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In this study, we develop a numerical method for the robust and accurate construction of a local volatil- 

ity (LV) surface using the generalized Black–Scholes (BS) equation from the given option price data. The 

BS equation is a partial differential equation and has been used to model financial option pricing. Con- 

stant volatility was used in the classical BS model. However, it is well known that the constant volatility 

BS model is practically unsuitable because real financial market data demonstrate non-constant volatility 

behavior. The LV function is dependent on the asset prices and time. One of the difficulties in reconstruct- 

ing an unknown LV surface is uniqueness. We extend a previous study of reconstructing time-dependent 

volatility, which is unique, to time- and space-dependent volatility surfaces. We propose an algorithm 

comprising four steps: the first step is estimating constant implied volatility; the second step is finding 

the influential region using the probability density function of a log-normal distribution; the third step 

is calculating the time-dependent volatility function; and the final step is reconstructing the LV surface. 

We use a finite difference method to numerically solve the BS model and a nonlinear fitting function to 

compute the LV surface. We perform computational experiments using synthetic and real market data. 

The numerical results demonstrate the robust and accurate construction of an unknown LV surface using 

the proposed method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this article, we present a numerical method for the robust 

nd accurate construction of a local volatility (LV) surface using the 

eneralized Black–Scholes (BS) equation [1,2] . The BS equation is a 

artial differential equation and has been used to model financial 

ption pricing. Constant volatility has been used in the classical BS 

odel [3] . Let S be the underlying price, t be time, and u (S, t) be

he option price. The classical form of the BS equation is as fol- 

ows: 

∂u (S, t) 

∂t 
+ 

1 

2 

[ σ S] 2 
∂ 2 u (S, t) 

∂S 2 
+ rS 

∂u (S, t) 

∂S 
− ru (S, t) = 0 , (1) 

for (S, t) ∈ R 

+ × [0 , T ) , 

here σ is the constant volatility, r is the risk-free rate, and T is 

he final time. The terminal condition is u (S, T ) = �(S) at t = T ,

here �(S) is a function that depends on the financial option 

ypes [3] . For example, �(S) = max (S − K, 0) for a European call 

ption with strike price K = 100 , as shown in Fig. 1 . 
∗ Corresponding author. 
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However, it is well known that the constant volatility BS model 

s practically unsuitable because real financial market data demon- 

trate non-constant volatility behavior. Therefore, we should con- 

ider the following generalized BS equation: 

∂u (S, t) 

∂t 
+ 

1 

2 

[ σ (S, t) S] 2 
∂ 2 u (S, t) 

∂S 2 
+ rS 

∂u (S, t) 

∂S 
− ru (S, t) = 0 , (2) 

here σ (S, t) is the LV function that depends not only on the un- 

erlying asset S, but also on time t . Some studies have focused on 

econstructing only the time-dependent volatility function using 

arket option data [4,5] . The LV model was introduced by Dupire 

6] and Derman and Kani [7] for pricing and managing the risks of 

ptions. Numerous studies have been conducted on the effects of 

(S, t) [8–12] . Itkin [13] emphasized the need for more research 

n LV in mathematical finance. The study covers numerical ap- 

roaches for interpolating and extrapolating the LV surfaces. Many 

tudies on constructing the LV surface using calibration methods 

ave been conducted. Guo et al. [14] used the optimal transport 

nd alternative direction method of multipliers (ADMM) algorithm 

o construct the LV function. However, the algorithm exhibited a 

low convergence rate. Lim [15] used a linear function to estimate 

he transition probability function to construct a volatility surface. 

u and Jia [16] proposed a calibration method by solving an in- 

https://doi.org/10.1016/j.chaos.2021.111116
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111116&domain=pdf
mailto:cfdkim@korea.ac.kr
https://doi.org/10.1016/j.chaos.2021.111116
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Fig. 1. Payoff function �(S) = max (S − K, 0) for a European call option with a strike 

price K = 100 . 

Fig. 2. Uniform grid with the space step h . 
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erse problem using an iterative algorithm. The algorithm was ap- 

lied to the jump-diffusion model, and tests with different condi- 

ions showed the robustness of the proposed method. Ogetbil et al. 

