moreover, the nonlinear convex
splitting method was successfully applied to no-slope-selection thin
film models, the temporally first-, second-, and third-order accurate
schemes, detailed stability and error estimations can be found in [43–
49]. For all implicit schemes, fast and accurate iterative techniques are
needed. If the improper iterative algorithm is adopted, the accuracy of
the numerical solution will be significantly affected. Moreover, the ex-
istence and uniqueness of the solution of nonlinearly implicit methods
should be analytically proved, which obviously bring extra and tedious
works for researchers in industrial fields. Different from the implicit
schemes, the explicit scheme provides a straightforward approach to
obtain the numerical solution without any iterative methods. In this
sense, the most desirable and simplest numerical method for the partial
differential equation is the explicit scheme.

Although a fully explicit scheme is very simple, the time-step re-
striction is very stringent and it has only practically been used for
one-dimensional benchmark test [50]. Therefore, the application of the
fully explicit scheme in high-dimensional spaces is not practicable. To
overcome this time-step restriction and retain the simplicity of the ex-
plicit method for the CH equation, we propose an explicit conservative
numerical scheme based on the Saul’yev method [51].

In Section 2, we describe the proposed explicit scheme. In Sec-
tion 3, extensive numerical tests are performed to validate our proposed
scheme. In Section 4, we discuss a possible extension of the proposed
method. The conclusion and future applications are given in Section 5.

2. Numerical solution algorithm

In this section, we introduce the fully discrete numerical algo-
rithms for solving the CH equation in detail. In Section 2.1, the two-
dimensional algorithm will be discussed. The straightforward extension
to the three-dimensional case will be given in Section 2.2.

2.1. Two-dimensional algorithm

We present the numerical solution algorithm for the CH equation in
the two-dimensional domain 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦). Let 𝛺ℎ = {(𝑥𝑖 =
𝑥 + ℎ(𝑖 − 0.5), 𝑦𝑗 = 𝐿𝑦 + ℎ(𝑗 − 0.5))|𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1,… , 𝑁𝑦}

be the discrete computational domain, where ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 =
(𝑅𝑦 − 𝐿𝑦)∕𝑁𝑦 is the uniform step size; 𝑁𝑥 and 𝑁𝑦 are the numbers of
he grid points in the 𝑥- and 𝑦-direction, respectively. Let 𝜙𝑛 be the
2

𝑖𝑗
umerical approximation of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡), where 𝛥𝑡 is the time step. Let
s start with the linear convex splitting scheme [52]:

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= 𝛥𝑑 ((𝜙𝑛𝑖𝑗 )
3 − 3𝜙𝑛𝑖𝑗 ) + 2𝛥𝑑𝜙𝑛+1𝑖𝑗 − 𝜖2𝛥2𝑑𝜙

𝑛+1
𝑖𝑗 , (1)

here

𝑑𝜙𝑖𝑗 =
𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗 − 4𝜙𝑖𝑗 + 𝜙𝑖,𝑗+1 + 𝜙𝑖,𝑗−1

ℎ2
,

𝛥2𝑑𝜙𝑖𝑗 =
𝛥𝑑𝜙𝑖+1,𝑗 + 𝛥𝑑𝜙𝑖−1,𝑗 − 4𝛥𝑑𝜙𝑖𝑗 + 𝛥𝑑𝜙𝑖,𝑗+1 + 𝛥𝑑𝜙𝑖,𝑗−1

ℎ2

= 1
ℎ4

[

𝜙𝑖+2,𝑗 + 𝜙𝑖−2,𝑗 + 𝜙𝑖,𝑗+2 + 𝜙𝑖,𝑗−2 + 2(𝜙𝑖+1,𝑗+1 + 𝜙𝑖+1,𝑗−1

+𝜙𝑖−1,𝑗+1 + 𝜙𝑖−1,𝑗−1) − 8(𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗 + 𝜙𝑖,𝑗+1 + 𝜙𝑖,𝑗−1) + 20𝜙𝑖𝑗
]

ere, (𝜙𝑛+1 − 𝜙𝑛)∕𝛥𝑡 = 𝜕𝜙∕𝜕𝑡 + 𝑂(𝛥𝑡) is first-order accurate approx-
imation in time, 𝛥𝑑𝜙 = 𝛥𝜙 + 𝑂(ℎ2) and 𝛥2𝑑𝜙 = 𝛥2𝜙 + 𝑂(ℎ2) are
econd-order accurate approximations in space because standard five-
oint difference stencil is adopted to discretize the Laplacian term. As
e refine time and spatial steps, i.e., 𝛥𝑡 → 0 and ℎ → 0, it is easy

to check that Eq. (1) and continuous partial differential equation are
consistent.

For simplicity of exposition, we use the following Neumann bound-
ary condition for all 𝑛:

𝜙𝑛−1,𝑗 = 𝜙𝑛2𝑗 , 𝜙
𝑛
0𝑗 = 𝜙𝑛1𝑗 , 𝜙

𝑛
𝑁𝑥+1,𝑗

= 𝜙𝑛𝑁𝑥𝑗 , 𝜙
𝑛
𝑁𝑥+2,𝑗

= 𝜙𝑛𝑁𝑥−1,𝑗 ,

for 𝑗 = 1,… , 𝑁𝑦,

𝜙𝑛𝑖,−1 = 𝜙𝑛𝑖2, 𝜙
𝑛
𝑖0 = 𝜙𝑛𝑖1, 𝜙

𝑛
𝑖,𝑁𝑦+1

= 𝜙𝑛𝑖𝑁𝑦 , 𝜙
𝑛
𝑖,𝑁𝑦+2

= 𝜙𝑛𝑖,𝑁𝑦−1,

for 𝑖 = 1,… , 𝑁𝑥.

By using the definitions of 𝛥𝑑𝜙𝑖𝑗 and 𝛥2𝑑𝜙𝑖𝑗 , the fully discrete form
of Eq. (1) can be expressed as:

𝜙𝑛+1𝑖𝑗

𝛥𝑡
=
𝜙𝑛𝑖𝑗
𝛥𝑡

+ 𝛥𝑑 ((𝜙𝑛𝑖𝑗 )
3 − 3𝜙𝑛𝑖𝑗 ) + 2

(𝜙𝑛+1𝑖+1,𝑗 − 𝜙
𝑛+1
𝑖𝑗

ℎ2
−
𝜙𝑛+1𝑖𝑗 − 𝜙𝑛+1𝑖−1,𝑗

ℎ2

+
𝜙𝑛+1𝑖,𝑗+1 − 𝜙

𝑛+1
𝑖𝑗

ℎ2
−
𝜙𝑛+1𝑖𝑗 − 𝜙𝑛+1𝑖,𝑗−1

ℎ2
)

