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A B S T R A C T

In this paper, we present a simple and explicit finite difference method for the phase-field model for diblock
copolymer melts. A diblock copolymer is a polymer consisting of two types of different monomers bonded
covalently to each other to form a single copolymer chain. When the temperature is below the critical
temperature, the copolymer melt exhibits microphase separation. The mathematical model is derived from a
total free energy functional which contains kinetic, gradient, double well, and long-range nonlocal potentials.
The Saul’yev-type scheme based on a linearly stabilized convex splitting method is used for the discretizations.
The proposed method is simple and computationally efficient because the scheme is explicit and it does not
require any iterative procedures. The proposed scheme not only overcomes the severe time step restriction for
the explicit scheme but also works well for the simulations of lamellar and hex-cylinder structures which are
characteristic morphologies for diblock copolymer melts after phase separation. Furthermore, the proposed
method can be easily applied to the simulations in complex computational domains. We present various
numerical tests to demonstrate the performance of the proposed scheme.
1. Introduction

In this article, we present a simple and computationally efficient
explicit finite difference method (FDM) for the nonlocal Cahn–Hilliard
(CH) equation for diblock copolymer melts [1,2]:
𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛥
[

𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2𝛥𝜙(𝐱, 𝑡)
]

− 𝛼(𝜙(𝐱, 𝑡) − �̄�), 𝐱 ∈ 𝛺, 𝑡 > 0. (1)

In a domain 𝛺 ⊂ R2, 𝜙(𝐱, 𝑡) is the difference of the local volume fraction
of 𝐴 and 𝐵 monomers. Here, 𝐹 (𝜙) = 0.25(𝜙2 − 1)2 is the double-well
free energy that has two minima at 𝜙 = ±1, 𝜖 is the gradient energy
coefficient, 𝛼 is the positive parameter, and �̄� = ∫𝛺 𝜙(𝐱, 0)𝑑𝐱

/

∫𝛺 𝑑𝐱.
Eq. (1) can be derived from the 𝐻−1 gradient flow for the following
total energy functional:

(𝜙) = ∫𝛺

(

𝐹 (𝜙) + 𝜖2

2
|∇𝜙|2

)

𝑑𝐱 (2)

+𝛼
2 ∫𝛺 ∫𝛺

𝐺(𝐱 − 𝐲)(𝜙(𝐱) − �̄�)(𝜙(𝐲) − �̄�)𝑑𝐲𝑑𝐱.

Here, 𝐺(𝐱) is given by the solution of the Poisson problem −𝛥𝐺(𝐱) =
𝛿(𝐱) with a Dirac delta function 𝛿(𝐱). We note that the 𝐿2-gradient
flow approach for energy functional (2) generates the Allen–Cahn type
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dynamics. The Allen–Cahn type diblock copolymer model has weaker
CFL condition and is relatively easier to solve numerically than the
CH type model. Various studies for the Allen–Cahn type model can be
found in Refs. [3–6].

Returning to the CH type model (1), there have been many studies
for the numerical approach. In Refs. [7–9], the authors proposed a
novel stabilized scalar auxiliary variable (SAV) approach which is
second-order accurate, provably unconditionally energy stable, non-
iterative for the CH type diblock copolymer model. In Ref. [10], the au-
thors presented an unconditionally energy stable and second-order ac-
curate numerical method by combining a Crank–Nicolson type scheme
with a nonlinearly stabilized splitting scheme. Tenneti et al. [11]
studied equilibrium microstructures exhibited by diblock copolymers in
confined three-dimensional geometries using a finite element method.

Jeong et al. [12] proposed a numerical method for finding energy-
minimizing wavelengths of equilibrium states for diblock copolymers.
Jeong and Kim [13] presented a computational scheme for microphase
separation pattern formations in diblock copolymers on curved sur-
faces. Recently, Li et al. [14] developed an efficient method for restor-
ing damaged fingerprint image using the non-local CH equation. For the
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numerical solvers of the non-local CH equation, there have been devel-
oped various methods such as Fourier-spectral method [15], multigrid
method [16]. Because the non-local CH equation is very similar to the
local CH equation, we can use most of numerical solvers for the local
CH equation.

