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a b s t r a c t 

In this paper, we propose a mathematical model, its numerical scheme, and some compu- 

tational experiments for droplet evaporation. In order to model the evaporation, a classical 

Cahn–Hilliard equation with an interfacial evaporation mass flux term is proposed. An un- 

conditionally gradient stable scheme is used to discretize the governing equation, and the 

multigrid method is applied to solve the resulting system. The proposed model is first val- 

idated via a proper interfacial parameter ε, and then, the effect of evaporation rate and 

effect of contact angle on volume and surface area changes are investigated. The numeri- 

cal results indicate that the dynamics of evaporation are dependent on the contact angle 

on a solid substrate. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The evaporation phenomenon of a droplet on a solid substrate is fundamental to the coffee-ring effect [1] and in-

cludes applications such as nanochromatography for disease diagnostics [2] . Numerous experimental [3–7] and numerical

[8–11] studies were performed to examine the evaporation phenomenon. The authors of [12] investigated the effect of sup-

port fibers on the process of droplet evaporation. An extant study [13] presented a level-set approach to directly simulate

the particle motion in droplet evaporation. The evaporation effect was modeled by applying the coupled vapor fraction and

temperature conditions to the interface. A previous study [14] numerically investigated 3D particle motion in the evapora-

tion process of a liquid film. The level-set based method was adopted to track the liquid–solid and gas–liquid interfaces. The

effects of evaporation, solid particles, and contact line were considered in the proposed method. 

Among the many existing simulation models for evaporation phenomena, phase-field models attracted considerable

attention. In [15] , the Allen–Cahn (AC) type model with a contact angle was developed to investigate droplet evapora-

tion for different shapes of the gas-liquid interface. In the model, the evaporation energy density is given as f e v ap (φ) =
p(c s − c p ) φ2 (3 − 2 φ) , where p denotes the ambient pressure, c s and c p denote the saturated concentration and current con-

centration of liquid in the gas, respectively. 

The main purpose of this study is to formulate a modified Cahn–Hilliard (CH) model to simulate droplet evaporation. The

CH equation [16,17] has been extensively used in literature to model evolving interface problems. For physical, mathematical,

and numerical derivations of the CH equation, interested readers can refer to a review paper [18] . Although the AC type
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Fig. 1. Schematic illustration of the contact angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model is simple, i.e., the second-order partial differential equation (PDE), the total mass is not conservative in the absence

of evaporation. The proposed model corresponds to the fourth-order PDE and is more difficult to solve than the AC equation.

However, it is conservative in the absence of evaporation. Furthermore, efficient numerical solvers are available. 

The remainder of this paper are organized as follows. In Section 2 , the proposed mathematical model for droplet evap-

oration is presented. In Section 3 , the description of the numerical algorithm is given. The numerical results are given in

Section 4 , and conclusions are discussed in Section 5 . 

2. Proposed mathematical model for droplet evaporation 

As the case of a tumor growth [19–21] model, we propose the following governing equation by adding an evaporation

term to the CH equation with a contact angle boundary condition [22] to model the evaporation of a droplet with a contact

angle on a solid substrate as follows: 

∂φ( x , t) 

∂t 
= 

1 

P e 
�μ(x , t) − γ |∇φ(x , t) | , x = (x, y, z) ∈ �, 0 < t ≤ T , (1)

μ(x , t) = F ′ (φ(x , t)) − ε2 �φ(x , t) , (2) 

n · ∇φ(x , t) = 

√ 

2 F (φ(x , t)) 

ε
cos θ, x = (x, y, z) ∈ ∂�, 0 < t ≤ T , (3)

n · ∇μ(x , t) = 0 , (4) 

where φ( x , t ) denotes an order parameter such as the mass fraction difference of the components ( φ = 1 represents the pure

liquid and φ = −1 describes the pure gas regions), μ( x , t ) denotes the chemical potential, Pe denotes a constant parameter

related to the dynamics of evolution, and γ is an evaporation constant. � ⊂ R 

3 denotes the computational domain, and n

denotes a unit vector that is normal to the domain boundary ∂�. Specifically, F (φ) = 0 . 25(φ2 − 1) 2 is a bulk free energy

density with minima in the bulks of the liquid and gas phases, ε denotes a constant related to the transition layer, and θ
denotes a contact angle. 