17] proposed a Monte Carlo simulation algorithm. A disadvantage 

s that the Monte Carlo method requires a high computational cost 

o achieve high accuracy. Santos [18] analyzed the problem within 

 time-transformation framework. Using additional information, 

he authors improved the performance of the Bayesian methods. 

This study primarily aims to develop a robust and accurate nu- 

erical method for reconstructing an unknown LV surface using 

he BS equation and the observed real market European call op- 

ion prices. 

The remainder of this paper is organized as follows. In 

ection 2 , the proposed numerical algorithm for constructing the 

V surface is described. In Section 3 , numerical experiment results 

re presented, and the conclusions are drawn in Section 4 . 

. Numerical algorithm 

By changing the variable to τ = T − t , Eq. (2) can be given as

ollows: 

∂u (S, τ ) 

∂τ
= 

1 

2 

[ σ (S, τ ) S] 2 
∂ 2 u (S, τ ) 

∂S 2 
+ rS 

∂u (S, τ ) 

∂S 
− ru (S, τ ) , (3) 

or (S, τ ) ∈ � × (0 , T ] . Here, we redefined u (S, T − τ ) as u (S, τ )

or simplicity of notation. The initial condition is the payoff func- 
Fig. 3. (a) Log-normal distribution PDF. (b) Contour plot at l

2 
ion, u (S, 0) = �(S) for S ∈ � = (0 , L ) , where the infinite domain is

runcated to a finite computational domain [19] . Using the implicit 

uler method in Eq. (3) , we obtain 

u 

n +1 
i 

− u 

n 
i 

�τ
= 

(σ n +1 
i 

S i ) 
2 

2 

u 

n +1 
i −1 

− 2 u 

n +1 
i 

+ u 

n +1 
i +1 

h 

2 

+ r S i 
u 

n +1 
i +1 

− u 

n +1 
i −1 

2 h 

− r u 

n +1 
i 

. (4) 

et us denote the numerical approximation of the solution by u n 
i 

≡
 (S i , τn ) = u (ih, n �τ ) and the discrete volatility function σ n 

i 
≡

(S i , τn ) for i = 1 , 2 , . . . , N S and n = 0 , 1 , . . . , N τ , where N S and

 τ are the number of grid points and time steps, respectively. 

ere, uniform space and time steps are h = L/ (N S − 1) and �τ =
 /N τ , respectively. Fig. 2 shows a schematic of a uniform grid with

pace step h . 

We can rewrite the above Eq. (4) as 

i u 

n +1 
i −1 

+ βi u 

n +1 
i 

+ γi u 

n +1 
i +1 

= b i , for i = 2 , . . . , N S , (5) 

αi = 

rS i 
2 h 

− (σ n +1 
i 

S i ) 
2 

2 h 

2 
, βi = 

1 

�τ
+ 

(σ n +1 
i 

S i ) 
2 

h 

2 
+ r, 

γi = − rS i 
2 h 

− (σ n +1 
i 

S i ) 
2 

2 h 

2 
, b i = 

u 

n 
i 

�τ
. 

he boundary condition is set as the zero Dirichlet and the linear 

oundary condition at S 1 and S N S , respectively, that is, u n 
1 

= 0 and

 

n 
N S +1 

= 2 u n 
N S 

− u n 
N S −1 

for all n [20] . We apply the Thomas algorithm

21] to solve the resulting discrete system (5) . 

.1. Reconstruct volatility surface 

In this section, we propose an algorithm for reconstructing the 

V surface. We define the cost function E(σ ) , which is defined 

s: 

(σ ) = 

1 

M t M k 

M t ∑ 

α=1 

M k ∑ 

β=1 

[ u K β (σ ; S 0 , T α) − V 

α
β ] 2 χα

β , (6) 

here if V α
β

is available, a characteristic function χα
β

= 1 ; other- 

ise, χα
β

= 0 , the numerical solution u K β (σ ; S 0 , T α) at S = S 0 in

q. (3) and the market value V α
β

of European options with the 

trike price K β for β = 1 , . . . , M k at maturity time T α for α =
 , . . . , M t . Here, T α and K β increase with increasing subscripts, that 

