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Abstract
The fluid flows on the surface widely exist in the natural world, such as the atmospherical circulation on a planet. In this 
study, we present a finite volume lattice Boltzmann method (LBM) for simulating fluid flows on curved surfaces in three-
dimensional (3D) space. The curved surfaces are discretized using unstructured triangular meshes. We choose the D3Q19 
lattice and the triangular meshes for the velocity and spatial discretizations, respectively. In one time iteration, we only need 
to compute the distribution functions on each vertex in a fully explicit form. Therefore, our proposed method is highly effi-
cient for solving fluid flows on curved surfaces using LBM. To keep the velocity field tangential to the surfaces, a practical 
velocity correction technique is adopted. We perform a series of computational experiments on various curved surfaces such 
as sphere, torus, and bunny to demonstrate the performance of the proposed method.

Keywords Finite volume scheme · Lattice Boltzmann method · 3D curved surfaces · Fluid flows

1 Introduction

The computational fluid dynamics (CFD) plays an impor-
tant role in various industrial and scientific fields. The core 
of CFD is to solve the Navier–Stokes (NS) equations for 
incompressible fluid flows using proper numerical methods. 
Compared with a large amount of research on the numerical 
methods for simulating fluid flows in two- and three-dimen-
sional spaces, the CFD problems on curved surfaces have 
been less explored. The authors in [1] used the following 
equations to solve the incompressible surface NS equation 
by surface finite elements:

where �(�, t) is the tangential surface velocity, ∇
�
 is the 

covariant direction derivative, gradS is the surface gradi-
ent, S is the surface, p(�, t) is the surface pressure, Re is the 
surface Reynolds number, ΔdR is the surface Laplace–deR-
ham operator, � is the Gaussian curvature, and divS is the 
surface divergence. For more details about the definition of 
the terms, see [1] and references therein.

Mohamed et al. [2] solved the incompressible NS equa-
tion on surfaces using a discrete exterior calculus (DEC) 
method. They used a vorticity-stream function formulation 
based on Helmholtz decomposition; however, it misses 
the essential Gaussian curvature term in the equations. 
Nitschke et al. [3] developed an appropriate DEC approach 
in �(�, t) and p(�, t) variables with the Gaussian curvature 
term. Nitschke et al. [4] developed a finite element method 
(FEM) for two-phase Newtonian surface fluid flows using a 
surface Cahn–Hilliard–Navier–Stokes equation and a stream 
function formulation. Reuther and Voigt [5] investigated the 
interplay of curvature and vortices in fluid flows on curved 
surfaces using a surface vorticity-stream function approach. 
Gross and Atzberger [6] formulated hydrodynamic equations 
and developed spectrally accurate computational schemes 
for solving surface fluid flows on radial manifolds. The 
method was based on the closet point method and solved 

(1)

��(�, t)

�t
+ ∇

�
�(�, t) = −gradSp(�, t)

+
1

Re

(
−ΔdR

�(�, t) + 2��(�, t)
)
,

(2)divS�(�, t) = 0, � ∈ S, t > 0,
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the equation on extended narrow band domain embedding 
the curved surface in 3D. Reuther et al. [1] used the surface 
FEM method for the fluid flows on curved surfaces. Based 
on the surface Helmholtz decomposition, Li et al. [7] devel-
oped a divergence-free radial kernel for the Stokes flow on 
the surfaces. Recently, a finite difference method (FDM)-
based numerical method for the incompressible NS equation 
on curved surfaces was proposed in [8].

The above-mentioned methods only dealt with station-
ary surfaces. For evolving surfaces, Torres-Sánches et al. 
[9] developed a general continuum mechanics and compu-
tational method for fluid deformable surfaces, Nitsche et al. 
[10] presented the derivation and computational method of 
the flow of passive and active polar liquid crystals on evolv-
ing curved surfaces, and Reuther [11] developed a novel 
method to derive the governing equations of fluid deform-
able surfaces under the thin film limit.