Eqs. (1) –(4) without the evaporation term −γ |∇φ(x , t) | arise from the following free energy functional: 

F(φ) = E(φ) + W(φ) = 

∫ 
�

(
F (φ) + 

ε2 

2 

|∇φ| 2 
)

dx + 

∫ 
∂�

G (φ) ds, 

where G (φ) = ε(φ3 − 3 φ) cos θ/ (3 
√ 

2 ) [23] denotes the wall free energy function depending on θ . We briefly derive

Eqs. (1) –(4) as follows. Let 
∫ 
� ψ dx = 0 . Subsequently, we obtain 

d 

dη
F(φ + ηψ) 

∣∣∣
η=0 

= 

∫ 
�

(
ψF ′ (φ) + ε2 ∇ψ · ∇φ

)
dx + 

∫ 
∂�

ψG 

′ (φ) ds 

= 

∫ 
�

(
F ′ (φ) − ε2 �φ

)
ψdx + 

∫ 
∂�

(
ε2 n · ∇φ + G 

′ (φ) 
)
ψds 

= 

∫ 
�

(
F ′ (φ) − ε2 �φ

)
ψdx , (5) 

where the natural boundary condition is applied as follows: 

n · ∇φ = −G 

′ (φ) 

ε2 
. (6) 

Subsequently, from Eq. (5) , the variational derivative is given as μ = F ′ (φ) − ε2 �φ. The definition of flux is J := −M∇μ,

where M denotes a positive mobility. By the mass conservation condition, we obtain φt = −∇ · J , which leads to the CH

Eqs. (1) and (2) . 

From Fig. 1 , we obtain 

n · ∇ φ = | n ||∇ φ| cos θ = |∇ φ| cos θ . 
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Fig. 2. Concentration profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An equilibrium solution of Eqs. (1) and (2) without the evaporation term satisfies the following relation: 

F (φ) = 0 . 5 ε2 |∇φ| 2 . 
Therefore, |∇φ| = 

√ 

2 F (φ(x , t)) /ε = (φ2 − 1) / ( 
√ 

2 ε) and Eq. (6) becomes Eq. (3) . 

Next, we derive the evaporation term. For simplicity of exposition because there is a simple closed-form solution for a

spherical drop, we consider the case of a spherical drop of radius R. S and V denote the surface area and volume, respectively.

Subsequently, we assume that the evaporation rate dV / dt is proportional to S . That is, 

dV 

dt 
= −γ S, (7)

where γ denotes the evaporation constant. Eq. (7) becomes d R/d t = −γ , and its solution is R (t) = R 0 − γ t, where R 0 de-

notes the initial drop radius. We consider a profile (see Fig. 2 ), 

φ(R, t) = tanh 

R 0 − R − γ t √ 

2 ε
. (8)

Differentiating Eq. (8) yields 

∂φ(R, t) 

∂t 
= − γ√ 

2 ε
sech 

2 R 0 − R − γ t √ 

2 ε
= − γ√ 

2 ε

(
1 − tanh 

2 R 0 − R − γ t √ 

2 ε

)

= − γ√ 

2 ε

(
1 − φ2 (R, t) 

)
= −γ

√ 

2 F (φ(R, t)) 

ε
= −γ |∇φ(R, t) | , 

where we used Eq. (7) . In the standard coordinate, we obtain the following equation: 

∂φ(x , t) 

∂t 
= −γ |∇φ(x , t) | . (9)

Finally, adding the evaporation term in Eq. (9) to the CH equation with the contact angle boundary condition yields

Eqs. (1) –(4) . We note that Eqs. (1) –(4) can be derived by considering the sum of two types of gradient flows, as shown in

image inpainting using the CH equation [24] . 