− 𝜖2

ℎ2
(𝜙𝑛+1𝑖+2,𝑗 − 𝜙

𝑛+1
𝑖+1,𝑗

ℎ2

−
𝜙𝑛+1𝑖+1,𝑗 − 𝜙

𝑛+1
𝑖𝑗

ℎ2
+
𝜙𝑛+1𝑖+1,𝑗+1 − 𝜙

𝑛+1
𝑖+1,𝑗

ℎ2
−
𝜙𝑛+1𝑖+1,𝑗 − 𝜙

𝑛+1
𝑖+1,𝑗−1

ℎ2

+
𝜙𝑛+1𝑖𝑗 − 𝜙𝑛+1𝑖−1,𝑗

ℎ2
−
𝜙𝑛+1𝑖−1,𝑗 − 𝜙

𝑛+1
𝑖−2,𝑗

ℎ2
+
𝜙𝑛+1𝑖−1,𝑗+1 − 𝜙

𝑛+1
𝑖−1,𝑗

ℎ2

−
𝜙𝑛+1𝑖−1,𝑗 − 𝜙

𝑛+1
𝑖−1,𝑗−1

ℎ2
+
𝜙𝑛+1𝑖+1,𝑗+1 − 𝜙

𝑛+1
𝑖,𝑗+1

ℎ2
−
𝜙𝑛+1𝑖,𝑗+1 − 𝜙

𝑛+1
𝑖−1,𝑗+1

ℎ2

+
𝜙𝑛+1𝑖,𝑗+2 − 𝜙

𝑛+1
𝑖,𝑗+1

ℎ2
−
𝜙𝑛+1𝑖,𝑗+1 − 𝜙

𝑛+1
𝑖𝑗

ℎ2
+
𝜙𝑛+1𝑖+1,𝑗−1 − 𝜙

𝑛+1
𝑖,𝑗−1

ℎ2

−
𝜙𝑛+1𝑖,𝑗−1 − 𝜙

𝑛+1
𝑖−1,𝑗−1

ℎ2
+
𝜙𝑛+1𝑖𝑗 − 𝜙𝑛+1𝑖,𝑗−1

ℎ2
−
𝜙𝑛+1𝑖,𝑗−1 − 𝜙

𝑛+1
𝑖,𝑗−2

ℎ2
)

.

In two-dimensional space, the proposed Saul’yev method uses 8
cases of nested loops. Let us describe one case as an example.

For 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑖 = 1, 2,… , 𝑁𝑥, (2)

𝜙𝑛+1𝑖𝑗 = 1
𝑟

[𝜙𝑛𝑖𝑗
𝛥𝑡

+ 𝛥𝑑 ((𝜙𝑛𝑖𝑗 )
3 − 3𝜙𝑛𝑖𝑗 ) +

2
ℎ2

(

𝜙𝑛𝑖+1,𝑗 + 𝜙
𝑛+1
𝑖−1,𝑗 − 2𝜙𝑛𝑖𝑗

+𝜙𝑛𝑖,𝑗+1 + 𝜙
𝑛+1
𝑖,𝑗−1

)

− 𝜖2

ℎ4
[

𝜙𝑛𝑖+2,𝑗 + 𝜙
𝑛+1
𝑖−2,𝑗 + 𝜙

𝑛
𝑖,𝑗+2 + 𝜙

𝑛+1
𝑖,𝑗−2

+2(𝜙𝑛𝑖+1,𝑗+1 + 𝜙
𝑛
𝑖+1,𝑗−1 + 𝜙

𝑛
𝑖−1,𝑗+1 + 𝜙

𝑛+1
𝑖−1,𝑗−1)

− 8(𝜙𝑛𝑖+1,𝑗 + 𝜙
𝑛+1
𝑖−1,𝑗 + 𝜙

𝑛
𝑖,𝑗+1 + 𝜙

𝑛+1
𝑖,𝑗−1) + 10𝜙𝑛𝑖𝑗

]

]

,

here 𝑟 = 1∕𝛥𝑡 + 4∕ℎ2 + 10𝜖2∕ℎ4. We should note that we use a nested
oop in Eq. (2). For each outer loop 𝑗, the inner loop 𝑖 runs from 1 to
𝑁𝑥. Fig. 1 shows a schematic diagram of two-dimensional stencil.

The other 7 cases are as follows:

For 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1,

For 𝑗 = 𝑁 ,𝑁 − 1,… , 1, for 𝑖 = 1, 2,… , 𝑁 ,
𝑦 𝑦 𝑥



International Journal of Mechanical Sciences 217 (2022) 106985J. Yang et al.

F

s
c

𝜙

I
c
e

F

w
t
t
t

Fig. 1. Schematic diagram of two-dimensional stencil.

or 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, for 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1,

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 1, 2,… , 𝑁𝑦,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 1, 2,… , 𝑁𝑦,

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1.

Because the algorithm of Saul’yev-type method cannot strictly pre-
erve the total mass of the system, we adopt the following mass
orrection technique [15] after each temporal iteration:

𝑛+1
𝑖𝑗 = 𝜙𝑛+1𝑖𝑗 +

∑𝑁𝑥
𝑝=1

∑𝑁𝑦
𝑞=1(𝜙

0
𝑝𝑞 − 𝜙

𝑛+1
𝑝𝑞 )

∑𝑁𝑥
𝑝=1

∑𝑁𝑦
𝑞=1

√

𝐹 (𝜙𝑛+1𝑝𝑞 )

√

𝐹 (𝜙𝑛+1𝑖𝑗 ), (3)

which means the mass is added or subtracted at interface transition
region.

2.2. Three-dimensional algorithm

We propose numerical solution algorithm for the CH equation in
three-dimensional domain 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) × (𝐿𝑧, 𝑅𝑧). Let 𝛺ℎ =
{(𝑥𝑖 = 𝐿𝑥 + ℎ(𝑖 − 0.5), 𝑦𝑗 = 𝐿𝑦 + ℎ(𝑗 − 0.5), 𝑧𝑘 = 𝐿𝑧 + ℎ(𝑘 − 0.5))|𝑖 =
1,… , 𝑁𝑥, 𝑗 = 1,… , 𝑁𝑦, 𝑘 = 1,… , 𝑁𝑧} be the discrete computational
domain, where ℎ = (𝑅𝑥 −𝐿𝑥)∕𝑁𝑥 = (𝑅𝑦 −𝐿𝑦)∕𝑁𝑦 = (𝑅𝑧 −𝐿𝑧)∕𝑁𝑧 is the
uniform step size; 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are the numbers of the grid points
in the 𝑥-, 𝑦- and 𝑧-direction, respectively. Let 𝜙𝑛𝑖𝑗𝑘 be the numerical
approximation of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝑡). Let us start with the linear convex
splitting scheme [52]:

𝜙𝑛+1𝑖𝑗𝑘 − 𝜙𝑛𝑖𝑗𝑘
𝛥𝑡

= 𝛥𝑑 ((𝜙𝑛𝑖𝑗𝑘)
3 − 3𝜙𝑛𝑖𝑗𝑘) + 2𝛥𝑑𝜙𝑛+1𝑖𝑗𝑘 − 𝜖2𝛥2𝑑𝜙

𝑛+1
𝑖𝑗𝑘 , (4)

where

𝛥𝑑𝜙𝑖𝑗𝑘 = 1
ℎ2

(

𝜙𝑖+1,𝑗𝑘 + 𝜙𝑖−1,𝑗𝑘 + 𝜙𝑖,𝑗+1,𝑘 + 𝜙𝑖,𝑗−1,𝑘 + 𝜙𝑖𝑗,𝑘+1 + 𝜙𝑖𝑗,𝑘−1 − 6𝜙𝑖𝑗𝑘
)