The primary purpose of this study is to present a simple and explicit
FDM for the phase-field model for diblock copolymer melts. The math-
ematical model is a four-order partial differential equation. Therefore,
if we use a fully explicit Euler’s method, then the time step restriction is
very stringent. To overcome this severe time step restriction, we apply
the Saul’yev-type scheme based on a linearly stabilized convex splitting
method. In addition, the proposed method can be easily applied to the
simulations in complex computational domains because it is explicit.

The contents of this paper are as follows. We describe the proposed
numerical method in Section 2. Several computational experiments are
given to show the capability of the proposed method in Section 3. In
Section 4, we discuss the extension of the proposed method to a possible
second-order time-accurate scheme. In Section 5, we conclude.

2. Discretization

Let 𝛺 = (𝑎, 𝑏)×(𝑐, 𝑑) be the domain and 𝛺ℎ = {(𝑥𝑖 = 𝑎+(𝑖−0.5)ℎ, 𝑦𝑗 =
𝑐 + (𝑗 − 0.5)ℎ) ∣ 𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1,… , 𝑁𝑦} be the discrete numerical
omain, where ℎ is the space step size; 𝑁𝑥 and 𝑁𝑦 are integers. Let 𝜙𝑛𝑖𝑗

be the numerical solution of 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡), where 𝛥𝑡 is the time step. Let
us consider the linear convex splitting-type scheme [17]:

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= 𝛥𝑑 [(𝜙𝑛𝑖𝑗 )
3 − 3𝜙𝑛𝑖𝑗 ] + 2𝛥𝑑𝜙𝑛+1𝑖𝑗 − 𝜖2𝛥2𝑑𝜙

𝑛+1
𝑖𝑗 − 𝛼(𝜙𝑛+1𝑖𝑗 − �̄�), (3)

where 𝛥𝑑𝜙𝑖𝑗 = (𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗 − 4𝜙𝑖𝑗 + 𝜙𝑖,𝑗−1 + 𝜙𝑖,𝑗+1)∕ℎ2 and 𝛥2𝑑𝜙𝑖𝑗
is defined similarly. Unless otherwise specified, the following discrete
homogeneous Neumann boundary condition is used:

𝜙𝑛−1,𝑗 = 𝜙𝑛2𝑗 , 𝜙
𝑛
0𝑗 = 𝜙𝑛1𝑗 , 𝜙

𝑛
𝑁𝑥+1,𝑗

= 𝜙𝑛𝑁𝑥𝑗 , 𝜙
𝑛
𝑁𝑥+2,𝑗

= 𝜙𝑛𝑁𝑥−1,𝑗 , for 𝑗 = 1,… , 𝑁𝑦,

𝜙𝑛𝑖,−1 = 𝜙𝑛𝑖2, 𝜙
𝑛
𝑖0 = 𝜙𝑛𝑖1, 𝜙

𝑛
𝑖,𝑁𝑦+1

= 𝜙𝑛𝑖𝑁𝑦 , 𝜙
𝑛
𝑖,𝑁𝑦+2

= 𝜙𝑛𝑖,𝑁𝑦−1, for 𝑖 = 1,… , 𝑁𝑥.