In mesoscopic hypothesis, the lattice Boltzmann method 
(LBM) has been widely used for numerically simulating 
complex fluid flows due to its ease of modeling physical phe-
nomena and simplicity of implementation [12, 13]. Using 
3D LBM, non-Newtonian fluids [14], 3D lid-driven cavity 
flow on non-uniform meshes [15] and immiscible two-phase 
flow [16] were performed. Sadeghi [17] presented the 3D 
LBM for simulating multiphase penetration into the porous 
media numerically and investigated the effects of porosity, 
high density ratio, contact angle, and flow parameters. In 
[18], the authors developed the numerical model using LBM 
for solid-liquid phase change which is one of the common 
phenomena in physics.

Despite the advantages of LBM, there is a constraint that 
the discrete velocity direction is involved in the structure of 
the spatial grid. To overcome this, a finite volume formula-
tion of LBM was developed. Peng et al. [19] proposed a 
finite volume LBM on 2D unstructured triangular meshes 
and verified its accuracy through several comparisons with 
other methods. In [20], Patil and Lakshmisha described a 
finite volume LBM on 2D unstructured mesh by generat-
ing any polygonal tessellation, including triangular mesh, in 
the domain and by creating the control volume using cell-
centered unstructured finite volume discretizations. Here, 
the total variation diminishing scheme is adopted for the 
intercell advection of particle distribution function. For the 
nearly incompressible flows with complex boundaries, the 
authors in [21] developed a second-order accurate finite 
volume LBM by which the fluxes were computed in one 
step, whereas the previous method calculated over two steps. 
Wang et al. studied steady and unsteady flows on unstruc-
tured grids using the cell-center finite volume formulation 
and LBM, and performed incompressible laminar flow [22] 
and turbulent flow simulations [23].

The curved surfaces were mostly used as structures such 
as a capsule and a flapping flag in 3D fluid domain [24]. 

In [25], the authors studied the performances of boundary 
conditions in simulating boiling involving curved surfaces. 
Furthermore, the general atmospheric circulation on a planet 
can be assumed as the flow on a spherical surface because 
the thickness of atmosphere is much less than the radius of 
a planet. Therefore, it is physically meaningful to study the 
fluid flows on curved surfaces by using appropriate numeri-
cal methods.

To simulate the fluid flows on curved surfaces, we 
develop a finite volume scheme for the LBM on 3D curved 
surfaces. The curved surfaces are discretized using unstruc-
tured triangular meshes. We choose the D3Q19 lattice and 
the triangular meshes for the velocity and spatial discretiza-
tions, respectively. The proposed scheme is based on that 
of Peng [19] and Di Ilio [26]. However, to the best of the 
authors’ knowledge, this is the first work focusing on an 
efficient finite volume 3D LBM for simulating fluid flows on 
3D curved surfaces without flattening the 1-ring neighbor-
hoods, rotating and aligning the velocity vectors, which were 
required in [27] where 2D LBM was used. Furthermore, we 
use a velocity correction procedure to have tangential veloc-
ity field on 3D curved surfaces.

The organization of this paper is as follows. In Sect. 2, 
we provide the finite volume LBM. We present the compu-
tational tests in Sect. 3. In Sect. 4, conclusions are drawn.

2  Finite volume lattice Boltzmann method

Let us consider the following equation which is based on 
the lattice Boltzmann equation using a finite volume method 
[19]:

where fi(�, t) is the particle distribution function at space 
� = (x, y, z) and time t, �i is the velocity in the ith direction 
for i = 1, 2,… , 19 as shown in Fig. 1(c), � is the relaxation 
time, and f eq

i
(�, t) are the local equilibrium distributions.

Specific values of �i are given as

(3)
�fi

�t
(�, t) + �i ⋅ ∇fi(�, t) = −

1

�

(
fi(�, t) − f

eq

i
(�, t)

)
,

�1 = (1, 0, 0), �2 = (−1, 0, 0), �3 = (0, 1, 0),

�4 = (0,−1, 0), �5 = (0, 0, 1),

�6 = (0, 0,−1), �7 = (1, 1, 0), �8 = (1,−1, 0),

�9 = (1, 0, 1), �10 = (1, 0,−1),

�11 = (−1, 1, 0), �12 = (−1,−1, 0),

�13 = (−1, 0, 1), �14 = (−1, 0,−1),

�15 = (0, 1, 1), �16 = (0, 1,−1),

�17 = (0,−1, 1), �18 = (0,−1,−1), �19 = (0, 0, 0).
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For i = 1,… , 19 , the local equilibrium distributions are 
defined as

where the lattice speed of sound cs = 1∕
√
3 for the D3Q19 

lattice and

are the density and velocity, respectively, and the lattice 
weights are

(4)

f
eq

i
(�, t) = wi�(�, t)

