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a b s t r a c t

In the present study, we propose a novel conservative Allen–Cahn (CAC) equation
with a curvature-dependent Lagrange multiplier. The proposed CAC equation has
a superior structure-preserving property. Unlike the conventional CAC equations
which have motion by mean curvature with area or volume constraint, the
proposed model has minimum dynamics of motion by mean curvature and only
has smoothing property of interface transition layer. Therefore, it can be utilized
as a building block equation for modeling conservative phase-field applications
such as two-phase fluid flows. Several computational tests are conducted to
confirm the superior performance of the proposed CAC equation in terms of
structure-preserving property.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation is being studied continuously in various fields [1,2]. In this study, we
present a novel conservative Allen–Cahn (CAC) equation. The CAC equations for interface capturing in two-
phase fluid flows have recently gained more popularity [3,4]. Traditionally, the Cahn–Hilliard (CH) equation
has been applied in modeling interface between two different fluids [5–7]. The most important reasons for
getting popularity of using the CAC equation instead of using the CH equation are its simplicity, improved
efficiency, and accuracy [8]. The most distinguished difference between the CAC and CH equations is that
the former is second-order partial differential equation (PDE) and the latter is fourth-order PDE. Therefore,
it is generally more efficient to solve the lower order than the higher order PDEs. There are two most popular
CAC equations. The first one is as follows [9,10]:

∂ϕ(x, t)
∂t

= −F ′(ϕ(x, t))
ϵ2 + ∆ϕ(x, t) + γ(t), (1)
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where ϕ(x, t) is the concentration, F (ϕ) = (ϕ2 − 1)2/4, ϵ is a positive constant which controls the thickness
of interface transition layer, and γ(t) is the time-dependent Lagrange multiplier

γ(t) = 1
ϵ2

∫
Ω

F ′(ϕ(x, t)) dx
/∫

Ω

dx.

Note that if γ(t) is absent, then Eq. (1) becomes the classical AC equation [11] which models the phase
transformation in binary mixtures and the evolution of antiphase boundaries [12]. The second one is as
follows [13–17]:

∂ϕ(x, t)
∂t

= −F ′(ϕ(x, t))
ϵ2 + ∆ϕ(x, t) + γ(t)

√
2F (ϕ(x, t)), (2)

here γ(t)
√

2F (ϕ(x, t)) is the time-and space-dependent Lagrange multiplier and

γ(t) = 1
ϵ2

∫
Ω

F ′(ϕ(x, t)) dx
/∫

Ω

√
2F (ϕ(x, t)) dx.

In [18], the author developed two mass-conserving numerical methods for the AC equation in the mass-
onserving space using the mass-projection and energy-dissipation operators. In [19], the author developed
stable and structure-preserving finite difference method for a CAC equation. In [20], the authors presented
new CAC equation and proved the existence, uniqueness, and boundedness property of the solution. The
AC equation with the time-and space-dependent Lagrange multiplier has been applied to multiphase fluid
ows [16,21]. However, intrinsically, the conventional CAC models have the property of the motion by mean
urvature with constraint. Therefore, if there are initially two drops with different sizes, then the smaller
rop is absorbed into the larger drop and eventually disappears. Hence, these CAC models have limitation
or applications such as two-phase fluid flows with multiple components with different sizes. To resolve these
roblems, we propose a novel CAC equation with a curvature-dependent Lagrange multiplier to have a good
tructure-preserving property. The proposed model has minimum dynamics of motion by mean curvature
nd only has smoothing property of interface. Therefore, it can be utilized as a building block equation for
odeling conservative phase-field applications such as two-phase fluid flows.
This paper is organized as follows. In Section 2, the proposed new CAC equation and its numerical scheme

re given. In Section 3, we present some computational tests to confirm the superior performance of the
roposed CAC equation in terms of structure-preserving property. Conclusions are drawn in Section 4.