Then, we apply the following Saul’yev-type scheme [18,19] for
q. (3):

For 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑖 = 1, 2,… , 𝑁𝑥, (4)
𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗

𝛥𝑡
= 𝛥𝑑 [(𝜙𝑛𝑖𝑗 )

3 − 3𝜙𝑛𝑖𝑗 ] +
2
ℎ2

(

𝜙𝑛+1𝑖−1,𝑗 + 𝜙
𝑛
𝑖+1,𝑗 − 2𝜙𝑛𝑖𝑗 − 2𝜙𝑛+1𝑖𝑗 (5)

+𝜙𝑛+1𝑖,𝑗−1 + 𝜙
𝑛
𝑖,𝑗+1

)

− 𝜖
2

ℎ4
[

𝜙𝑛+1𝑖−2,𝑗 + 𝜙
𝑛
𝑖+2,𝑗 + 𝜙

𝑛+1
𝑖,𝑗−2 + 𝜙

𝑛
𝑖,𝑗+2

+2(𝜙𝑛+1𝑖−1,𝑗−1 + 𝜙
𝑛
𝑖−1,𝑗+1 + 𝜙

𝑛+1
𝑖+1,𝑗−1 + 𝜙

𝑛
𝑖+1,𝑗+1)

− 8(𝜙𝑛+1𝑖−1,𝑗 + 𝜙
𝑛
𝑖+1,𝑗 + 𝜙

𝑛+1
𝑖,𝑗−1 + 𝜙

𝑛
𝑖,𝑗+1) + 10𝜙𝑛𝑖𝑗 + 10𝜙𝑛+1𝑖𝑗

]

− 𝛼(𝜙𝑛+1𝑖𝑗 − �̄�).

We can simplify Eq. (5) as

𝜙𝑛+1𝑖𝑗 = 1
𝑟

{ 𝜙𝑛𝑖𝑗
𝛥𝑡

+ 𝛥𝑑 [(𝜙𝑛𝑖𝑗 )
3 − 3𝜙𝑛𝑖𝑗 ] +

2
ℎ2

(

𝜙𝑛+1𝑖−1,𝑗 + 𝜙
𝑛
𝑖+1,𝑗 − 2𝜙𝑛𝑖𝑗 (6)

+𝜙𝑛+1𝑖,𝑗−1 + 𝜙
𝑛
𝑖,𝑗+1

)

− 𝜖
2

ℎ4
[

𝜙𝑛+1𝑖−2,𝑗 + 𝜙
𝑛
𝑖+2,𝑗 + 𝜙

𝑛+1
𝑖,𝑗−2 + 𝜙

𝑛
𝑖,𝑗+2

+2(𝜙𝑛+1𝑖−1,𝑗−1 + 𝜙
𝑛
𝑖−1,𝑗+1 + 𝜙

𝑛+1
𝑖+1,𝑗−1 + 𝜙

𝑛
𝑖+1,𝑗+1)

− 8(𝜙𝑛+1𝑖−1,𝑗 + 𝜙
𝑛
𝑖+1,𝑗 + 𝜙

𝑛+1
𝑖,𝑗−1 + 𝜙

𝑛
𝑖,𝑗+1) + 10𝜙𝑛𝑖𝑗

]

+ 𝛼�̄�
}

,

where 𝑟 = 1∕𝛥𝑡 + 4∕ℎ2 + 10𝜖2∕ℎ4 + 𝛼. There are the other 7 cases for
oops:

or 𝑗 = 1, 2,… , 𝑁𝑦, for 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, (7)

or 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, for 𝑖 = 1, 2,… , 𝑁𝑥, (8)

or 𝑗 = 𝑁 ,𝑁 − 1,… , 1, for 𝑖 = 𝑁 ,𝑁 − 1,… , 1, (9)
2

𝑦 𝑦 𝑥 𝑥
Table 1
Possible maximum time steps ensuring stable computation.

Space step ℎ: 1∕16 1∕32 1∕64 1∕128

present scheme: 2.10e−3 2.00e−3 2.00e−3 2.10e−3
fully explicit scheme: 2.29e−6 1.91e−6 1.79e−6 3.72e−7

Table 2
CPU times for the fully explicit and proposed schemes.