[
1 +

�i ⋅ �(�, t)

c2
s

+
1

2

(
�i ⋅ �(�, t)

c2
s

)2

−
|�(�, t)|2

2c2
s

]
,

(5)�(�, t) =

19∑
i=1

fi(�, t),

(6)�(�, t) =
1

�(�, t)

19∑
i=1

fi(�, t)�i

Given surface S, we make a triangular surface mesh M as 
shown in Fig. 1a. Figure 1b illustrates a mesh grid point � 
of M and one-ring neighbor vertices of P, i.e., P1,P2,… ,P5 . 
Figure 1(c) shows the points C and E defined as the center of 
an edge PP2 and the centroid of a triangle △PP1P2 , respec-
tively, for a control volume centered at a point � . The inte-
gration of Eq. (3) over the triangle △PCE results in

The first term in Eq. (8) is approximated as

(7)w
i
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2

36
, i = 1,… , 6,

1

36
, i = 7,… , 18,

12

36
, i = 19.

(8)
∫△PCE

�fi

�t
(�, t)d� + ∫△PCE

�i ⋅ ∇fi(�, t)d�

= −
1

� ∫△PCE

(
fi(�, t) − f

eq

i
(�, t)

)
d�.

Fig. 1  Schematic representa-
tions of a a surface mesh with a 
one-ring neighborhood of point 
� , b D3Q19 at each point, c 
D3Q19 lattice, and d a control 
volume at point �
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where A△PCE is the area of triangle △PCE and fi(�, t) is 
the fi value at node � and time t. The second term in Eq. (8) 
is approximated as

where we have used the divergence theorem and � is the unit 
outward normal vector to the edges of the triangle △PCE . 
Here, lCE is the length of CE, and �CE is the unit outward 
normal vector to the edge CE. That is, the outward normal 
vector is defined as

and the unit outward normal vector is �CE = �
�
CE
∕|��

CE
| , see 

Fig. 1(d). Here, ⟨�, �⟩ is the inner product of two vectors � 
and � . The other terms are similarly defined. The values of 
fi(�, t) and fi(�, t) are interpolated as follows:

The third term in Eq. (8) is approximated as

Therefore, summing up Eqs. (9), (10), and (11) on the con-
trol volume, we get the following time-stepping scheme for 
fi(�, t) , i = 1,… , 19 and all � ∈ M:

(9)

∫△PCE

�f
i

�t
(�, t)d� =

�f
i

�t
(�, t)∫△PCE

d� =
�f

i

�t
(�, t)A△PCE

=
f
i
(�, t + Δt) − f

i
(�, t)

Δt
A△PCE

,

(10)

∫△PCE

�
i
⋅ ∇f

i
(�, t)d� = ∫△PCE

∇ ⋅ [f
i
(�, t)�

i
]d�

= ∫
�△PCE

f
i
(�, t)�

i
⋅ �dl

=
f
i
(�, t) + f

i
(�, t)

2
�
i
⋅ �

PC
l
PC

+
f
i
(�, t) + f

i
(�, t)

2
�
i
⋅ �

CE
l
CE

+
f
i
(�, t) + f

i
(�, t)

2
�
i
⋅ �

EP
l
EP
,

�
�
CE

= ����⃗PE − ⟨ ����⃗PE, ����⃗CE⟩ ����⃗CE

� ����⃗CE�2

fi(�, t) =
fi(�, t) + fi(�1, t) + fi(�2, t)

3
and

fi(�, t) =
fi(�, t) + fi(�1, t)

2
.

(11)

−
1

� ∫△PCE

(
fi(�, t) − f

eq

i
(�, t)

)
d�

= −
A△PCE

�

(
fi(�, t) + fi(�, t) + fi(�, t)

3

−
f
eq

i
(�, t) + f

eq

i
(�, t) + f

eq

i
(�, t)

3

)
.

where A
�
 , Collision

�
 , and Flux

�
 are the total area, sum 

of Eq. (11), and sum of Eq. (10) of the control area at � , 
respectively.