,

𝛥2𝑑𝜙𝑖𝑗𝑘 = 1
ℎ2

(

𝛥𝑑𝜙𝑖+1,𝑗𝑘 + 𝛥𝑑𝜙𝑖−1,𝑗𝑘 + 𝛥𝑑𝜙𝑖,𝑗+1,𝑘 + 𝛥𝑑𝜙𝑖,𝑗−1,𝑘 + 𝛥𝑑𝜙𝑖𝑗,𝑘+1

+𝛥𝑑𝜙𝑖𝑗,𝑘−1 − 6𝛥𝑑𝜙𝑖𝑗𝑘
)

= 1
ℎ4

[

𝜙𝑖+2,𝑗𝑘 + 𝜙𝑖−2,𝑗𝑘 + 𝜙𝑖,𝑗+2,𝑘 + 𝜙𝑖,𝑗−2,𝑘 + 𝜙𝑖𝑗,𝑘+2 + 𝜙𝑖𝑗,𝑘−2
+2(𝜙𝑖+1,𝑗+1,𝑘 + 𝜙𝑖+1,𝑗−1,𝑘 + 𝜙𝑖+1,𝑗,𝑘+1 + 𝜙𝑖+1,𝑗,𝑘−1 + 𝜙𝑖−1,𝑗+1,𝑘
+𝜙𝑖−1,𝑗−1,𝑘 + 𝜙𝑖−1,𝑗,𝑘+1 + 𝜙𝑖−1,𝑗,𝑘−1 + 𝜙𝑖,𝑗+1,𝑘+1 + 𝜙𝑖,𝑗+1,𝑘−1
+𝜙𝑖,𝑗−1,𝑘+1 + 𝜙𝑖,𝑗−1,𝑘−1) − 12(𝜙𝑖+1,𝑗𝑘 + 𝜙𝑖−1,𝑗𝑘 + 𝜙𝑖,𝑗+1,𝑘
+𝜙𝑖,𝑗−1,𝑘 + 𝜙𝑖𝑗,𝑘+1 + 𝜙𝑖𝑗,𝑘−1) + 42𝜙𝑖𝑗𝑘

]

.

We use the following Neumann boundary condition for all 𝑛:

𝜙𝑛−1,𝑗𝑘 = 𝜙𝑛2,𝑗𝑘, 𝜙
𝑛
0,𝑗𝑘 = 𝜙𝑛1,𝑗𝑘, 𝜙

𝑛
𝑁𝑥+1,𝑗𝑘

= 𝜙𝑛𝑁𝑥 ,𝑗𝑘, 𝜙
𝑛
𝑁𝑥+2,𝑗𝑘

= 𝜙𝑛𝑁𝑥−1,𝑗𝑘,

for 𝑗 = 1,… , 𝑁𝑦, for 𝑘 = 1,… , 𝑁𝑧,

𝜙𝑛 = 𝜙𝑛 , 𝜙𝑛 = 𝜙𝑛 , 𝜙𝑛 = 𝜙𝑛 , 𝜙𝑛 = 𝜙𝑛 ,
3

𝑖,−1,𝑘 𝑖,2,𝑘 𝑖,0,𝑘 𝑖,1,𝑘 𝑖,𝑁𝑦+1,𝑘 𝑖,𝑁𝑦 ,𝑘 𝑖,𝑁𝑦+2,𝑘 𝑖,𝑁𝑦−1,𝑘
for 𝑖 = 1,… , 𝑁𝑥, for 𝑘 = 1,… , 𝑁𝑧,

𝜙𝑛𝑖𝑗,−1 = 𝜙𝑛𝑖𝑗,2, 𝜙
𝑛
𝑖𝑗,0 = 𝜙𝑛𝑖𝑗,1, 𝜙

𝑛
𝑖𝑗,𝑁𝑧+1

= 𝜙𝑛𝑖𝑗,𝑁𝑧 , 𝜙
𝑛
𝑖𝑗,𝑁𝑧+2

= 𝜙𝑛𝑖𝑗,𝑁𝑧−1,

for 𝑖 = 1,… , 𝑁𝑥, for 𝑗 = 1,… , 𝑁𝑦.

By using the definitions of 𝛥𝑑𝜙𝑖𝑗𝑘 and 𝛥2𝑑𝜙𝑖𝑗𝑘, Eq. (4) can be recast to
be:
𝜙𝑛+1𝑖𝑗𝑘

𝛥𝑡
=
𝜙𝑛𝑖𝑗𝑘
𝛥𝑡

+ 𝛥𝑑 ((𝜙𝑛𝑖𝑗𝑘)
3 − 3𝜙𝑛𝑖𝑗𝑘) +

2
ℎ2

(

𝜙𝑛+1𝑖+1,𝑗𝑘 + 𝜙
𝑛+1
𝑖−1,𝑗𝑘 + 𝜙

𝑛+1
𝑖,𝑗+1,𝑘 + 𝜙

𝑛+1
𝑖,𝑗−1,𝑘

+𝜙𝑛+1𝑖𝑗,𝑘+1 + 𝜙
𝑛+1
𝑖𝑗,𝑘−1 − 6𝜙𝑛+1𝑖𝑗𝑘

)

− 𝜖2

ℎ4
[

𝜙𝑛+1𝑖+2,𝑗𝑘 + 𝜙
𝑛+1
𝑖−2,𝑗𝑘 + 𝜙

𝑛+1
𝑖,𝑗+2,𝑘 + 𝜙

𝑛+1
𝑖,𝑗−2,𝑘

+𝜙𝑛+1𝑖𝑗,𝑘+2 + 𝜙
𝑛+1
𝑖𝑗,𝑘−2 + 2(𝜙𝑛+1𝑖+1,𝑗+1,𝑘 + 𝜙

𝑛+1
𝑖+1,𝑗−1,𝑘 + 𝜙

𝑛+1
𝑖+1,𝑗,𝑘+1 + 𝜙

𝑛+1
𝑖+1,𝑗,𝑘−1

+𝜙𝑛+1𝑖−1,𝑗+1,𝑘 + 𝜙
𝑛+1
𝑖−1,𝑗−1,𝑘 + 𝜙

𝑛+1
𝑖−1,𝑗,𝑘+1 + 𝜙

𝑛+1
𝑖−1,𝑗,𝑘−1 + 𝜙

𝑛+1
𝑖,𝑗+1,𝑘+1

+𝜙𝑛+1𝑖,𝑗+1,𝑘−1 + 𝜙
𝑛+1
𝑖,𝑗−1,𝑘+1 + 𝜙

𝑛+1
𝑖,𝑗−1,𝑘−1) − 12(𝜙𝑛+1𝑖+1,𝑗𝑘 + 𝜙

𝑛+1
𝑖−1,𝑗𝑘 + 𝜙

𝑛+1
𝑖,𝑗+1,𝑘

+𝜙𝑛+1𝑖,𝑗−1,𝑘 + 𝜙
𝑛+1
𝑖𝑗,𝑘+1 + 𝜙

𝑛+1
𝑖𝑗,𝑘−1) + 42𝜙𝑛+1𝑖𝑗𝑘

]

n three-dimensional space, the proposed Saul’yev method uses 48
ases of nested loops including Eq. (5). Let us describe one case as an
xample.