s, T 1 < . . . < T M t 
and K 1 < . . . < K M k 

. The proposed algorithm com-

rises the following four steps: Step 1 : We estimate the constant 

mplied volatility σim 

by using the exact formula of the call op- 

ion price and lsqcurvefit [22] . In MATLAB, lsqcurvefit is a nonlinear 
evels f = 0 . 0 01 , 0 . 0 05 , 0 . 01 , 0 . 015 , 0 . 02 , 0 . 03 , 0 . 04 , 0 . 5 . 
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Fig. 4. Schematic illustrations of (a) position of unknown parameters for constructing local volatility surface with M s = 10 and (b) the local volatility surface constructed by 

interpolation with { σ ∗
1 , . . . , σ

∗
M s 

} = { 0 . 20 , 0.12, 0.09, 0.15, 0.08, 0.07, 0.11, 0.05, 0.05, 0 . 07 } . 

Fig. 5. (a) Given LV surface σm (S, t) , Eq. (9) and (b) European call option prices V 
β
α with the given LV surface. 

Fig. 6. (a) Optimal LV surface. (b) Plots of V α
β

, u T α ,K β , and | V α
β

− u T α ,K β | . (c) Mesh plots of σm (S, t) and σopt (S, t) . (d) Mesh plot of | σm (S, t) − σopt (S, t) | . 

3 
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Fig. 7. Plot of the accuracy of the proposed method for size of influential region and the number of the unknown value. (a) RMSE, (b) MAE, and (c) AME. 

Fig. 8. (a) Given LV surface σm (S, t) and (b) European call option prices V 
β
α with the given volatility function (10) . 
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Table 1 

European call option prices generated by the given LV surface (9) . 

K β 80 90 100 110 120 

T 1 = 90 / 360 20.3149 10.7845 3.7181 0.7342 0.0867 

T 2 = 180 / 360 20.6774 11.5584 4.8532 1.4707 0.3319 

T 3 = 270 / 360 21.0317 12.1216 5.5277 1.9526 0.5491 

T 4 = 360 / 360 21.3623 12.5590 5.9901 2.2839 0.7138 
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urve-fitting solver in the least-squares sense: 

im 

= lsqcurvefit ( ′ BSequation 

′ 
, σim 

0 , (1 , . . . , M k × M t ) , V, lb) (7) 

here σim 

and σ 0 
im 

are the optimal and initial constant implied 

olatility, respectively, ′ BSequation ′ returns the exact or numeri- 

al solution of Eq. (3) at (T α, K β ) for α = 1 , . . . , M t , β = 1 , . . . , M k ,

 = [ V 1 1 V 2 1 . . . V 
M k 
M t 

] is the vector with the market prices, and lb is

 lower bound constraint. The volatility is nonnegative; therefore, 

e set lb = 0 . 

Step 2 : We determine the influential region for the computa- 

ional domain. Kim et al. [23] investigated the domain of influence 

f the LV function using a Monte Carlo simulation (MCS). How- 

ver, the MCS method has a problem with high computational cost, 

herefore, we use the probability density function (PDF) of a log- 

ormal distribution to find the influential region with the constant 

mplied volatility σim 

. Fig. 3 shows the PDF of the log-normal dis- 

ribution with r = 0 . 00 6 6 , T = 1 , σim 

= 0 . 1888 , and S 0 = 389 . 29 . 

f (S, t) = 

1 

σim 

S 
√ 

2 πt 
exp 

(
− [ ln (S/S 0 ) − (r − σ 2 

im 

/ 2) t] 2 

2 σ 2 
im 

t 

)
. (8) 

Step 3 : We estimate a time-dependent volatility (TDV) function 

T DV (t) using the algorithm proposed in Jin et al. [5] . Refer to Jin

t al. [5] for details of the algorithm. 

Step 4 : To find the optimal LV surface, we use Eq. (6) .

he LV surface is constructed by cubic spline interpolation with 

onstant volatilities σ ∗
1 
, . . . , σ ∗

M s 
in the area of influence, ma- 

urity T α , and present value S 0 , where the number of un- 

nown values is M s = n s (M t − 1) + 1 . Here, n s is an odd num-

er. Fig. 4 (a) illustrates the position of unknown volatilities 

or constructing the LV surface with M s = 10 . Fig. 4 (b) shows

he LV surface constructed by interpolation with { σ ∗
1 
, . . . , σ ∗

M s 
} = 

 0 . 20 , 0 . 12 , 0 . 09 , 0 . 15 , 0 . 08 , 0 . 07 , 0 . 11 , 0.05, 0 . 05 , 0 . 07 } . 
To find σ (S, t) , we use lsqcurvefit to minimize Eq. (6) . To avoid

aving a negative value when we use lsqcurvefit to find the optimal 
4 
onstant volatilities σ ∗
1 
, . . . , σ ∗

M s 
, we use the lower bound constraint 

b = 0 . Here, the time-dependent volatility function σT DV (t) is used 

s the initial guess value. 