. Proposed CAC equation and its numerical solution algorithm

We propose the following CAC equation with a curvature-dependent Lagrange multiplier :

∂ϕ(x, t)
∂t

= −M

(
F ′(ϕ(x, t))

ϵ2 − ∆ϕ(x, t) − γ(t)κ(ϕ(x, t))
√

2F (ϕ(x, t))
)

, (3)

here M is the mobility coefficient [22], κ(ϕ) = ∇ · (∇ϕ/|∇ϕ|) is the curvature of the interface, and

γ(t) = 1
ϵ2

∫
Ω

F ′(ϕ(x, t)) dx
/∫

Ω

κ(ϕ(x, t))
√

2F (ϕ(x, t)) dx.

Then, the solution ϕ of Eq. (3) satisfies the following equation:

d

dt

∫
Ω

ϕ dx =
∫
Ω

ϕt dx =
∫
Ω

−M

[
F ′(ϕ)

ϵ2 − ∆ϕ − γ(t)κ(ϕ)
√

2F (ϕ)
]

dx

= −M

ϵ2

∫
Ω

F ′(ϕ) dx + M

∫
∂Ω

n · ∇ϕ ds +Mγ(t)
∫
Ω

κ(ϕ)
√

2F (ϕ) dx = 0, (4)

where we used n · ∇ϕ = 0 on ∂Ω and n is the unit normal vector.

2
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Now, we describe a hybrid numerical method for solving the CAC equation on Ω = (Lx, Rx) × (Ly, Ry).
et xi = Lx + (i − 0.5)h for i = 1, . . . , Nx and yj = Ly + (j − 0.5)h for j = 1, . . . , Ny. Here, Nx and

Ny are positive integers and h = (Rx − Lx)/Nx = (Ry − Ly)/Ny. Let ϕn
ij be numerical approximations of

ϕ(xi, yj , nτ), where τ is the temporal step size. Using an operator splitting method, we solve the original
problem Eq. (3) by solving the following simpler equations [23]:

ϕt(x, t) = ∆ϕ(x, t), (5)

ϕt(x, t) = −F ′(ϕ(x, t))
ϵ2 , (6)

ϕt(x, t) = γ(t)κ(ϕ(x, t))
√

2F (ϕ(x, t)), (7)

here we used M = 1. To solve Eq. (5), we use the Fourier-spectral method [24]: For the given data
ϕn

ij |i = 1, . . . , Nx and j = 1, . . . , Ny}, the discrete cosine transform is defined as follows

ϕ̂n
pq = αpβq

Nx∑
i=1

Ny∑
j=1

ϕn
ij cos (2i − 1)(p − 1)π

2Nx
cos (2j − 1)(q − 1)π

2Ny
, p = 1, . . . , Nx and q = 1, . . . , Ny, (8)

here α1 =
√

1/Nx, αp =
√

2/Nx if 2 ≤ p ≤ Nx, β1 =
√

1/Ny, and βq =
√

2/Ny if 2 ≤ q ≤ Ny. For
simplicity of exposition, we assume Lx = Ly = 0. For the cases of non-zero Lx and Ly, please refer to [22].
Let xi = (2i − 1)Rx/(2Nx), yj = (2j − 1)Ry/(2Ny), ξp = (p − 1)/Rx, and ηq = (q − 1)/Ry. Then, we can
rewrite Eq. (8) as ϕ̂n

pq = αpβq

∑Nx
i=1
∑Ny

j=1 ϕn
ij cos(ξpπxi) cos(ηqπyj). The inverse discrete cosine transform is

ϕn
ij =

Nx∑
p=1

Ny∑
q=1

αpβqϕ̂n
pq cos(ξpπxi) cos(ηqπyj). (9)

et us assume that ϕ(x, y, nτ) =
∑Nx

p=1
∑Ny

q=1 αpβqϕ̂n
pq cos(ξpπx) cos(ηqπy). Therefore, the Laplacian opera-

or is defined as

∆ϕ(x, y, nτ) = ∂2ϕ

∂x2 (x, y, nτ) + ∂2ϕ

∂y2 (x, y, nτ)

= −
Nx∑
p=1

Ny∑
q=1

(ξpπ)2
αpβqϕ̂n

pq cos(ξpπx) cos(ηqπy) −
Nx∑
p=1

Ny∑
q=1

(ηqπ)2
αpβqϕ̂n

pq cos(ξpπx) cos(ηqπy)