Space step ℎ: 1∕75 1∕150 1∕225

𝐶𝑃𝑈 𝑒: 59.158 245.730 687.495
Ratio: 84.151 95.615 100.570
𝐶𝑃𝑈 : 0.703 2.570 6.836

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 1, 2,… , 𝑁𝑦, (10)

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 1, 2,… , 𝑁𝑦, (11)

For 𝑖 = 1, 2,… , 𝑁𝑥, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1, (12)

For 𝑖 = 𝑁𝑥, 𝑁𝑥 − 1,… , 1, for 𝑗 = 𝑁𝑦, 𝑁𝑦 − 1,… , 1. (13)

More details can be found in [19], where an explicit conservative
Saul’yev scheme for the local CH equation was described.

The main advantages of the proposed scheme compared with other
traditional methods are its simplicity and efficiency in dealing with
complex domains. Temporal update of the numerical scheme is similar
to one iteration of the Gauss–Seidel type iterative. However, it is
difficult to show energy stability of the proposed method. Therefore, we
present computational tests to demonstrate the energy decrease with
practically large time steps.

3. Numerical experiments

Now, we validate the performance of the proposed method through
several computational tests. Without specific needs, the computational
domain is 𝛺 = (0, 2) × (0, 2).

3.1. Comparison study with a fully explicit scheme

The fully explicit scheme is the simplest method to numerically
solve the parabolic partial differential equations. However, the time
step restriction of the fully explicit method for the nonlocal CH equa-
tion is of 𝑂(ℎ4), which is not practical in actual applications. We
first study the numerical stability condition. The initial condition is
specified as 𝜙(𝑥, 𝑦, 0) = 0.2 cos(𝜋𝑥) cos(𝜋𝑦). Here, various space steps
ℎ = 1∕16, 1∕32, 1∕64, 1∕128, 𝜖 = 2ℎ, and 𝛼 = 1000 are used. Numerical
solutions are computed until 𝑡 = 62.5. We list the possible maximum
time steps in Table 1 with respect to space step ℎ. It can be observed
that the proposed scheme obviously releases the strict restriction of the
time step.

In addition, we perform the CPU time comparison test. The initial
condition is given as 𝜙(𝑥, 𝑦, 0) = 0.15 rand(𝑥, 𝑦), where rand(𝑥, 𝑦) is
the random number in [−1, 1]. For the fully explicit scheme, we use
𝜖 = 0.01, 𝛼 = 1000, and 𝛥𝑡 = 𝛿𝑡, where 𝛿𝑡 = 50ℎ4 and ℎ = 1∕75, 1∕150,
and 1∕225. The simulation stops after 32000 time iterations. For our
proposed scheme, we set the time step 𝛥𝑡 = 100𝛿𝑡. We define the
ratio as 𝐶𝑃𝑈 𝑒∕𝐶𝑃𝑈 , where 𝐶𝑃𝑈 𝑒 and 𝐶𝑃𝑈 represent the total CPU
time required by the fully explicit and proposed schemes, respectively.
Table 2 shows that the proposed method almost saves two orders of the
computational time.

Next, we compare the pattern formations simulated by the proposed
method with those by the fully explicit method. The initial condition
remains unchanged. Here, 𝜖 = 0.01, 𝛼 = 1000, and ℎ = 1∕75 are used.
For the fully explicit method, we use 𝛥𝑡 = 𝛿𝑡 = 50ℎ4. For the proposed
method, we consider 𝛥𝑡 = 10𝛿𝑡, 50𝛿𝑡 and 250𝛿𝑡. The snapshots at
𝑡 = 0.05 are shown in Fig. 1, we can find that the morphology structures
are similar, although the time step used in the proposed method is 10
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Fig. 1. Snapshots at 𝑡 = 0.05 simulated by our proposed method with various time steps: (a)–(c). The result computed by the fully explicit scheme is shown in (d).
Fig. 2. Normalized energy curves computed by the fully explicit and proposed schemes.
times larger than the time step used in the fully explicit method. Let us
define the discrete total energy to be