The pseudocode in Algorithm 1 describes the proposed recon- 

truction algorithm for the LV function. 

. Numerical experiments 

We demonstrate the performance of the proposed algorithm for 

onstructing LV surface by several numerical experiments. 

.1. Test problem 1 

We consider the following nonlinear LV surface [25] : 

m 

(S, t) = [0 . 2 + 10 

−5 (S − 100) 2 ] e −t (9) 

or (S, t) ∈ [0 , 400] × (0 , 1] . First, we obtain the market price V α
β

of

he European call option using the given LV surface (9) by solv- 

ng (4) with the maturity time T α = 90 α/ 360 for α = 1 , 2 , 3 , 4 and

trike prices K β = 70 + 10 β for β = 1 , 2 , . . . , 5 . The parameters are

et as follows: the risk-free rate r = 0 . 03 , the spot price S 0 = 100 ,

 s = 401 , and N τ = 401 . The European option prices generated in

q. (9) are represented in Table 1 . Fig. 5 shows the given LV sur-

ace and option prices. 
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Fig. 9. (a) Optimal LV surface. (b) Plots of V α
β

, u T α ,K β , and | V α
β

− u T α ,K β | . (c) Mesh plots of σm (S, t) and σopt (S, t) . (d) Mesh plot of | σm (S, t) − σopt (S, t) | in the strike region. 

Table 2 

RMSE, MAE, and AME for different levels and the number of unknown value M s . 

Le v el 0.006 0.007 0.008 0.009 0.010 

M s = 3 RMSE 2.0925E −4 1.9508E −4 1.8837E −4 1.9082E −4 2.0256E −4 

MAE 1.5928E −3 1.2916E −3 1.2790E −3 1.1764E −3 0.9934E −3 

AME 1.2137E −4 1.1775E −4 1.1428E −4 1.1765E −4 1.2938E −4 

Le v el 0.0062 0.0064 0.0066 0.0068 0.0070 

M s = 5 RMSE 2.0528E −4 1.9944E −4 1.9832E −4 1.9921E −4 1.9508E −4 

MAE 1.5928E −3 1.4585E −3 1.5448E −3 1.4134E −3 1.2916E −3 

AME 1.1919E −4 1.1675E −4 1.1537E −4 1.1969E −4 1.1775E −4 
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Next, using the proposed algorithm, we find the optimal LV sur- 

ace σopt (S, t) that minimizes Eq. (6) . We use M s = 10 and level

.008 of the PDF for the influential region. 

Fig. 6 represents (a) optimal LV surface and (b) plots of V α
β

, 

 T α,K β
, and | V α

β
− u T α,K β

| . Fig. 6 (c) and (d) compare the optimal

V surface σopt (S, t) with the given LV function σm 

(S, t) . The 

oot mean square error (RMSE), mean absolute error (MAE), and 

bsolutely maximum error (AME) in the influential region be- 

ween σopt (S, t) and σm 

(S, t) are approximately 0.0 0 02, 0.0 013, and

.0 0 01, respectively. The proposed algorithm is sufficiently accurate 

or recovering the exact volatility function. 

.2. Parameter effect 

In this section, we consider the effect of the size of the influ- 

ntial domain and the number of unknown values on the accu- 

acy of the proposed method. We set the same conditions as those 

n Section 3.1 . When M s = 3 and M s = 5 , Fig. 7 (a)–(c) show RMSE,

AE, and AME for each level of the PDF of the influential region, 

espectively. 
5 
Table 2 lists the RMSE, MAE, and AME for the 

evel { 0 . 0 06 , 0 . 0 07 , 0 . 0 08 , 0 . 0 09 , 0 . 010 } of the PDF

or the influential region with M s = 3 and the level 

 0 . 0 032 , 0 . 0 034 , 0 . 0 036 , 0 . 0 038 , 0 . 0 040 } with M s = 5 . The level

.008 with M s = 3 and level 0.00 6 6 with M s = 5 are sufficiently

ccurate. 