With the initially defined velocity field �(�, 0) , we 
can compute the initial equilibrium distribution function 
f
eq

i
(�, 0) from Eq. (4), then we set the initial distribu-

tion function f (�, 0) = f
eq

i
(�, 0) . Let f n be the numerical 

approximation of function f (�, t) at t = nΔt , the algorithm 
in one time iteration can be summarized as follows

Step 1. Compute each of flux terms from Eq. (10).
Step 2. Compute each of collision terms from Eq. (11).
Step 3. Update distribution function f n+1

i
 from Eq. (12).

Step 4. Update the density function �n+1 and velocity 
field �n+1 from Eqs. (5) and (6), respectively.

S t e p  5 .  C o r r e c t  t h e  ve l o c i t y  f i e l d  by 
�n+1 = �n+1 − (�n+1 ⋅ �v)�v.

Step 6. Update the equilibrium distribution f eq,n+1
i

 from 
Eq. (4).

In actual simulations, we want the velocity fields tan-
gential to the curved surface. However, we notice that 
Steps 1–4 can not guarantee this property. Therefore, 
we propose a correction step (Step 5) to ensure that the 
updated velocity field is tangential to the surface all along, 
the previous studies [8, 28] showed that this technique 
worked well for fluid flows on curved surfaces. In Step 
5, �v represents the outward unit normal vector at each 
vertex, the definition is

where I(�) is the set of index of the triangles neighboring 
a vertex � , �q is the outward unit normal vector of triangle 
Tq , the weighting coefficient wq = |�q − �|−2 , and �q is the 
coordinates of centroid of Tq [29], see Fig. 2. We should note 
that in the proposed finite volume LBM for simulating fluid 
flows on 3D curved surfaces, we do not flatten the 1-ring 
neighborhoods, rotate and align the velocity vectors, which 
were done in [27] where 2D LBM was used.

It is well known that in the small Knudsen and low 
Mach number limit of the Boltzmann equation, there is a 
relation between the Boltzmann equation and the incom-
pressible Navier–Stokes system in the Cartesian coordi-
nate, see [30] and references therein for more details. To 
the authors’ knowledge, it is still an open problem to prove 
a relation between the surface Boltzmann equation and 
the surface NS system. It would be an interesting future 
research topic to prove that relation.

(12)fi(�, t + Δt) = fi(�, t) +
Δt

A
�

(
Collision

�
− Flux

�

)
,

�
v =

∑
q∈I(�) wq�q

�∑q∈I(�) wq�q�
,
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3  Numerical results

In this section, we will validate our proposed numerical 
method by investigating fluid flows on various curved sur-
faces in 3D space.

3.1  Effect of velocity correction

In actual computation, the distribution function fi of velocity 
field is updated in 3D space, which can not ensure the velocity 
field always be tangential to the surface. To fix this problem, 
we proposed a practical technique of velocity correction in 
Sect. 2. To validate the practicability of this technique, we 
consider the circumfluence on a sphere. The initial velocity 
field [Fig. 3(a)] is defined as

The average triangular mesh size have = 0.1257 , time step 
Δt = 0.01 , and relaxation time � = 1 are considered. The 
spherical surface is defined by the zero level-set of the dis-
tance function d(�) =

√
x2 + y2 + z2 − R , where R = 10 is 

used as the radius of sphere. The computations without and 
with velocity correction are performed until t = 4 and the 

(13)�(�, 0) = (0.01y, − 0.01x, 0).

numerical results are plotted in Figs. 3(b) and (c). We can 
observe that the velocity field passes through the surface if 
we do not perform the correction and this velocity field is 
nonphysical. On the contrary, the velocity field is always 
tangential to the surface if we use the velocity correction.