The advantages of the proposed model include its simplicity and practical applicability for modeling more complex phys-

ical phenomena such as the coffee-ring effect. 

3. Numerical implementation algorithm 

The numerical algorithm is introduced in this section. We first present the finite difference scheme for the three-

dimensional CH equation on � = (0 , L x ) × (0 , L y ) × (0 , L z ) . Let N x , N y , and N z denote the mesh numbers along x -, y -, and

z -directions, h = L x /N x denote the uniform spatial step, �h = { (x i , y j , z k ) : x i = (i − 0 . 5) h, y j = ( j − 0 . 5) h, z k = (k − 0 . 5) h } ,
where 1 ≤ i ≤ N x , 1 ≤ j ≤ N y , 1 ≤ k ≤ N z , and φn 

i jk 
denote an approximation of φ( x i , y j , z k , n �t ), where �t denotes the

time step. Pe = 1 is used for the purpose of simplicity. Subsequently, the discretization of Eqs. (1) and (2) are expressed as

φn +1 
i jk 

− φn 
i jk 

�t 
= 

1 

P e 
�d μ

n +1 
i jk 

− γ |∇ d φ
n 
i jk | , (10)

μn +1 
i jk 

= F ′ (φn +1 
i jk 

) + φn +1 
i jk 

− φn 
i jk − ε2 �d φ

n +1 
i jk 

, (11)

where ∇ d φ
n 
i jk 

= (1 / 2 h ) 
(
φn 

i +1 , jk 
− φn 

i −1 , jk 
, φn 

i, j+1 ,k 
− φn 

i, j−1 ,k 
, φn 

i j,k +1 
− φn 

i j,k −1 

)
and �d μ

n +1 
i jk 

= (μn +1 
i −1 , jk 

+ μn +1 
i +1 , jk 

+ μn +1 
i, j−1 ,k 

+
μn +1 

i, j+1 ,k 
+ μn +1 

i j,k −1 
+ μn +1 

i j,k +1 
− 6 μn +1 

i jk 
) /h 2 . For μ, we apply homogeneous Neumann boundary conditions in the x -, y -, and
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Fig. 3. Schematic illustration of the contact angle boundary condition in two-dimensional space. 

 

 

 

 

 

 

 

 

 

z -directions: 

μn +1 
0 jk 

= μn +1 
1 jk 

, μn +1 
N x +1 , jk 

= μn +1 
N x jk 

for 1 ≤ j ≤ N y , 1 ≤ k ≤ N z , 

μn +1 
i 0 k 

= μn +1 
i 1 k 

, μn +1 
i,N y +1 ,k 

= μn +1 
iN y k 

for 1 ≤ i ≤ N x , 1 ≤ k ≤ N z , 

μn +1 
i j0 

= μn +1 
i j1 

, μn +1 
i j,N z +1 

= μn +1 
i jN z 

for 1 ≤ i ≤ N x , 1 ≤ j ≤ N y . 

Boundary conditions for φ are the same as μ except at z = 0 : 

φn +1 
0 jk 

= φn +1 
1 jk 

, φn +1 
N x +1 , jk 

= φn +1 
N x , jk 

for 1 ≤ j ≤ N y , 1 ≤ k ≤ N z , 

φn +1 
i 0 k 

= φn +1 
i 1 k 

, φn +1 
i,N y +1 ,k 

= φn +1 
i,N y ,k 

for 1 ≤ i ≤ N x , 1 ≤ k ≤ N z , 

φn +1 
i j,N z +1 

= φn +1 
i jN z 

for 1 ≤ i ≤ N x , 1 ≤ j ≤ N y . 