(𝜙, 𝜓) = ℎ2
𝑁𝑥−1
∑

𝑖=1

𝑁𝑦−1
∑

𝑗=1

{

𝐹 (𝜙𝑖𝑗 ) +
𝜖2

2

[

(𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗 )2

ℎ2
+

(𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗 )2

ℎ2

]

+ 𝛼
2

[

(𝜓𝑖+1,𝑗 − 𝜓𝑖𝑗 )2

ℎ2
+

(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗 )2

ℎ2

]}

, (14)

where 𝜓 satisfies −𝛥𝜓 = 𝜙 − �̄�. The normalized discrete energy
is defined as (𝜙𝑛, 𝜓𝑛)∕(𝜙0, 𝜓0). In Fig. 2, we display the temporal
evolutions of the normalized energy curves with respect to various time
steps. When 𝛥𝑡 = 10𝛿𝑡 is used, the energy curves computed by the
proposed and fully explicit methods are similar. Although the energy is
non-increasing when we increase the time step, the difference becomes
obvious because of the natural discretization error.

3.2. Convergence test

To confirm the temporal and spatial accuracy of the proposed
Saul’yev method, we perform the convergence test with respect to
time and space. Because the analytical solution is hard to define for
the phase-field diblock copolymer model, we compute the successive
errors that the numerical solution when 𝛥𝑡 and ℎ is compared with
that when 𝛥𝑡∕4 and ℎ∕2. The final time is fixed as 𝑡 = 𝑛𝛥𝑡 =
1.6𝑒 − 6, where 𝑛 is the iteration number when the time step is
𝛥𝑡. The domain is 𝛺 = (0, 1) × (0, 1), the initial state is defined
as 𝜙(𝑥, 𝑦, 0) = 0.5 tanh

(

(0.3 −
√

(𝑥 − 0.5)2 + (𝑦 − 0.5)2)∕(
√

2𝜖)
)

, and the
parameters used are 𝜖 = 0.02 and 𝛼 = 1000. The discrete error is defined
as:

𝑒𝛥𝑡,ℎ𝑖𝑗 = 𝜓𝛥𝑡,ℎ𝑖𝑗 − 1
4

(

𝜓𝛥𝑡∕4,ℎ∕22𝑖−1,2𝑗−1 + 𝜓
𝛥𝑡∕4,ℎ∕2
2𝑖−1,2𝑗 + 𝜓𝛥𝑡∕4,ℎ∕22𝑖,2𝑗−1 + 𝜓𝛥𝑡∕4,ℎ∕22𝑖,2𝑗

)

,

where 𝜓𝛥𝑡,ℎ𝑖𝑗 is the numerical solution 𝜙𝑛𝑖𝑗 when the time and space
step sizes are used as 𝛥𝑡 and ℎ. The convergence rate is defined as
3

log2
(

‖𝑒𝛥𝑡,ℎ‖2∕‖𝑒𝛥𝑡∕4,ℎ∕2‖2
)

. Here, the discrete 𝐿2-norm is defined as:

‖𝑒‖2 =

√

√

√

√

√

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝑒2𝑖𝑗∕(𝑁𝑥𝑁𝑦).

Table 3 lists the 𝐿2-errors and the corresponding convergence rates. It
can be observed that the proposed method achieves first-order accuracy
in time and second-order accuracy in space.

3.3. Effect of average concentration

To investigate the effect of average concentration on the pattern
formation, we perform a computational test with the initial condition
𝜙(𝑥, 𝑦, 0) = �̄�+0.15rand(𝑥, 𝑦), where �̄� = 0 and �̄� = −0.3 are considered.
We use 𝛥𝑡 = 0.5ℎ2, ℎ = 1∕75, 𝜖 = 0.01, and 𝛼 = 1000. In Fig. 3, from top
and bottom rows show the snapshots with �̄� = 0 and −0.3, respectively.
We can observe that the lamellar and hex-cylinder structures appear
when �̄� = 0 and �̄� = −0.3 are used, respectively. In Fig. 4, the
normalized energy curves are plotted. We can find that the energy
curves are decreasing in time.