or 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑘 = 1, 2,… , 𝑁𝑧, (5)

𝜙𝑛+1𝑖𝑗𝑘 = 1
𝑟

[𝜙𝑛𝑖𝑗𝑘
𝛥𝑡

+ 𝛥𝑑 ((𝜙𝑛𝑖𝑗𝑘)
3 − 3𝜙𝑛𝑖𝑗𝑘) +

2
ℎ2

(

𝜙𝑛𝑖+1,𝑗𝑘 + 𝜙
𝑛+1
𝑖−1,𝑗𝑘 + 𝜙

𝑛
𝑖,𝑗+1,𝑘

+𝜙𝑛+1𝑖,𝑗−1,𝑘 + 𝜙
𝑛
𝑖𝑗,𝑘+1 + 𝜙

𝑛+1
𝑖𝑗,𝑘−1 − 3𝜙𝑛𝑖𝑗𝑘

)

− 𝜖2

ℎ4
[

𝜙𝑛𝑖+2,𝑗𝑘 + 𝜙
𝑛+1
𝑖−2,𝑗𝑘

+𝜙𝑛𝑖,𝑗+2,𝑘 + 𝜙
𝑛+1
𝑖,𝑗−2,𝑘 + 𝜙

𝑛
𝑖𝑗,𝑘+2 + 𝜙

𝑛+1
𝑖𝑗,𝑘−2 + 2(𝜙𝑛𝑖+1,𝑗+1,𝑘 + 𝜙

𝑛
𝑖+1,𝑗−1,𝑘

+𝜙𝑛𝑖+1,𝑗,𝑘+1 + 𝜙
𝑛
𝑖+1,𝑗,𝑘−1 + 𝜙

𝑛
𝑖−1,𝑗+1,𝑘 + 𝜙

𝑛+1
𝑖−1,𝑗−1,𝑘 + 𝜙

𝑛
𝑖−1,𝑗,𝑘+1

+𝜙𝑛+1𝑖−1,𝑗,𝑘−1 + 𝜙
𝑛
𝑖,𝑗+1,𝑘+1 + 𝜙

𝑛
𝑖,𝑗+1,𝑘−1 + 𝜙

𝑛
𝑖,𝑗−1,𝑘+1 + 𝜙

𝑛+1
𝑖,𝑗−1,𝑘−1)

− 12(𝜙𝑛𝑖+1,𝑗𝑘 + 𝜙
𝑛+1
𝑖−1,𝑗𝑘 + 𝜙

𝑛
𝑖,𝑗+1,𝑘 + 𝜙

𝑛+1
𝑖,𝑗−1,𝑘 + 𝜙

𝑛
𝑖𝑗,𝑘+1 + 𝜙

𝑛+1
𝑖𝑗,𝑘−1) + 21𝜙𝑛𝑖𝑗𝑘

]

]

,

here 𝑟 = 1∕𝛥𝑡 + 6∕ℎ2 + 21𝜖2∕ℎ4. Fig. 2(a) shows the direction of the
hree-dimensional nested loop. In Fig. 2(b), open circles and bullets are
he positions where the numerical solutions are defined at 𝑛 and 𝑛 + 1
imes, respectively. We should note that we use a nested loop in Eq. (5).

The other 47 cases are as follows:

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑘 = 1, 2,… , 𝑁𝑘,

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑘 = 𝑁𝑘, 𝑁𝑘 − 1,… , 1,

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, for 𝑘 = 1, 2,… , 𝑁𝑘,

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, for 𝑘 = 𝑁𝑘, 𝑁𝑘 − 1,… , 1,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑘 = 1, 2,… , 𝑁𝑘,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑘 = 𝑁𝑘, 𝑁𝑘 − 1,… , 1,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1 for 𝑘 = 1, 2,… , 𝑁𝑘,

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1 for 𝑘 = 𝑁𝑘, 𝑁𝑘 − 1,… , 1,

⋮

For 𝑘 = 𝑁𝑧, 𝑁𝑧 − 1,… , 1, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, for 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1.

Because the algorithm of Saul’yev-type method cannot strictly pre-
serve the total mass of the system, we adopt the following mass
correction technique [15] after each temporal iteration:

𝜙𝑛+1𝑖𝑗𝑘 = 𝜙𝑛+1𝑖𝑗𝑘 +

∑𝑁𝑥
𝑝=1

∑𝑁𝑦
𝑞=1

∑𝑁𝑧
𝑠=1(𝜙

0
𝑝𝑞𝑠 − 𝜙

𝑛+1
𝑝𝑞𝑠 )

∑𝑁𝑥
𝑝=1

∑𝑁𝑦
𝑞=1

∑𝑁𝑧
𝑠=1

√

𝐹 (𝜙𝑛+1𝑝𝑞𝑠 )

√

𝐹 (𝜙𝑛+1𝑖𝑗𝑘 ),

which means the mass is added or subtracted at the interface transition
region.

Remark 2.1. We briefly describe the technical contribution of fully
discrete schemes on the CH equation. For temporal discretization, the
well-known linear convex splitting approach is adopted to treat the
nonlinear potential. More precisely, the nonlinear part is explicitly
treated and the linear part is implicitly treated. Thus, we avoid the lin-
earization and iteration in each time step. To avoid iteratively calculate
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Fig. 2. Schematic illustration of (a) 3D nested loop and (b) 3D stencil.
Fig. 3. Evolution of initially separated components with sharp shapes. From (a)–(d), the snapshots are at 𝑡 = 0, 1.56, 3.13, and 11.72. Because the CH model dissipates the free
energy by minimizing the interfacial length, the sharp corners become smooth and finally merge with each other to form the circular shape.
the linear terms with Laplacian operators, we consider the Saul’yev ap-
proach which is an alternating direction explicit (ADE) type method. It
should be noted that the Saul’yev method has been widely used for the
diffusion equation and it allows relatively large time steps to perform
stable numerical computation [53,54]. The spatial discretization is
performed by using the standard finite difference method with second-
order accuracy in space. In each nested loop, the computation follows
a step-by-step manner because all unknown variables are explicitly
treated. In this sense, the numerical implementation is highly efficient.

Remark 2.2. In the existing literature, extensive stability and conver-
gence analysis of the numerical schemes for the CH-type equations
have been investigated. Please refer to [42,55–57] for some details.
In the present work, we propose a novel explicit scheme for the CH
equation by using the linear stabilization method and the Saul’yev finite
difference discretization. Although the stability and error estimations
are interesting and meaningful for the CH equation, it is not trivial
for the proposed scheme because an extra mass correction technique
is adopted after each computation. Herein, we aim to investigate the
good performance of the proposed scheme, a detailed analysis will be
conducted in future work.