We also define the discrete kinetic energy on the surface 
as follows

where the superscript n represents the solution at nth time 
level, i.e., tn = nΔt , M is the numbers of vertex on the 
surface. A(�p) =

∑
q∈M1(p)

Aq , where Aq is the area of Tq , 
M1(p) = p1, p2,… , pn is the set of vertex indices of one-ring 
neighbors of �p with p1 = pn [see Figs. 4(a) and (b)]. For a 
system without input of external force, the basic physical 
property is the energy dissipation with time evolution. In 
Figs. 4(c) and (d), we plot the time evolutions of normalized 
kinetic energy En

d
∕E0

d
 with respect to the cases without and 

with velocity correction, respectively. It can be observed 
that the case with velocity correction indeed follows the 
energy dissipation law. However, the case without velocity 
correction leads to the increase of kinetic energy, which is 
a nonphysical phenomenon. The results in this section indi-
cate that our proposed velocity correction technique plays 
an important role in the simulation of fluid flow on surface.

3.2  Effect of mesh size on energy dissipation

Here, we investigate the effect of mesh size by consider-
ing the dissipation of kinetic energy. The simulations 
are performed on a sphere with radius R = 10 . The dis-
tance function and other parameters keep unchanged as 
those in Sect.  3.1. Three different average mesh sizes 
h1
ave

= 0.4927, h2
ave

= 0.2504, h3
ave

= 0.1257 are used (see 
Fig. 5). The evolutions of normalized kinetic energy are 
shown in Fig. 5(d). It can be observed that the energy curve 
converges with the refinement of mesh size.

(14)E
n
d
=

M∑
p=1

1

6
|�(�p, tn)|2A(�p),

Fig. 2  Schematic illustration of the outward unit normal vector, 
where the black and dark blue arrows represent the vector on the ver-
tex and centroid, respectively

Fig. 3  Initial velocity field (a) 
and the results at t = 4 with 
respect to the cases without (b) 
and with (c) projection
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3.3  Convergence tests in time and space

To quantitatively validate the proposed method, we inves-
tigate the discrete L2-errors and the corresponding con-
vergence rates with respect to space and time. For the 

definition of discrete version of L2 norm on a surface 
with triangular mesh, please refer to [31–33] and refer-
ences therein. In this subsection, a spherical surface with 
radius R = 1 is considered. The initial velocity condition 

Fig. 4  Schematic illustrations of 
a triangular surface and b ver-
tices neighbors �p , area A(�p) , 
and triangle Tq . The evolutions 
of normalized kinetic energy 
with respect to the cases with-
out (c) and with (d) correction

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

(c) Without correction
0 0.5 1 1.5 2 2.5 3 3.5 4

0.94

0.95

0.96

0.97

0.98

0.99

1

(d) With correction

Fig. 5  a, b, and c are spherical 
surfaces with difference average 
mesh sizes. d is the evolutions 
of normalized kinetic energy 
with respect to different mesh 
sizes
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is defined to be �(�, 0) = (u, v,w) = (y,−x, 0) . The other 
parameter values are the same as in subsection 3.1. To 
investigate the convergence rates in time, we discretized 
the surface with average mesh size have = 0.1257 . A finer 
time step Δte = 0.001 is used to obtain the numerical ref-
erence solution. A set of increasingly coarser time steps 
Δt = 4Δte , 8Δte , and 16Δte are used to perform the com-
putations until t = 0.4 . Table 1 lists the L2-errors and con-
vergence rates with respect to three velocity components 
under different time steps. It can be observed that the pro-
posed method has first-order accuracy in time. To investi-
gate the convergence rates in space, we fix Δt = 0.001 and 
coarsen the grid by a factor of two. The reference solu-
tion is calculated by using have = 0.0629 . From the results 
listed in Table 2, we can confirm that the proposed method 
achieves second-order accuracy in space.

3.4  Comparison with previous simulations

In [8], the authors proposed a practical FDM for the incom-
pressible fluid flows on various curved surfaces. Based on 
the closest point type method, the standard Laplacian opera-
tor is used to replace a vector Laplacian operator, e.g., a 
Bochner or Laplace–de Rham Laplacian operator [34] and 
the computation of NS equation is extended into a 3D nar-
row band domain containing the surface. Later, this method 
was extended for solving two-phase fluid flows on arbitrar-
ily curved surfaces [28, 35]. In this subsection, we com-
pare the present and previous method [8] by considering 
the circumfluence on a sphere. The spherical radius R = 10 , 
initial velocity field �(�, 0) = (0.01y,−0.01x, 0) , time step 
Δt = 0.01 , relaxation time � = 1 , and Reynolds number 
Re = 1 are used. Figures 6(a) and (b) display the numerical 
results obtained using the previous [8] and present methods, 
respectively, in the same view point. Note that the velocity 
field in (a) is obtained by interpolating the velocities in a 
three-dimensional narrow band embedding the surface. The 
velocity field in (b) is directly defined on surface points. We 
can observe that the present and previous simulations are 
qualitatively similar.