3.4. Effect of 𝛼

Now, we study the effect of 𝛼 value, which is related to the total
chain length of the copolymer [20]. Here, the same initial condition
and parameters in the previous section are used except 𝛼 = 10, 100,
and 1000. In Fig. 5, the top row shows the snapshots at 𝑡 = 12800𝛥𝑡
with �̄� = 0 and the bottom row shows the results with �̄� = −0.3. As we
can observe, the dynamics of the CH model play a dominant role when
we decrease the value of 𝛼.
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Fig. 3. Top and bottom rows are the results with �̄� = 0 and −0.3, respectively. From left to right, the snapshots are at 𝑡 = 0.0178, 0.0356, and 1.1378.

Fig. 4. Normalized energy curves with �̄� = 0 and −0.3.

Fig. 5. Snapshots at 𝑡 = 12800𝛥𝑡 with �̄� = 0 (top row) and �̄� = −0.3 (bottom row). From left to right, 𝛼 = 10, 100, and 1000, respectively.
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Table 3
Discrete 𝐿2-errors and convergence rates with respect to different time and space steps.

Cases: (1.000e−6, 1/32) Rate (2.500e−7, 1/64) Rate (6.250e−8, 1/128)
(2.500e−7, 1/64) (6.250e−8, 1/128) (3.125e−8, 1/256)

𝐿2-error: 5.505e−3 1.90 1.471e−2 2.01 3.657e−4
Fig. 6. Effect of channel width. The top and bottom rows are the results with 4𝐿 and 10𝐿, respectively.
Fig. 7. Pattern formation in the wave-shaped region with respect to different values of 𝐴. From top to bottom, 𝐴 = 0.2, 0.6, and 1, respectively.
3.5. Local defectiveness control

In this subsection, we consider the local defectiveness control of di-
block copolymer patterns [21]. The simulation is performed in a region
which is embedded in the full domain 𝛺 = (−25𝐿, 25𝐿) × (−15𝐿, 15𝐿),
where 𝐿 = 0.375. Here, we use ℎ = 𝐿∕10, 𝛥𝑡 = 2.3438e-5, 𝛼 = 100,
and 𝜖 = 1∕(20

√

2). The Dirichlet boundary value −0.7475 is used. In
Fig. 6, the top and bottom rows show the morphology evolutions in
the domains with channel width 4𝐿 and 10𝐿, respectively. The present
simulation results are similar to those in the previous work [21].

3.6. Effect of domain size

We study the effect of domain size on the formation of lamellar
patterns. We first consider the wave-shaped complex region defined in
the domain 𝛺 = (0, 4𝜋) × (0, 2𝜋). The initial condition is defined as

𝜙(𝑥, 𝑦, 0) =
{

0.001rand(𝑥, 𝑦) if 𝑓 (𝑥) < 𝑦 < 𝑔(𝑥),
−0.75 otherwise, (15)

where 𝑓 (𝑥) = − cos(0.5𝑥)−1+(2−𝐴)𝜋 and 𝑔(𝑥) = cos(0.5𝑥)+1+𝐴𝜋. Here,
we use ℎ = 𝜋∕200, 𝜖 = 0.0354, 𝛥𝑡 = 0.04ℎ2, and 𝛼 = 100. The simulation
5

is performed in the interior of the complex region and 𝜙 = −0.75 is
fixed in the rest region as the Dirichlet boundary condition. We vary
the size of complex region by changing the value of 𝐴 = 0.2, 0.6, and
1. The snapshots of the computational results with respect to different
complex regions are illustrated in Fig. 7. It can be observed that the
defect is controlled by the size of the complex region.