= −
Nx∑
p=1

Ny∑
q=1

[(ξpπ)2 + (ηqπ)2]αpβqϕ̂n
pq cos(ξpπx) cos(ηqπy). (10)

sing Eqs. (9) and (10), from Eq. (5) we have dϕ̂pq/dt = −[(ξpπ)2 +(ηqπ)2]ϕ̂pq. Then, we have the following
olution after time step τ with the initial condition ϕ̂n

pq:

ϕ̂n+1,1
pq = ϕ̂n

pqe−τ [(ξpπ)2+(ηqπ)2]. (11)

hen, the numerical solution ϕn+1,1
ij is obtained using Eqs. (9) and (11), i.e.,

ϕn+1,1
ij =

Nx∑
p=1

Ny∑
q=1

αpβqϕ̂n+1,1
pq cos(ξpπxi) cos(ηqπyj).

Second, Eq. (6) is solved analytically by the method of separation of variables:

ϕn+1,2 = ϕn+1,1
/√

e
− 2τ

ϵ2 +
(

ϕn+1,1
)2 (

1 − e
− 2τ

ϵ2
)

.
ij ij ij

3
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Fig. 1. Schematic illustration of conservative algorithms: (a) initial condition ϕ0; (b) after solving the AC equation; (c) zero-level

ontours of (a) and (b); (d), (e), and (f) are conservative corrections γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ), respectively; (g), (h),

nd (i) are the solutions ϕ1 of the CAC equation with γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ), respectively.

Third, we discretize Eq. (7) as

ϕn+1
ij − ϕn+1,2

ij

τ
= γn+1,2κ(ϕn+1,2

ij )
√

2F (ϕn+1,2
ij ). (12)

By Eq. (12), we get ϕn+1
ij = ϕn+1,2

ij + τγn+1,2κn+1,2
ij

√
2F (ϕn+1,2

ij ), then by the property of Eq. (4),

1
τ

⎛⎝Nx∑
i=1

Ny∑
j=1

ϕn+1
ij −

Nx∑
i=1

Ny∑
j=1

ϕn
ij

⎞⎠ = 0,

Nx∑
i=1

Ny∑
j=1

ϕ0
ij =

Nx∑
i=1

Ny∑
j=1

ϕn+1
ij =

Nx∑
i=1

Ny∑
j=1

(
ϕn+1,2

ij + τγn+1,2κn+1,2
ij

√
2F (ϕn+1,2

ij )
)

.

hus, γn+1,2 = 1
τ

∑Nx
i=1
∑Ny

j=1(ϕ0
ij − ϕn+1,2

ij )
/∑Nx

i=1
∑Ny

j=1 κn+1,2
ij

√
2F (ϕn+1,2

ij ). Then, the curvature at the
ell center is

∇ ·
(

∇ϕ

|∇ϕ|

)
ij

= 1
2h

(
ϕx,i+ 1

2 ,j+ 1
2

+ ϕy,i+ 1
2 ,j+ 1

2

|∇ϕi+ 1
2 ,j+ 1

2
|

+
ϕx,i+ 1

2 ,j− 1
2

− ϕy,i+ 1
2 ,j− 1

2

|∇ϕi+ 1
2 ,j− 1

2
|

−
ϕx,i− 1

2 ,j+ 1
2

− ϕy,i− 1
2 ,j+ 1

2

|∇ϕi− 1
2 ,j+ 1

2
|

−
ϕx,i− 1

2 ,j− 1
2

+ ϕyi− 1
2 ,j− 1

2

|∇ϕi− 1
2 ,j− 1

2
|

)
.

o avoid numerical singularity when |∇ϕ| is close to zero, we set κij = 0 outside of the interface, i.e., |ϕij | >

.98.
Let us consider the basic mechanism of the proposed model. Fig. 1 is a step-by-step schematic illustration

f the algorithms for the three different CAC Eqs. (1), (2), and (3). Fig. 1(a) shows an initial condition
0 consisting of two different sized disks. Fig. 1(b) is the numerical solution after solving the AC equation,
4
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i.e., steps (5) and (6). The smaller disk shrinks more than the larger disk because of the property of motion by
mean curvature. We can observe this phenomenon in Fig. 1(c), which is zero-level contours of Figs. 1(a) and
(b). Figs. 1(d), (e), and (f) are conservative correction γ(t), γ(t)