3. Computational tests

In this section, we perform various numerical experiments to val-
idate the proposed scheme. In Section 3.1, we first investigate the
growth rate in short-time simulation. In Section 3.2, we show the
advantage of the proposed scheme by comparing with the fully explicit
scheme. The temporally accuracy and numerical stability are consid-
ered in Section 3.3. The 2D phase separation in regular and complex
4

Fig. 4. Required CPU time from the initial state to the equilibrium state. Here, the
solid line with open circle markers represents the CPU cost with time evolution. The
open circle markers represent the specific moments. The dashed line is a linear fitting,
which indicates the CPU cost is approximately linear.

domains are investigated in Sections 3.4 and 3.5. The 3D simulations
are performed in Sections 3.6 and 3.7. Before the start of following
contents, we use the notation [50]:

𝜖 = 𝜖𝑚 = 𝑚ℎ

2
√

2 tanh−1(0.9)
≈ 0.24015𝑚ℎ,

which indicates the diffuse interface approximately occupies 𝑚 grids.

3.1. Growth rate

First of all, we consider the linearization of the one-dimensional CH
equation around the solution 𝜙 = 0, i.e.,

𝜙𝑡 = 𝛥(−𝜙 − 𝜖2𝛥𝜙). (6)

Let 𝜙(𝑥, 𝑡) = 𝛼(𝑡) cos(𝑘𝜋𝑥). From Eq. (6), we have

𝛼′(𝑡) = (𝑘𝜋)2(1 − (𝜖𝑘𝜋)2)𝛼(𝑡). (7)
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Fig. 5. Snapshots computed by the fully explicit scheme with respect to (a) �̄� = 0.3 and (c) �̄� = 0. The corresponding results computed by our proposed scheme are shown in
(b) and (d). From the left to right in each column, the results are at 𝑡 = 0.0095, 0.0238, and 0.0477. From the comparisons, it can be observed that the results obtained by the
proposed scheme and fully explicit scheme are very consistent.
The solution of Eq. (7) is 𝛼(𝑡) = 𝛼(0)𝑒𝜆𝑡, where the analytical growth
rate 𝜆 is expressed as 𝜆 = (𝑘𝜋)2(1 − (𝜖𝑘𝜋)2). Then, let

�̂� = 1
𝑇

log

(

‖𝜙𝑁𝑡‖𝑑∞
𝛼(0)

)

be the computational growth rate. Here, 𝜙𝑁𝑡 is the solution at final
time, ‖ ⋅ ‖𝑑∞ represents the discrete maximum norm. In this simulation,
we use

𝜙(𝑥, 0) = 0.01 cos(𝑘𝜋𝑥),

in the domain 𝛺 = (0, 1). Here, 𝜖 = 𝜖16, 𝛼(0) = 0.01, ℎ = 1∕200,
and 𝛥𝑡 = 0.001ℎ2 are used. The computations are performed until
𝑡 = 10000𝛥𝑡 for 𝑘 = 1, 2,… , 20. The growth rates listed in Table 1
indicate that the computational results are in close conformity with the
closed-form solutions.

3.2. Comparison with the fully explicit scheme

It is well known that the restriction of the time step of the fully
explicit scheme for the CH equation is of 𝑂(ℎ4). Therefore, the fully
explicit scheme is very inefficient for the CH equation. To show the
5

Table 1
Analytical and numerical growth rates with respect to various values of 𝑘.

Mode 𝑘 2 6 10 14 18

Analytical 38.9032 308.7097 627.4228 553.2427 −576.5304
Numerical 37.6525 302.7789 630.5030 571.1664 −466.6141

efficiency of the proposed explicit scheme, we investigate the possible
maximum time steps 𝛥𝑡max which allow the stable computation with
respect to various mesh sizes. The initial condition is

𝜙(𝑥, 𝑦, 0) = tanh

(

−
max(|𝑥 + 0.15| − 0.1, |𝑦| − 0.35)

√

2𝜖

)

+ tanh

(

−
max(|𝑥 − 0.15| − 0.1, |𝑦| − 0.35)

√

2𝜖

)

+ 1

in the domain 𝛺 = (−1, 1)2. The increasingly finer mesh sizes ℎ =
1∕16, 1∕32, 1∕64, and 1∕128 are considered. For each mesh size, we use
𝜖 = 𝜖4. All computations are performed until the numerical equilibrium
state is reached, i.e., ‖𝜙𝑛 − 𝜙𝑛−1‖𝑑

𝐿2 ≤ 10−5, where ‖ ⋅ ‖𝑑
𝐿2 is the dis-

crete 𝐿2-norm. Fig. 3 displays the snapshots at specific computational
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Fig. 6. Energy curves computed by the fully explicit scheme and our proposed scheme.
More precisely, the solid line with open circle markers represents the energy computed
by the fully explicit scheme with �̄� = 0. The dashed line with open circle markers
represents the energy computed by the fully explicit scheme with �̄� = 0.3. The solid
line with open diamond markers represents the energy computed by the proposed
scheme with �̄� = 0. The dashed line with open diamond markers represents the energy
computed by the proposed scheme with �̄� = 0.3. It can be observed that the energy
curves computed by two different schemes are very consistent.

Table 2
Values of maximum time step 𝛥𝑡max guaranteeing stable computation.

Mesh size ℎ 1∕16 1∕32 1∕64 1∕128

Present scheme 7.80e−3 9.77e−4 7.32e−4 2.44e−4
Fully explicit scheme 3.05e−5 1.91e−6 1.19e−7 7.45e−9

moments with a finer mesh size ℎ = 1∕128, we find that the system
approaches the equilibrium state by shrinking the length of interface.
In Fig. 4, the required CPU time from initial state to equilibrium
state is plotted by the solid line with open circle markers. The linear
relationship is represented by the dashed line. It can be observed that
the CPU cost is approximately linear.

Table 2 shows 𝛥𝑡max for different mesh sizes. We can observe that
the maximum time step of our proposed scheme is of 𝑂(ℎ2), while the
restriction of time step of fully explicit scheme is of 𝑂(ℎ4). In actual
computation, we note that 𝛥𝑡 ≈ 𝑂(ℎ2) is a possible time step to perform
long-time simulation.