Next, we consider the formation of lamellar pattern in the elliptic
region. The computational domain is 𝛺 = (0, 20) × (0, 20). The initial
condition is

𝜙(𝑥, 𝑦, 0) =

{

0.001rand(𝑥, 𝑦) if
√

(𝑥 − 10)2∕𝑎2 + (𝑦 − 10)2∕𝑏2 < 1,
−0.75 otherwise.

(16)

We use ℎ = 0.04, 𝜖 = 0.0354, 𝛥𝑡 = 2.5e-5, and 𝛼 = 100. Here, 𝑎 = 4.5
is fixed and we change the shape of ellipse by changing the value of
𝑏 = 4.5, 6.5, and 9.8. We plot the snapshots of the computational results
with respect to different domain sizes in Fig. 8. As we can see, the defect
shape resembles the shape of the domain boundaries.
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Fig. 8. Pattern formation in the elliptic domains. From top to bottom, 𝑏 = 4.5, 6.5, and 9.8.
3.7. Comparison with an implicit type method

For the CH type phase-field models, the nonlinear convex splitting
method (CS) is practical because it allows relatively large time steps in
the simulations. Some typical works of the CS method for the CH and
diblock copolymer equations can refer to [16,22,23]. However, the CS
method generally needs extra computational time because the iterative
calculations should be performed for the implicit nonlinear term. The
fully discrete and temporally first-order accurate scheme for the phase-
field diblock copolymer based on the CS method can be written as:

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= 𝛥𝑑 [(𝜙𝑛+1𝑖𝑗 )3 − 𝜙𝑛𝑖𝑗 ] − 𝜖
2𝛥2𝑑𝜙

𝑛+1
𝑖𝑗 − 𝛼(𝜙𝑛+1𝑖𝑗 − �̄�). (17)

In this subsection, we verify the efficiency of the proposed method by
comparing with the nonlinear CS method. The domain is 𝛺 = (0, 150)×
(0, 150). The initial state is set to be 𝜙(𝑥, 𝑦, 0) = −0.3 + 0.15rand(𝑥, 𝑦).
The parameters are 𝛥𝑡 = 0.1ℎ2, ℎ = 1∕75, 𝜖 = 0.01, and 𝛼 = 1000.
Figs. 9(a) and (b) display the snapshots at 𝑡 = 0.1422 with respect to the
nonlinear CS method and the proposed Saul’yev method. We find that
the results are very consistent. In Fig. 9(c), the CPU time consumed by
two different methods is plotted. It can be observed that the proposed
method significantly saves computational time. The results plotted in
Fig. 9(d) indicate that the energy curves computed by two methods are
in good agreement.

3.8. Pattern formations in a complex domain

Now, we consider the pattern formations in a complex domain
with spiral shape. The full domain is 𝛺 = (−1.6, 1.6) × (−1.6, 1.6). The
6

schematic illustrations of the formation of a spiral region are shown
in Fig. 10. The marker function 𝑐 is used so that 𝑐 = 1 and 𝑐 = 0
represent the interior and exterior of the complex region, respectively.
The simulation is performed in the interior of spiral region and 𝜙 =
−0.75 is fixed in the rest region as Dirichlet boundary condition. The
parameters ℎ = 3.2∕600, 𝜖 = 0.008, 𝛼 = 1000, and 𝛥𝑡 = 2ℎ2 are used.
The evolutions with �̄� = 0 and �̄� = −0.3 are shown in the top and
bottom rows of Fig. 11. It can be seen that the lamellar and hex-cylinder
patterns appear in the complex regions.

4. Discussion

In the present work, we only focus on constructing an efficient
Saul’yev method for the phase-field diblock copolymer model and
investigating its performance. It should be noted that a temporally
second-order accurate scheme is more desirable to perform long-time
simulations. In future work, we will extend the current method to
a possible second-order time-accurate scheme by using the Crank–
Nicolson/Adams–Bashforth (CNAB) approximation as follows.