On the substrate (i.e., z = 0 ), we note that n = (0 , 0 , −1) , then Eq. (3) is expressed as 

−φz = 

1 − φ2 

√ 

2 ε
cos θ . (12) 

If we discretize Eq. (12) , then we have the discrete form: 

−φr = −φi j1 − φi j0 

h 

= −
(φ2 

i j 1 2 

− 1) cos θ
√ 

2 ε
. (13) 

Then, the contact angle boundary condition in Eq. (13) is expressed as 

φi j0 = φi j1 −
h (φ2 

i j 1 2 

− 1) cos θ
√ 

2 ε
, (14) 

where φ
i j 1 

2 
= (3 φi j1 − φi j2 ) / 2 , which corresponds to a linear interpolation. The values at k = 1 and k = 2 are used to cal-

culate the unknown value at k = 1 / 2 . A schematic illustration of the contact angle boundary condition in two-dimensional

view is shown in Fig. 3 . 

We note that the central difference discretization is used for the gradient term and standard seven-point discretization

is used for the Laplacian operator; therefore, the convergence rate in space is second-order. For the time discretization, an

unconditionally stable scheme is used for the CH model, and the evaporation term is treated explicitly, thus the convergence

rate in time is first-order. Specifically, the multigrid method with V-cycle is applied to solve Eqs. (10) and (11) , and thus the

computational complexity is O ( N log N ) , where N denotes the number of mesh grid points. More details on the numerical

method are given in [25] . 

4. Numerical results 

In the numerical tests, the homogeneous Neumann boundary condition is applied at the boundaries in x -direction, y -

direction, and z = L z . At z = 0 , we give a contact angle boundary condition. We use Pe = 1 for the purposed of simplicity in

all numerical tests. 
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Fig. 4. (a) Interface profiles at numerical equilibrium state. (b) Locally enlarged views of the solid box region (c) and dotted box region. Arrow denotes the 

convergence direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Mesh convergence 

First, we investigate the convergence of the CH equation with respect to the mesh size h . Specifically, the evaporation rate

is set as γ = 0 and we use zero Neumann boundary condition on the bottom boundary. We use the following four different

mesh sizes: h = 1 / 16 , 1 / 32 , 1 / 64 , and 1/128 in the domain � = (0 , 2) × (0 , 2) × (0 , 1) . The other numerical parameters are

�t = 1 / 128 and ε = 0 . 045 . We define the following initial condition 

φ(x, y, z, 0) = 

{
1 if 0 . 5 ≤ x ≤ 1 . 5 , 0 . 5 ≤ y ≤ 1 . 5 , z ≤ 0 . 5 , 

−1 otherwise. 

The computation stops when the numerical equilibrium state is reached (i.e., ‖ φn +1 − φn ‖ 2 ≤ 10 −5 , where φn +1 and φn

denote the results at (n + 1) − th and n − th time step, respectively). The numerical equilibrium solutions are shown in

Fig. 4 (a). Fig. 4 (b) and (c) show the locally enlarged views of the solid box and dotted box regions in Fig. 4 (a), respectively.

We observe that the equilibrium solutions converge with respect to grid size. In order to achieve an accurate computation,

we use h = 1 / 128 (i.e., a mesh grid: 256 × 256 × 128) in the following tests. 

It is noted that the proposed numerical scheme uses the center difference discretization for the gradient term and stan-

dard seven-point discretization for the Laplacian operator; thus, the second-order accuracy will be obtained in space. To

numerically demonstrate the convergence order in space, we use the result with h = 1 / 128 as a reference solution because

the closed-form solution does not exist. A series of successively finer mesh sizes: h = 1 / 16 , 1 / 32 , and 1/64 are selected. The

error between numerical and reference solutions is defined as follows: 