Next, we compare the CPU time required by the proposed scheme
and the fully explicit scheme. The domain 𝛺 = (−1, 1)2 is used and the
following initial condition is considered: 𝜙(𝑥, 𝑦, 0) = 0.2 cos(𝜋𝑥) cos(𝜋𝑦).
The other parameters are unchanged. Let a finer time step be 𝛿𝑡 =
0.5ℎ4, we use 𝛿𝑡 and 𝛥𝑡 = 100𝛿𝑡 for the fully explicit scheme and our
proposed scheme, respectively. The computations are conducted until
𝑡 = 32000𝛿𝑡. We define the ratio as 𝑅𝑡 = 𝐶𝑃𝑈 𝑒∕𝐶𝑃𝑈 , where 𝐶𝑃𝑈 𝑒

and 𝐶𝑃𝑈 represent the total CPU time required by the fully explicit
scheme and the proposed scheme, respectively. From the values listed
in Table 3, we can find that our proposed scheme almost saves 100
times computational time compared to the fully explicit scheme. If
mesh size is not enough, the computational cost for the grid points in
the computational domain may be not dominant, thus the ratio is less
6

Fig. 8. Evolutions of energy curves with respect to different time steps. Here, the black
dashed line, red dot–dashed line, and blue solid line corresponds to 𝛥𝑡 = 2.5e-4, 5.0e-5,
and 1.0e-5, respectively. As we can see, the energy curves are non-increasing even if
larger time steps are used.

Fig. 9. Average CPU cost with respect to different mesh sizes.

Table 3
CPU costs of our proposed scheme and the fully explicit scheme.

Mesh size ℎ 1∕16 1∕32 1∕64 1∕128

𝐶𝑃𝑈 𝑒 4.157 12.952 51.734 228.754
𝑅𝑡 33.256 42.327 84.810 101.308
𝐶𝑃𝑈 0.125 0.306 0.610 2.258

than 100. However, the ratio converges to 100 as the refinement of mesh
size increases.

Then, we simulate the pattern of phase separation in the domain
𝛺 = (−1, 1)2. The initial condition is defined to be 𝜙(𝑥, 𝑦, 0) = �̄� +
0.2 rand(𝑥, 𝑦), where rand(𝑥, 𝑦) represents the random number between
−1 and 1. Here, ℎ = 1∕64 and 𝜖 = 𝜖4 are used. For the fully explicit
scheme, we use 𝛿𝑡 = ℎ4 and 𝛥𝑡 = 25𝛿𝑡 is used for our proposed scheme.
In Fig. 5(a) and (c), we display the snapshots calculated by the fully
explicit scheme with respect to �̄� = 0.3 and �̄� = 0, respectively. The
corresponding results calculated by our proposed scheme are displayed
in Fig. 5(b) and (d). As we can observe, the patterns are similar with
each other. Let us define the discrete energy at 𝑛th time level as

𝑑 (𝜙𝑛) = ℎ2
𝑁𝑥
∑

𝑁𝑦
∑

[

𝐹 (𝜙𝑛𝑖𝑗 ) +
𝜖2

2

(

(𝜙𝑛𝑖+1,𝑗 − 𝜙
𝑛
𝑖𝑗 )

2

2
+

(𝜙𝑛𝑖,𝑗+1 − 𝜙
𝑛
𝑖𝑗 )

2

2

)]

.

𝑖=1 𝑗=1 ℎ ℎ
Fig. 7. (a) is the initial state. The snapshots at 𝑡 = 0.2 with respect to 𝛥𝑡 = 2.5e-4, 5.0e-5, and 1.0e-5 are shown in (b), (c), and (d), respectively. Here, we can find that the
numerical solution is stable even if larger time steps are used. To obtain an accurate result, a smaller time step is still necessary.
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Fig. 10. Snapshots with respect to �̄� = 0.2 (the top row) and �̄� = 0 (the bottom row). The computational moments are illustrated under each figure. With even concentration
(i.e., �̄� = 0), the co-continuous pattern evolves. On the contrary, the droplet patterns can be observed when one component is dominant. These coarsening processes occur due to
the minimization of free energy of the system.
Fig. 11. Evolutions of (a) normalized energy curves and (b) average concentrations. More precisely, the solid and dashed lines represent the energy curves with respect to �̄� = 0
and �̄� = 0.2 in (a). In (b), the average concentrations for �̄� = 0 and �̄� = 0.2 are represented by the solid line with open circle markers and solid line with open diamond markers,
respectively. We observe that the free energy curves are non-increasing and concentrations are conserved in time.
Fig. 12. Required CPU time for 2D phase separation at specific moments. Here, the
black solid line with open circle markers represents the CPU cost with respect to �̄� = 0.
The red dashed line with star markers represents the CPU cost with respect to �̄� = 0.2.
It can be observed that the CPU costs are similar and approximately linear.

The evolutions of normalized energy 𝑑 (𝜙𝑛)∕𝑑 (𝜙0) are shown in Fig. 6.
The results indicate the energy evolutions are almost same even if the
time step for our proposed scheme is 25 times larger than that for
the fully explicit scheme. We list the CPU times required by the fully
explicit scheme and the proposed scheme in Table 4. It can be observed
that the proposed scheme obviously saves computational costs.
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Table 4
Required CPU costs for the fully explicit scheme and the proposed scheme.

Average concentration �̄� = 0 �̄� = 0.3

Fully explicit scheme 8072.8398 8103.7432
Proposed scheme 1257.1004 1301.8472

3.3. Accuracy, stability, and computational complexity

Although the linear convex splitting method in Eq. (1) has first-
order accuracy in time, the theoretical accurate analysis for the pro-
posed scheme is still an open question because we add an extra mass
correction technique, Eq. (3), after each computation. We herein per-
form a numerical experiment to verify the temporal accuracy. The
domain 𝛺 = (−1, 1)2 is used. The initial condition is defined as

𝜙(𝑥, 𝑦, 0) = tanh

(

0.3 −
√

(𝑥 − 0.3)2 + 𝑦2
√

2𝜖

)

+ tanh

(

0.3 −
√

(𝑥 + 0.3)2 + 𝑦2
√

2𝜖

)

+ 1. (8)

We set ℎ = 1∕128 and 𝜖 = 𝜖6. Because the exact solution is hard to
find, we use the reference solution by using a small enough time step
𝛥𝑡𝑓 = 0.01ℎ2. We use increasingly coarser time steps 𝛥𝑡 = 16𝛥𝑡𝑓 , 32𝛥𝑡𝑓 ,
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Fig. 13. Schematic illustrations of actually computational domain 𝛺in. The cube region is the whole domain 𝛺. The exterior region is 𝛺out = 𝛺∕𝛺in. We only update 𝜙 in 𝛺in
(shaded region) and set 𝜙 = 0 in 𝛺out.
Source: The schematic diagrams are adopted from Shin et al. [58] with the permission of Hindawi press.
Fig. 14. Snapshots of phase separation in complex regions. The top, middle, and bottom rows illustrate the results in a disk region, Kielder Water in northern Britain, and Lake
Inari in Fennoscandia, respectively.
8
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Fig. 15. Evolutions of discrete energy functional with respect to different average concentrations: (a) �̄� = −0.4 and (b) �̄� = 0. Here, the solid lines represent the energy curves,
the open circle markers represent the specific moments. The insets show the snapshots of zero level set of 𝜙 at 𝑡 = 0.096, 0.384, 1.008, and 1.728 (from the left to right). The
energies are decreasing with the evolutions of phase coarsening.
Table 5
𝐿2-errors and convergence rates with respect to different time steps at 𝑡 = 0.0013. The
reference numerical solution is obtained by using 𝛥𝑡𝑓 = 0.01ℎ2.