.3. Test problem 2 

For the second LV surface, we compare the performance with 

nother algorithm [24,25] to construct the LV for the underlying 

sset and time. In [24] , the authors used the following LV surface 

o verify the performance of their algorithm: 

m 

(S, t) = σA + 

A 

S 
+ Bt, (0 . 2 S 0 ≤ S ≤ 5 S 0 , 0 ≤ t ≤ 1) , (10) 

here A = 10 , B = 0 . 2 , and σA = 0 . 2 . The parameters are set as:

he maturity time T α = 0 . 1 + 0 . 045 α for α = 0 , 1 , . . . , 20 and the

trike prices K β = 33 . 6 + 0 . 84 β for β = 0 , 1 , . . . , 20 , r = 0 . 05 , q =
 . 03 , S = 42 , N s = 401 , and N τ = 401 . Fig. 8 (a) and (b) show the
0 
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Fig. 10. (a) KOSPI 200 call option prices. (b) Plots of V α
β

, u T α ,K β , and | V α
β

− u T α ,K β | . (c) Optimal LV surface. (d) Mesh plots of σopt (S, t) in the strike region. 

Table 3 

European call option prices of KOSPI 200 index on from January 2021 to March 2021 on 

30 December 2020 with respect to the strike and maturity. 

K β 395 397.5 400.0 402.5 405.0 407.5.0 410.0 412.5 

T 1 = 15�τ 3.70 2.95 2.31 1.79 1.35 1.02 0.76 0.54 

T 2 = 42�τ 8.06 7.03 6.11 5.33 4.75 4.02 3.49 3.01 

T 3 = 71�τ 10.25 9.4 8.48 7.56 7.03 6.1 4.42 3.91 

Table 4 

Numerical solution at the spot price S 0 and absolute errors between the numerical values and the KOSPI 200 index 

European call option prices on from January 2021 to March 2021 on 30 December 2020. 

K β 395 397.5 400.0 402.5 405.0 407.5.0 410.0 412.5 

T 1 = 15�τ 3.8046 3.0038 2.3299 1.7891 1.3483 0.9951 0.7175 0.5127 

(0.1046) (0.0538) (0.0199) (0.0009) (0.0017) (0.0249) (0.0425) (0.0273) 

T 2 = 42�τ 8.0740 7.1065 6.2059 5.3820 4.6232 3.9290 3.2995 2.7462 

(0.0140) (0.0765) (0.0959) (0.0520) (0.1268) (0.0910) (0.1905) (0.2638) 

T 3 = 71�τ 10.4195 9.3849 8.4019 7.4793 6.6095 5.7936 5.0336 4.3427 

(0.1695) (0.0151) (0.0781) (0.0807) (0.4205) (0.3064) (0.6136) (0.4327) 
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iven LV surface σm 

(S, t) and the European option prices V α
β

, re- 

pectively. 

To find the optimal LV surface σopt (S, t) , we use M s = 10 and

he level 0.007 of the PDF for the influential region. 

Fig. 9 represents (a) optimal LV surface and (b) plots of V α
β

, 

 T α,K β
, and | V α

β
− u T α,K β

| . Fig. 9 (c) and (d) compare the optimal LV

urface σopt (S, t) with the given LV function σm 

(S, t) . The AME of

he LV in the previous study was 0.02 [24] and 0.08 [25] . However,

he AME in the influential region from the proposed algorithm is 

.0189, which points out the superior performance of the proposed 

ethod. 

.4. KOSPI 200 index call option 

For real-market applications, we construct the LV surface using 

he proposed method with the European call option prices of the 

OSPI 200 index from January 2021 to March 2021 on 30 Decem- 

er 2020. Table 3 lists the European call option prices for the strike 
6 
 β = 395 + 2 . 5(β − 1) for β = 1 , 2 , . . . , 8 and maturity T 1 = 15�τ ,

 2 = 42�τ , and T 3 = 71�τ with �τ = 1 / 365 , see Fig. 10 (a). At this

ime, the spot value and the risk-free rate are S 0 = 389 . 29 and

 = 0 . 00 6 6 , respectively. 