e h = φh 
i jk −

1 

8 

(
φr 

2 p i −p, 2 p j−p, 2 p k −p + φr 
2 p i −p+1 , 2 p j−p+1 , 2 p k −p+1 

+ φr 
2 p i −p, 2 p j−p+1 , 2 p k −p+1 + φr 

2 p i −p+1 , 2 p j−p, 2 p k −p+1 + φr 
2 p i −p+1 , 2 p j−p+1 , 2 p k −p 

+ φr 
2 p i −p+1 , 2 p j−p, 2 p k −p + φr 

2 p i −p, 2 p j−p+1 , 2 p k −p + φr 
2 p i −p, 2 p j−p, 2 p k −p+1 

)
, 

where φh and φr denote the numerical and reference solutions, respectively. Specifically, p = 3 , 2 , and 1 denote er-

rors for h = 1 / 16 , 1 / 32 , and 1/64, respectively. The rate of convergence is defined as the ratio of successive errors:

log 2 

(
‖ e h ‖ 2 / ‖ e h 2 ‖ 2 

)
. Specifically, ‖ e ‖ 2 is a discrete l 2 -norm and is defined as ‖ e ‖ 2 = 

√ 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

e 2 
i jk 

/ 
(
N x N y N z 

)
. As shown

in Table 1 , second-order accuracy in space is obtained. 
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Table 1 

Errors and convergence rates with different spatial steps. 

Mesh size h = 1 / 16 h = 1 / 32 h = 1 / 64 

Error 0.0204 0.0049 0.0011 

Rate 2.0577 2.1553 

Table 2 

Convergence results of mesh refinement for θ = 45 ◦ and 135 ◦ . 

Mesh grids 64 × 64 × 32 128 × 128 × 64 256 × 256 × 128 Theoretical angle 

Numerical 39.2529 ◦ 45.7280 ◦ 44.8040 ◦ 45 ◦

angle 137.7893 ◦ 136.0309 ◦ 135.2348 ◦ 135 ◦

Fig. 5. Temporal evolution of droplet with θ = 45 ◦ . 

Fig. 6. Temporal evolution of droplet with θ = 135 ◦ . 

 

 

 

 

 

 

 

 

 

4.2. Equilibrium contact angles 

Next, we consider an equilibrium state of a droplet contacting a solid substrate with a prescribed contact angle θ , ε =
0 . 045 , γ = 0 , and �t = 1 / 128 . The initial condition on � = (0 , 2) × (0 , 2) × (0 , 1) is 

φ(x, y, z, 0) = 

{
1 if 0 . 5 ≤ x ≤ 1 . 5 , 0 . 5 ≤ y ≤ 1 . 5 , z ≤ 0 . 5 , 

−1 otherwise. 

Figs. 5 and 6 show the temporal evolutions of the droplet for two different θ corresponding to θ = 45 ◦ and θ = 135 ◦. 

The convergence results of mesh refinement for different θ are listed in Table 2 . To find a numerical contact angle, we

use the following procedure. Given three points ( x 1 , z 1 ), ( x 2 , z 2 ), and ( x 3 , z 3 ) on the ‘ y = 1 ’-interface, we calculate the center

and the radius of the circle which passes through the three points. We compute the center points x c and z c from 

(x 1 − x c ) 
2 + (z 1 − z c ) 

2 = (x 2 − x c ) 
2 + (z 2 − z c ) 

2 , 

(x 2 − x c ) 
2 + (z 2 − z c ) 

2 = (x 3 − x c ) 
2 + (z 3 − z c ) 

2 , 

and calculate the radius r = 

√ 

(x i − x c ) 2 + (z i − z c ) 2 . Then the x -intercepts of the circle are x = x c ±
√ 

r 2 − z 2 c and a derivative

at the contact point is 

tan θ = 

dz 

dx 

(
x c + 

√ 

r 2 − z 2 c , 0 

)
= 

√ 

r 2 − z 2 c 

z c 
. 

Finally, we define the numerical contact angle as θ = mod ( tan 

−1 ( 
√ 

r 2 − z 2 c /z c ) , π) . As shown in the table, the numerical

results converge to theoretical contact angles with finer meshes. 