𝜙𝑛+1𝑖𝑗 − 𝜙𝑛𝑖𝑗
𝛥𝑡

= 𝛥𝑑

[

3
2

(

(𝜙𝑛𝑖𝑗 )
3 − 𝜙𝑛𝑖𝑗

)

− 1
2

(

(𝜙𝑛−1𝑖𝑗 )3 − 𝜙𝑛−1𝑖𝑗

)

− 𝜖2

2

(

𝛥𝑑𝜙
𝑛+1
𝑖𝑗 + 𝛥𝑑𝜙𝑛𝑖𝑗

)

]

− 𝛼

(

𝜙𝑛+1𝑖𝑗 + 𝜙𝑛𝑖𝑗
2

− �̄�

)

. (18)

Then, we have one case of eight cases of nested loops:

For 𝑗 = 1, 2,… , 𝑁 , for 𝑖 = 1, 2,… , 𝑁 , (19)
𝑦 𝑥
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Fig. 9. Patterns computed by (a) the nonlinear CS method and (b) the proposed Saul’yev method. The CPU costs and energy curves are shown in (c) and (d), respectively..
Fig. 10. Schematic illustrations of the formation of complex region.
𝜙𝑛+1𝑖𝑗 = 1
𝑟

{𝜙𝑛𝑖𝑗
𝛥𝑡

+ 𝛥𝑑

[

3
2

(

(𝜙𝑛𝑖𝑗 )
3 − 𝜙𝑛𝑖𝑗

)

− 1
2

(

(𝜙𝑛−1𝑖𝑗 )3 − 𝜙𝑛−1𝑖𝑗

)

+ 𝜖2

2
𝛥𝑑𝜙

𝑛
𝑖𝑗

]

+ 𝜖2

2ℎ4
[

𝜙𝑛𝑖+2,𝑗 + 𝜙
𝑛+1
𝑖−2,𝑗 + 𝜙

𝑛
𝑖,𝑗+2 + 𝜙

𝑛+1
𝑖,𝑗−2 + 2(𝜙𝑛𝑖+1,𝑗+1 + 𝜙

𝑛
𝑖+1,𝑗−1

+𝜙𝑛𝑖−1,𝑗+1 + 𝜙
𝑛+1
𝑖−1,𝑗−1) − 8(𝜙𝑛𝑖+1,𝑗 + 𝜙

𝑛+1
𝑖−1,𝑗 + 𝜙

𝑛
𝑖,𝑗+1 + 𝜙

𝑛+1
𝑖,𝑗−1) + 10𝜙𝑛𝑖𝑗

]

− 𝛼

(

𝜙𝑛𝑖𝑗
2

− �̄�

)

}

,

where 𝑟 = 1∕𝛥𝑡 + 5𝜖2∕ℎ4 + 𝛼∕2. To update the solution, the above two-
step scheme needs the information at 𝑡 = 𝑛𝛥𝑡 and 𝑡 = (𝑛 − 1)𝛥𝑡. In the
first time step, we compute (𝜙1) by using the first-order time-accurate
scheme with a subcycling technique. For example, we take four time
step iterations with a smaller time 𝛥𝑡∕4 to obtain the numerical solution
at 𝑡 = 𝛥𝑡 from the given initial condition.
7

5. Conclusions

In this work, we developed a simple and explicit FDM for the
nonlocal CH equation for diblock copolymer melts. The Saul’yev-type
scheme was used for the discretizations. Therefore, we can use rela-
tively large time steps. Furthermore, because the proposed method is
explicit and it does not require any iterative procedures, the numerical
scheme is simple and computationally efficient. The computational
results confirmed the superior performance of the proposed method
for the phase separation of diblock copolymer melts. In particular,
the proposed scheme worked well on complex domains. As upcoming
studies, the proposed explicit method will be applied to the diblock
copolymer with fluid flows [24].
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Fig. 11. Pattern formations in complex domain. The top and bottom rows are the results with �̄� = 0 and −0.3, respectively.
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