√
2F (ϕ), and γ(t)κ(ϕ)

√
2F (ϕ), respectively.

nlike the conventional mass correction by shifting a constant or smoothed Dirac delta function like profile
cross the interface transition layer, the proposed mass correction scheme has curvature-dependent profiles
s shown in Fig. 1(f). Figs. 1(g), (h), and (i) are the solutions ϕ1 of the CAC equation with γ(t), γ(t)

√
2F (ϕ),

nd γ(t)κ(ϕ)
√

2F (ϕ), respectively. Therefore, the main mechanism of the proposed model is that we correct
he mass loss from the motion by mean curvature part using curvature-dependent Lagrange multiplier.

. Computational tests

Now, we present some computational tests to confirm the superior performance of the proposed CAC
quation. Let us use the notation, ϵm = hm/[2

√
2 tanh−1(0.9)], where h is grid size and m is a positive

nteger. We have approximately hm transition layer across interface, see [25] for a more detailed explanation
f ϵm. Unless otherwise indicated, we shall use ϵ = ϵ5.

.1. Structure preserving property

Now, we perform a numerical test which highlights the different dynamics of the proposed CAC equation
rom the other two conventional CAC equations. Let us consider the following initial condition on Ω =
−2, 2) × (−2, 2):

ϕ(x, y, 0) = 1 + tanh
(

0.5 −
√

(x + 1)2 + (y + 1)2
√

2ϵ

)
+ tanh

(
1 −

√
(x − 0.5)2 + (y − 0.5)2

√
2ϵ

)
.

The parameters used are h = 0.0625 and τ = 0.1h2. From the top and middle rows in Fig. 2, as
schematically illustrated in Fig. 1, in the cases of the Lagrange multipliers γ(t) and γ(t)

√
2F (ϕ), the smaller

disk shrinks and the larger disk grows; and eventually one single disk remains. However, in the case of
the proposed Lagrange multiplier γ(t)κ(ϕ)

√
2F (ϕ) (the bottom row), the initial shapes are preserved as

ime evolves. In addition, Fig. 2(d) shows the temporal evolution of the average concentration ϕave and
ϕ0 − ϕn∥2/∥ϕ0∥2, where ∥ · ∥2 is the discrete l2-norm. We can observe the average concentration is constant
or the three cases. However, only the proposed preserves well the relative deviation from the initial profiles,
.e., ∥ϕ0 − ϕn∥2/∥ϕ0∥2 is very small.

To further confirm the performance of the proposed CAC equation, let us consider more complex shape
n Ω = (−2, 2) × (−2, 2) as shown in Fig. 3(a):

ϕ(x, y, 0) = tanh
((

2
(

x2 − y2

x2 + y2

)3

− 1.5
(

x2 − y2

x2 + y2

)
+ 1.3 −

√
x2 + y2

)/
(
√

2ϵ)
)

.

ere, we use h = 1/32 and τ = 0.1h2. Fig. 3(b), (c), and (d) show the computational results at t = 1000τ

ith the three different Lagrange multipliers γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ), respectively. Fig. 3(e)
nd (f) are the zero level contours of ϕ at t = 1000τ and equilibrium state, respectively. In this study, the
umerical equilibrium state is defined if ∥ϕn+1 − ϕn∥2 < 10−5. Numerical solutions with γ(t), γ(t)

√
2F (ϕ),

nd γ(t)κ(ϕ)
√

2F (ϕ) reached the equilibrium state at n = 3109, 3128, and 4387, respectively. Both the
esults from the conventional CAC equations have circular shapes because of the motion by mean curvature
ith mass constraint. However, the proposed CAC equation preserves the original complex shape as time
volves. In addition, 3(g) displays the temporal evolution of the maximum norm of each term in the proposed
quation, which indicates that the three terms balance each other.
5
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f
e

m

Fig. 2. Temporal evolution of the numerical results with different Lagrange multipliers: γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ)
rom top to bottom rows, respectively. (a), (b), and (c) are the results at times t = 0, 600τ , and 700τ , respectively. (d) is the temporal
volution of the average concentration ϕave and ∥ϕ0 − ϕn∥2/∥ϕ0∥2.