Time step 𝛥𝑡 64𝛥𝑡𝑓 32𝛥𝑡𝑓 16𝛥𝑡𝑓

𝐿2-error 2.45e−2 1.44e−2 6.30e−3
rate 0.77 1.19

and 64𝛥𝑡𝑓 to perform the simulations until 𝑡 = 0.0013. Table 5 shows the
𝐿2-errors and convergence rates. As we can see, the proposed scheme
still achieves first-order accuracy in time.

For the proposed Saul’yev scheme with mass correction, the uncon-
ditional energy stability of the CH equation is not trivial to estimate.
In this sense, we investigate the numerical stability by performing the
simulation with the initial condition, Eq. (8), and different time steps.
Fig. 7(a) shows the initial state, (b), (c), and (d) show the snapshots
at 𝑡 = 0.2 with 𝛥𝑡 = 2.5e-4, 5.0e-5, and 1.0e-5, respectively. As we can
observe, the numerical results do not blow up and this indicates that the
proposed scheme is stable even if larger time steps are adopted. Fig. 8
plots the evolutions of free energy, we can observe that the energies
are decreasing for all different time steps.

Next, we estimate the computational complexity of the proposed
scheme which is a Gauss–Seidel type method. For the convenience of
description, the cost of performing one relaxation sweep is defined as
a work unit (WU) [59]. In the whole computation, the computational
complexity of the proposed scheme is estimated to be less than 2 WU
because the cost of the mass correction step is expected to be less than
WU. We also perform the simulations with initial condition (8) and
9

Fig. 16. Required CPU costs for the 3D phase separation at specific moments. Here,
the black solid line with open circle markers represents the CPU cost with respect to
�̄� = 0. The red dashed line with star markers represents the CPU cost with respect to
�̄� = −0.4. It can be observed that the CPU costs are similar and approximately linear.

Fig. 17. Computational domains with (a) sphere and (b) torus shapes.
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Fig. 18. Snapshots of 3D phase separation in sphere domain (top row) and torus domain (bottom row). The computational moments are illustrated under each figure. The red
and blue regions are occupied by two different moments. With time evolution, the co-continuous patterns can be observed. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
different mesh sizes: 16, 32, 64, 128, and 256. The average CPU cost with
respect to different mesh sizes is plotted in Fig. 9. With the refinement
of mesh size, the average CPU cost obviously increases.

3.4. Coarsening dynamics with different concentrations

Next, we investigate the phase separations with different concentra-
tions by using our proposed scheme. In this subsection, we consider the
following initial condition 𝜙(𝑥, 𝑦, 0) = �̄� + 0.01rand(𝑥, 𝑦) in the domain
𝛺 = (−1, 1)2. The mesh size ℎ = 1∕128 and the time step 𝛥𝑡 = ℎ2 are
used.

The simulations are performed until 𝑡 = 1.5625. The top and the
bottom rows in Fig. 10 illustrate the snapshots with respect to �̄� = 0.2
and �̄� = 0, respectively. As we can see, the lamella patterns form as
�̄� = 0 and the droplet patterns form as �̄� = 0.2, these phenomena
are typical in the CH dynamics and have been reported in previous
works [60]. In Fig. 11(a) and (b), we plot the evolutions of normalized
energy and average concentrations, it can be found that the discrete
total energy is dissipative and the mean of 𝜙𝑛 is constant. In Fig. 12,
we plot the evolution of CPU costs with respect to �̄� = 0 (black solid
line with open circle markers) and �̄� = 0.2 (red dashed line with star
markers). We can observe that the CPU costs are approximately linear.
The difference of concentration does not obviously affect the CPU time.

3.5. Coarsening dynamics in complex domains

Next, we investigate the phase separation in various domains with
complex shapes. Here, we consider three different regions, such as a
disk with radius 𝑅 = 0.8, Kielder Water in northern Britain, and Lake
Inari in northern Fennoscandia, which are embedded in the whole
domains 𝛺1 = (−1, 1)2, 𝛺2 = (0, 500) × (0, 467), and 𝛺3 = (0, 500) ×
(0, 494), respectively. We use ℎ = 1∕128 for the simulation in the disk
region and use ℎ = 1 for the simulations in the rest two regions. The
initial condition is defined to be 𝜙(𝑥, 𝑦, 0) = 0.01rand(𝑥, 𝑦). The other
parameters are 𝛥𝑡 = ℎ2 and 𝜖 = 𝜖4. In the exterior regions, we fix
𝜙(𝑥, 𝑦, 𝑡) = 0, which effectively plays a role of the Dirichlet boundary
condition and the computations are only updated inside the irregular
regions. The schematic illustrations are shown in Fig. 13. Fig. 13(a)
illustrates the actually computational domain 𝛺in and exterior region
𝛺out. The solid line indicates the boundary of complex region. We only
update 𝜙 in the shaded regions and set 𝜙 = 0 in the white regions
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Table 6
Required CPU costs for the 2D phase separation in disk regions, Kielder Water in
northern Britain, and Lake Inari in Fennoscandia.

Complex regions: disk Kielder Water Lake Inari

CPU time: 9.8553 46.5872 90.4428

(see Fig. 13(b)). The top, middle, and bottom rows in Fig. 14 display
the snapshots of phase separation in three different regions. It can be
observed that the coarsening phenomena appear in various complex
regions. In Table 6, the required CPU costs with respect to the phase
separation in disk region, Kielder Water in northern Britain, and Lake
Inari in Fennoscandia are listed.

3.6. Three-dimensional coarsening dynamics with different concentrations

In this subsection, we investigate three-dimensional phase separa-
tion with different concentrations. We use the following initial condi-
tion 𝜙(𝑥, 𝑦, 𝑧, 0) = �̄� + 0.1 rand(𝑥, 𝑦, 𝑧) in the domain 𝛺 = (−1, 1)3. We
use ℎ = 1∕50, 𝛥𝑡 = 0.01ℎ, 𝜖 = 𝜖4 and simulations are performed until
𝑡 = 2. Fig. 15 shows the time discrete energy and numerical solutions
with (a) �̄� = −0.4 and (b) �̄� = 0, respectively. In Fig. 16, we plot the
required CPU costs with respect to �̄� = 0 (black solid line with open
circle markers) and �̄� = −0.4 (red dashed line with star markers). We
find that the CPU costs are approximately linear and the difference of
concentration does not obviously affect the computational costs.

3.7. Three-dimensional phase separation in arbitrarily shaped domains

In this subsection, we consider the phase separation in various
shaped domains in three-dimensional space. The computational domain
is set as 𝛺 = (0, 1)3. The initial condition is defined as

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.1rand(𝑥, 𝑦, 𝑧). (9)

Here, we use ℎ = 1∕128, 𝛥𝑡 = 0.2ℎ2, 𝜖 = 𝜖4. First, we consider the sphere
and torus domains which are defined by

𝜓(𝑥, 𝑦, 𝑧) =
√

(𝑥 − 0.5)2 + (𝑦 − 0.5)2 + (𝑧 − 0.5)2 − 0.4 < 0, (10)

𝜓(𝑥, 𝑦, 𝑧) =
√

(
√

(𝑥 − 0.5)2 + (𝑦 − 0.5)2 − 0.3)2 + (𝑧 − 0.5)2 − 0.15 < 0.(11)
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Fig. 19. 3D phase separation in complex domains. Here, the Schwarz P, Schwarz D, and Schwarz G domains are shown in the left, middle, and right columns of (a). From (b)–(d),
the snapshots are at 𝑡 = 0.0059, 0.0352, and 0.1113. The red and blue regions are occupied by two different components. With time evolution, the co-continuous patterns can be
observed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The schematic illustrations of sphere and torus domains are shown in
Fig. 17(a) and (b), respectively.