4.3. Dynamics of CH equation without evaporation 

We investigate the dynamics of the CH equation without evaporation in three-dimensional space. If the mesh size is not

sufficiently small, then the dynamics of interface length minimization of the CH equation does not preserve the enclosed

volume obtained by its interface. In the actual physical condition, the droplet vanishes in time due to the effect of evapora-

tion. Therefore, in the numerical simulation, it is necessary to eliminate the interface length minimization effect of the CH

equation by using a sufficiently small mesh size. 
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Fig. 7. Schematic illustration for the polyhedron and a tetrahedron with a reference point O . 

Fig. 8. (a) Temporal evolutions of discrete volumes of droplet for various mesh sizes h : 1/16, 1/32, 1/64, and 1/128. (b) Quadratic fitting of the values of 

V n / V 0 at the final time. 

Table 3 

Values of V n / V 0 at the final time. 

Mesh size h = 1 / 16 h = 1 / 32 h = 1 / 64 h = 1 / 128 

V n / V 0 0.4047 0.7626 0.8949 0.9494 

 

 

 

 

 

 

 

 

 

Fig. 8 (a) shows the temporal evolutions of discrete volume of droplet without evaporation for various mesh sizes:

h = 1 / 16 (circle markers), h = 1 / 32 (star markers), h = 1 / 64 (diamond markers), and 1/128 (square markers). The initial

condition in � = (0 , 2) × (0 , 2) × (0 , 1) is 

φ(x, y, z, 0) = tanh 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 + z 2 √ 

2 ε
. (15)

Specifically, �t = 1 / 128 , ε = 4 h/ (2 
√ 

2 tanh 

−1 (0 . 9)) , and γ = 0 are used. The discrete volume is defined as 

V ( X ) = 

1 

6 

M T ∑ 

s =1 

[ X q (Y l Z m 

− Y m 

Z l ) − Y q (X l Z m 

− X m 

Z l ) + Z q (X l Y m 

− X m 

Y l )] , 

where M T denotes the total number of surface triangles Tri s = ( X l , X m 

, X q ) with a reference point O , and each X i means ( X i ,

Y i , Z i ) [26] . The schematic illustration is shown in Fig. 7 . The embedded small figures denote the corresponding evolution

states for h = 1 / 16 and h = 1 / 128 . It is observed that a sufficiently small mesh size can eliminate the dynamics of interface

length minimization of the CH equation. For accurate simulation, we use h = 1 / 128 in the following tests. 

Fig. 8 (b) shows the values of V 

n / V 

0 at the final time with quadratic fitting. The result indicates that V 

n / V 

0 converges to

1 when h goes to zero. Table 3 shows the values of V 

n / V 

0 with respect to different step sizes. 

4.4. Stability test 

In this work, a well-known unconditionally stable scheme is used to solve the classical CH model, and the evaporation

term is treated explicitly as a source term. To numerically demonstrate the stability of the numerical method, we select a
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Fig. 9. Numerical stability test: (a) Initial, (b) �t = h, (c) �t = 10 h, and (d) �t = 100 h. 

Fig. 10. Temporal evolutions of theoretical (thick solid line) and numerical radii for different values of ε: 0.009 (star), 0.011 (open circle), and 0.013 

(diamond). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

series of increasing time steps: �t = h, 10 h, and 100 h to simulate the droplet evaporation with an evaporation constant

γ = 0 . 01 . The initial condition is given by Eq. (15) . Fig. 9 shows the results with different time steps at t = 0 . 7813 and we

observed that the proposed scheme is stable with large time steps. However, to obtain accurate results, a relatively small

time step �t = h is used in the following tests. 