Fig. 3. (a) is the initial condition. (b), (c), and (d) are the snapshots of the numerical results at time t = 1000τ with different Lagrange

ultipliers: γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ), respectively. (e) is the zero-level contours of (b)–(d). (f) is the zero-level contours
of ϕ at equilibrium state. (g) is the temporal evolution of the maximum norm of each term in the proposed equation.

3.2. Droplet deformation in swirling flow

Next, we consider the droplet deformation under the background swirling flow. The governing equation
is as follows:

∂ϕ(x, t) + ∇ · [ϕ(x, t)u(x)] = −F ′(ϕ(x, t)) + ∆ϕ(x, t) + γ(t)κ(ϕ(x, t))
√

2F (ϕ(x, t)). (13)

∂t ϵ2

6
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Fig. 4. (a), (b), and (c) are droplet deformations under the background swirling flow with γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ)
t t = 0.195, respectively. The numerical and exact solutions are represented by the black solid and red dotted lines, respectively.

The advection term in Eq. (13) is solved by the finite difference method.

ϕn+1
ij − ϕn

ij

τ
= −

(ϕn
i+1,j + ϕn

ij)ui+ 1
2 ,j − (ϕn

ij + ϕn
i−1,j)ui− 1

2 ,j

2h
+

(ϕn
i,j+1 + ϕn

ij)vi,j+ 1
2

− (ϕn
ij + ϕn

i,j−1)vi,j− 1
2

2h
.

ere, u(x, y) = −2.5 sin2(πx) sin(2πy) and v(x, y) = 2.5 sin2(πy) sin(2πx). The initial condition is defined
n Ω = (0, 1) × (0, 1) as ϕ(x, y, 0) = tanh

(
0.2−

√
(x−0.5)2+(y−0.7)2

√
2ϵ

)
. The parameters used are h = 1/128,

= 0.2h2, and ϵ = ϵ8. Fig. 4(a), (b), and (c) are the snapshots of interfacial position using γ(t), γ(t)
√

2F (ϕ),
nd γ(t)κ

√
2F (ϕ), respectively. It can be observed that the numerical solution obtained by the proposed

odel shows good agreement with the exact reference solution.

.3. Rotation of a Zalesak’s disk

For a further benchmark test, we consider the rotation of a Zalesak’s disk, which has been widely used
n various interface capturing methods [26,27]. The initial state on Ω = (0, 1) × (0, 1) is shown in Fig. 5(a).
he background velocity field u(x, y) = 600(y − 0.5), v(x, y) = −600(x − 0.5), h = 1/256, τ = 0.01h2, and
= ϵ8 are used. By using the initial interfacial position and background velocity field, the exact result is

omputed by using the second-order accurate modified Euler method [28]. In Figs. 5(a), (b), and (c), we plot
he snapshots of the numerical results with γ(t), γ(t)

√
2F (ϕ), and γ(t)κ

√
2F (ϕ) at times t = 0, 0.0024,

nd 0.0043. As we can observe, the computational result from the proposed model preserves well the initial
hape.

. Conclusions

In this paper, we proposed a novel CAC equation with a curvature-dependent Lagrange multiplier.
he proposed CAC equation has a superior structure-preserving property. Unlike the conventional CAC
quations which have motion by mean curvature with area or volume constraint, the proposed model has
inimum dynamics of motion by mean curvature and only have smoothing property of interface transition

ayer. Therefore, it can be utilized as a building block equation for modeling conservative phase-field
pplications such as two-phase fluid flows. We presented several numerical experiments to demonstrate the
uperior performance of the proposed CAC equation in terms of structure-preserving property. As future
esearch directions, we will extend the proposed model to vector-valued CAC system [29] and multi-phase
uid flows with surface tension [30,31].
7
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.

Fig. 5. Rotation of a Zalesak’s disk with γ(t), γ(t)
√

2F (ϕ), and γ(t)κ(ϕ)
√

2F (ϕ). The computational moments are shown under
each figure.
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