The top and bottom rows of Fig. 18 display the phase evolutions at
different moments. In the simulations, we set 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 0 outside the
sphere and torus domains.

Next, we consider the following three marker functions:

𝜓(𝑥, 𝑦, 𝑧) = cos(2𝜋𝑥) + cos(2𝜋𝑦) + cos(2𝜋𝑧) < 0,

𝜓(𝑥, 𝑦, 𝑧) = cos(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑧) − sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) < 0,

𝜓(𝑥, 𝑦, 𝑧) = sin(2𝜋𝑥) cos(2𝜋𝑦) + sin(2𝜋𝑧) cos(2𝜋𝑥) + sin(2𝜋𝑦) cos(2𝜋𝑧) < 0,

which represent the Schwarz P, Schwarz D, and Schwarz G domains,
respectively [61]. In the simulations, we set 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 0 outside the
complex domains. The top row of Fig. 19 illustrates the Schwarz P,
Schwarz D, and Schwarz G domains. As we can observe, the coarsen-
ing dynamics can be well simulated in various complex domains. In
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Table 7
Required CPU costs for the 3D phase separation in sphere, torus, Schwarz P, Schwarz
D, and Schwarz G domains.

Complex regions: sphere torus Schwarz P Schwarz D Schwarz G

CPU time: 1389.4363 949.2869 3226.2981 3396.3449 3252.1819

Table 7, we plot the required CPU costs with respect to the 3D phase
separation in sphere, torus, Schwarz P, Schwarz D, and Schwarz G
domains.

4. Discussion

In practical computation, a temporally first-order accurate scheme
is not satisfactory. Therefore, it is natural to consider temporally
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higher-order accurate numerical schemes such as a temporally second-
order accurate explicit conservative Saul’yev finite difference numerical
scheme. We suggest a possible extension of the current approach to a
temporally second-order method based on the Crank–Nicolson/Adams–
Bashforth (CNAB) scheme. To derive a temporally second-order accu-
rate explicit conservative Saul’yev finite difference scheme, let us start
from a two-dimensional CNAB scheme for the CH equation:

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= 𝛥𝑑
[ 3
2

(

(𝜙𝑛𝑖𝑗 )
3 − 𝜙𝑛𝑖𝑗

)

− 1
2

(

(𝜙𝑛−1𝑖𝑗 )3 − 𝜙𝑛−1𝑖𝑗

)

+ 𝜖
2

2

(

𝛥𝑑𝜙
𝑛+1
𝑖𝑗 + 𝛥𝑑𝜙𝑛𝑖𝑗

)

]

. (12)

Then, we have one case of eight cases of nested loops:

For 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑖 = 1, 2,… , 𝑁𝑥, (13)

𝜙𝑛+1𝑖𝑗 = 1
𝑟

{𝜙𝑛𝑖𝑗
𝛥𝑡

+ 𝛥𝑑

[

3
2

(

(𝜙𝑛𝑖𝑗 )
3 − 𝜙𝑛𝑖𝑗

)

− 1
2

(

(𝜙𝑛−1𝑖𝑗 )3 − 𝜙𝑛−1𝑖𝑗

)

+ 𝜖2

2
𝛥𝑑𝜙

𝑛
𝑖𝑗

]

+ 𝜖2

2ℎ4
[

𝜙𝑛𝑖+2,𝑗 + 𝜙
𝑛+1
𝑖−2,𝑗 + 𝜙

𝑛
𝑖,𝑗+2 + 𝜙

𝑛+1
𝑖,𝑗−2 + 2(𝜙𝑛𝑖+1,𝑗+1 + 𝜙

𝑛
𝑖+1,𝑗−1

+𝜙𝑛𝑖−1,𝑗+1 + 𝜙
𝑛+1
𝑖−1,𝑗−1) − 8(𝜙𝑛𝑖+1,𝑗 + 𝜙

𝑛+1
𝑖−1,𝑗 + 𝜙

𝑛
𝑖,𝑗+1 + 𝜙

𝑛+1
𝑖,𝑗−1) + 10𝜙𝑛𝑖𝑗

]}

,

where 𝑟 = 1∕𝛥𝑡 + 5𝜖2∕ℎ4. In addition, we take the mass conservative
correction step, Eq. (3). We note that this scheme is a two-step scheme,
i.e., we need the numerical solutions (𝜙𝑛, 𝜙𝑛−1) at times 𝑡 = 𝑛𝛥𝑡 and
𝑡 = (𝑛 − 1)𝛥𝑡 to obtain the numerical approximation (𝜙𝑛+1) at time
𝑡 = (𝑛 + 1)𝛥𝑡. Given the initial condition (𝜙0), we compute (𝜙1) at time
𝑡 = 𝛥𝑡 by using the first-order scheme with a subcycling technique. For
example, we take four time step iterations with a smaller time 𝛥𝑡∕4 to
obtain the numerical solution at 𝑡 = 𝛥𝑡 from the given initial condition.

5. Conclusions

The CH equation was extensively used for simulating phase sepa-
ration of binary mixtures and fluid flows with the interface. The most
popular numerical methods for solving the CH equation were fully or
semi-implicit. Therefore, iterative techniques were needed in general.
Because iterative algorithms required extra computational costs and
lead to tedious theoretical works, we herein proposed a novel explicit
scheme for solving the CH equation.

First of all, the linear convex splitting approach was adopted to treat
the nonlinear part explicitly. In this sense, we avoided the nonlinear
iteration. Then, the Saul’yev method was used to discrete the linear
Laplacian terms. In each nested loop, the computation was straightfor-
ward because all unknown variables were explicitly treated. The main
advantages of the proposed scheme are as follows:

(i) The phase-field variable can be directly computed without any
iterative calculation;

(ii) The numerical stability can be satisfied even if larger time steps
are used;

(iii) The mass conservation of the CH equation can be satisfied;
(iv) It is easy to implement the simulations in complex domains.
Various numerical experiments indicated that the proposed scheme

not only allowed stable computation for relatively large time steps but
also worked well for simulating the phase separation in regular and
complex domains.

Note that the CH equation has been extensively used to capture the
interface in multi-phase fluid flows [7,8,11,12]. In upcoming works,
the proposed scheme will be adopted to investigate the CH fluids.
In addition, the proposed scheme can be used to solve the CH-type
equations in image inpainting [16], multi-component systems [62–65],
and volume reconstruction, etc.
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