4.5. Effect of ε

In order to confirm a proper ε in evaporation simulation, we compare the temporal evolution of numerical radius for

various ε values ( ε = 0 . 009 , 0.011, and 0.013) with the theoretical radius: R (t) = R 0 − γ t . We consider the simulation pa-

rameters: γ = 0 . 01 , R 0 = 0 . 6 , h = 1 / 128 , �t = 1 / 128 , and θ = 90 ◦, and the initial state 

φ(x, y, z, 0) = tanh 

0 . 5 −
√ 

(x − 1) 2 + (y − 1) 2 + z 2 √ 

2 ε

on � = (0 , 2) × (0 , 2) × (0 , 1) . In Fig. 10 , the solid line denotes the theoretical radius; and the star, open circle, and diamond

markers denote the numerical radii for different ε values: 0.009, 0.011, and 0.013, respectively. As shown in the figure, the

numerical results with different values of ε exhibit similar evolutions and are consistent with the theoretical result. For the

purpose of convenience, we select ε = 0 . 011 and � = (0 , 2) × (0 , 2) × (0 , 1) in the following tests. 

4.6. Effect of γ

The evaporation rate γ in Eq. (1) affects the dynamics of the proposed model. To investigate the effect of γ on the

evaporation, we consider γ = 0 . 01 , 0 . 001 , and 0.0 0 01 with h = 1 / 128 and �t = h . If we consider a droplet with an initial

radius of 0.5 and a contact angle of 90 ◦ on the substrate, then the initial volume is π /12. We fix the initial volume to be

V 0 = π/ 12 in this test. Then, the theoretical radius R is expressed as a function of θ : R (θ ) = 0 . 5 
(
2 / ( cos 3 θ − 3 cos θ + 2) 

) 1 
3 ,

and the surface area is calculated by 2 πR ( θ )( R ( θ ) − ˆ R (θ )) , where ˆ R (θ ) = R (θ ) cos θ . The initial condition is expressed in

the following form for any contact angle: 

φ(x, y, z, 0) = tanh 

R (θ ) −
√ 

(x − 1) 2 + (y − 1) 2 + (z + 

ˆ R (θ )) 2 √ 

2 ε
. (16) 

In this part, the contact angle θ = 30 ◦ is used because a smaller contact angle causes a larger surface area (see Fig. 13 )

which is more exposed to evaporation. Thus, we obtain R ( θ ) ≈ 1.6938 and 

ˆ R (θ ) ≈ 1 . 4669 . The first column in Fig. 11 shows

snapshots of droplet and the second column denotes plots at y = 1 and z = 0 . 5 h for (a) γ = 0 . 01 , (b) γ = 0 . 001 , and (c)

γ = 0 . 0 0 01 at t = 3 . 125 . 
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Fig. 11. Snapshots of droplet (left) and plots at y = 1 and z = 0 . 5 h (right) for (a) γ = 0 . 01 , (b) γ = 0 . 001 , and (c) γ = 0 . 0 0 01 at t = 3 . 125 . 

Fig. 12. Temporal evolutions of total mass for different values of γ . 

 

 

Fig. 12 shows the evolutions of total mass with respect to three different values of γ as follows: 0.01, 0.001, and 0.0001.

The definition of total mass is 
N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

4(1 + φi jk ) / (2 N x N y N z ) . We can find that the dynamics of evaporation are affected

by γ , i.e., a larger value of γ hastens the evaporation process. 
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Fig. 13. Surface areas for various contact angles. 

Fig. 14. Temporal evolution of the droplet with the prescribed contact angle θ = 135 ◦ . 

Fig. 15. Temporal evolution of the droplet with the prescribed contact angle θ = 45 ◦ . 