We use M s = 10 and level 0.008 of the PDF for the influential

egion. We construct the optimal LV surface σ (S, t) by applying 

he proposed method using real market option data, as shown in 

ig. 10 . Table 4 represents the numerical option prices by the con- 

tructed optimal LV surface and the European call option prices at 

 = T 1 , T 2 , and T 3 . 

Fig. 10 (b) represents the comparison between real market 

rices V α
β

and the computed prices u T α,K β
, which are calcu- 

ated by the optimal LV; (c) shows the mesh plot of σopt (S, t) ;

nd (d) shows the optimal LV σopt (S, t) in the strike region. 

able 4 presents the numerical results; and the absolute errors be- 

ween the numerical values and the European call option prices of 

OSPI 200 index in parentheses. 
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Algorithm 1 Reconstructing the LV surface using the lsqcurvefit . 

S 0 : Present value of underlying asset, M s : The number of 
unknown parameters 
T 1 < . . . < T α < . . . < T M t 

: Maturity time 
K 1 < . . . < K β < . . . < K M k 

: Strike price 

V = [ V 

1 
1 , . . . , V 

α
β

, . . . , V 

M t 
M k 

] : Market price 

� Find the optimal constant implied volatility σim 

σim 

= lsqcurvefit ( ′ BSequation 

′ , σ 0 
im 

, (1 , . . . , M k × M t ) , V, lb) , 
where ′ BSequation 

′ returns the exact solution of Eq. (3) 
for European call option 

� Find the influential region using Eq. (8) 
for i = 1 to M t − 1 do 

(L i , R i ) = arg min 

S 
| ( f (S, (T i + T i + 1 ) / 2) − L v | , L v : level 

of PDF 
end for 
� Positioning of unknown parameters σi for i = 1 , . . . , M s , 
M s = n s (M t − 1) + 1 . 
for i = 1 to M t − 1 do 

t = (T i + T i +1 ) / 2 , σ (0 , t) = σ(i −1) n s +2 , σ (S 0 , t) = σin s , 
σ (S max , t) = σin s +1 

for j = 1 to (n s − 1) / 2 do 

dL = (S 0 − L i ) / (n s − 1) , dR = (R i − S 0 ) / (n s − 1) 
σ (L i + dL ( j − 1) , t) = σ(i −1) n s + j+1 , σ (R i − dR ( j −

1) , t) = σin s − j+2 

end for 
end for 
� Find the TDV function σT DV (t) 
σT DV = lsqcurvefit (‘ BSequation 

′ , σ 0 
T DV , (1 , . . . , M k ×

M t ) , V, lb) . 
� Find optimal value of unknown parameters σ ∗

σ ∗ = lsqcurvefit ( ′ BSequation 

′ , σT DV , (1 , . . . , M k × M t ) , V, lb) . 
� Reconstruct the LV surface by cubic spline 
interpolation over time and space: σloc (S, t) = 

interp2 (X σ ∗ , Y σ ∗ , σ ∗, ˆ S , ̂  t , ′ spline ′ ) , 
where X σ ∗ and Y σ ∗ are 2D grid coordinates based on the 
coordinates of σ ∗. In addition, ˆ S and 

ˆ t are 2D grid coordi- 
nates based on S and t , respectively. 
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. Conclusions 

We developed a numerical method for the robust and accu- 

ate construction of the LV surface for European options in an 

nknown parametric approach by using the BS equation. The LV 

unction is one of the most important functions of pricing op- 

ions in financial markets. The finding of the LV function is an ill- 

osed inverse problem. To overcome this difficulty, the first step 

n the proposed numerical algorithm is to estimate the constant 

mplied volatility using the exact formula of the European call 

ption and the nonlinear curve-fitting solver, and then we use 

he PDF of the log-normal distribution to find the influential re- 

ion with constant implied volatility. Next, we compute the TDV 

unction, which is used as an initial value for the fast estimation 

f unknown variability that constructs the LV surface. Finally, we 

se an implicit Euler scheme to numerically solve the BS equa- 

ion and a nonlinear fitting function to compute the LV surface. 

e performed computational experiments using synthetic and 

eal market data. The numerical results demonstrate the robust 

nd accurate construction of the LV surface using the proposed 

ethod. 
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