 

 

 

 

 

 

 

 

4.7. Effect of θ on volume change 

Herein, we investigate the effect of θ on volume change. The initial volume is set as a fixed value: V 0 = π/ 12 for various

contact angles. Fig. 13 shows the relationship between surface area and contact angle, and we observe that the surface area

decreases with an increase in the angle corresponding to θ < 90 ◦ but increases for θ > 90 ◦. To compare the evaporation

dynamics for different surface areas, two specific contact angles θ = 45 ◦ and 135 ◦ with γ = 0 . 01 (see the circle markers in

Fig. 13 ) are used. The general form of the initial state with various θ is 

φ(x, y, z, 0) = tanh 

R (θ ) −
√ 

(x − 1) 2 + (y − 1) 2 + (z + 

ˆ R (θ )) 2 √ 

2 ε
. (17) 

Figs. 14 and 15 show the evolutions of the droplet for two different contact angles: θ = 135 ◦ and θ = 45 ◦. Theoretically, the

change in total mass satisfies the relation: d M/d t = −γ S where M denotes total mass and S denotes surface area, thereby

implying that increases in surface area lead to faster decreases in total mass. For a droplet with radius R and contact angle

θ , the volume and surface area are represented by M = πR 3 (2 + cos θ )(1 − cos θ ) 2 / 3 and S = 2 πR 2 (1 − cos θ ) , respectively.
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Fig. 16. Temporal evolutions of total mass for θ = 135 ◦ and θ = 45 ◦ . 

Fig. 17. Temporal evolutions of droplet evaporation for various contact angles θ : (a) 30 ◦ , (b) 60 ◦ , (c) 90 ◦ , (d) 120 ◦ , and (e) 150 ◦ . Times from the top to 

bottom for each column are t = 0 , 7 . 8125 , and 14.0625. 

 

 

 

 

 

 

 

 

Hence, we obtain the following relationship: 

dR 

dt 
= 

−2 γ

(2 + cos θ )(1 − cos θ ) 
, (18)

and its solution is R (t) = R 0 − 2 γ t/ ((2 + cos θ )(1 − cos θ )) , where R 0 denotes the initial radius and R denotes the radius at

time t . Subsequently, the theoretical mass of a droplet at any computational step can be calculated using the formula of M

above. In Fig. 16 , we plot the numerical and theoretical values of the mass of the droplet with respect to different contact

angles; and we observe that the velocity of mass decrease for 45 ◦ (the line with star markers) is greater than that for 135 ◦

(the line with circle markers). The numerical result thus exhibits good agreement with theory. 

4.8. Effect of θ on surface area change 

Finally, we investigate the effect of θ on surface area change with V 0 = π/ 12 and various contact angles corresponding

to θ = 30 ◦, 60 ◦, 90 ◦, 120 ◦, and 150 ◦. In simulation, we use h = 1 / 128 , ε = 0 . 011 , �t = h, and γ = 0 . 01 on � = (0 , 2) ×
(0 , 2) × (0 , 1) . The discrete surface area A is defined as 

A ( X ) = 

1 

2 

M T ∑ 

s =1 

| ( X q − X l ) × ( X m 

− X l ) | , 

where the schematic illustration can be found in Fig. 7 . Fig. 17 (a)–(d) show the temporal evolutions of droplet evaporation

for various contact angles θ corresponding to 30 ◦, 60 ◦, 90 ◦, 120 ◦, and 150 ◦, respectively. The evolutions of the discrete surface

area for various contact angles are shown in Fig. 18 , where the different markers denote surface areas at different times. We

observe that the distributions of the surface areas for a time are similar. 
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Fig. 18. Temporal evolutions of surface area for various contact angles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

We proposed a modified CH model with an interfacial evaporation mass flux to simulate droplet evaporation. To enable

fast and efficient computation, the unconditionally gradient stable scheme was used to discretize the governing equation,

and the multigrid method was applied to solve the resulting system. The numerical results indicated that the proposed

model could simulate droplet evaporation. Additionally, different contact angles lead to different evolutions of total mass

and surface area: (a) smaller contact angles cause faster evaporation of the droplet; (b) smaller contact angles cause larger

surface areas when θ < 90 ◦, whereas larger contact angles cause larger surface areas when θ > 90 ◦. The surface area of the

droplet is least when θ = 90 ◦. 
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