For the Stokes flows on 3D curved surfaces, Brand-
ner et al. [34] proposed finite element methods based on 
the parametric TraceFEM and parametric SurfaceFEM 
approaches. The results indicated that their proposed 
methods not only achieved desired accuracy but also 
worked well on spherical and biconcave surfaces. We 
herein simulate the velocity field on the same bicon-
cave surface adopted in [34] by using the proposed LBM 
method. The surface is represented by the zero level-
set  of  d(�) = (m2 + x2 + y2 + z2)3 − 8m2(y2 + z2) − n4  , 
where m = 0.96 and n = 0.95 . The initial velocity is 
�(�, 0) = �v × ∇�(�) and �(�) = x2y − 5z3 . To approxi-
mate the Stokes flow, a smaller relaxation time � = 0.001 
is used. We use a smaller time step Δt = 0.0001 to perform 
the relatively short-time simulation. Figure 7(a) displays the 
spatial discretization of a biconcave surface, (b) and (c) show 
the previous result adapted from [34] and the present result, 
respectively. In our simulation, the black arrows represent 
the velocity directions and the background color represents 
the magnitude of velocity field. It can be observed that the 
present and previous results are qualitatively similar.

In [1], the authors studied the evolution of a specific cur-
rent on a torus by using the surface FEM method. By adopt-
ing the closest point type FDM, Yang et al. [8] performed the 
following benchmark simulation. A torus is defined by the 
zero level-set of d(�) =

�
(
√
x2 + y2 − 2)2 + z2 − 0.5 . The 

Table 1  Discrete L2-errors and convergence rates for three velocity 
components under different time steps

The reference time step is Δte = 0.001

Time step: 16Δte 8Δte 4Δte

Error for u: 9.81e-2 4.59e-2 1.98e-2
Rate for u: 1.09 1.21
Error for v: 9.96e-2 4.64e-2 1.99e-2
Rate for v: 1.10 1.22
Error for w: 8.16e-2 3.81e-2 1.64e-2
Rate for w: 1.10 1.22

Table 2  Discrete L2-errors and convergence rates for three velocity 
components under different mesh sizes

The reference mesh size is h
ave

= 0.0629

Mesh size: 8h
ave

4h
ave

2h
ave

Error for u: 3.70e-1 1.00e-1 2.52e-2
Rate for u: 1.89 1.99
Error for v: 3.22e-1 9.20e-2 2.51e-2
Rate for v: 1.81 1.87
Error for w: 2.32e-1 6.57e-2 1.95e-2
Rate for w: 1.82 1.75

Fig. 6  Circumfluence on a sphere: a and b display the computational 
results obtained using the previous [8] and present methods, respec-
tively
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parameters are Δt = 0.01 , � = 1000 , and have = 0.2 . The 
velocity field is defined to be

Figure 8(a) displays the velocity distribution on a torus 
in [8]. The present numerical result and discrete torus are 
shown in Fig. 8(b) and (c), respectively. Table 3 lists the 
maximum and minimum values of velocity field on the sur-
face computed by three different methods. The results are 
quantitatively consistent.

3.5  Kelvin–Helmholtz instability on a sphere

The Kelvin–Helmholtz instability (KHI) is a common fluid 
instability which appears due to the velocity difference [36]. 
The initial velocity difference will grow to form vortex struc-
ture. During this process, the evolution of fluid vortex will 

(15)

�(�, 0)

=

�
−y − 2xz

8(x2 + y2)
,

−x − 2yz

8(x2 + y2)
,

√
x2 + y2 − 2

4
√
x2 + y2

�
.

dissipate the total kinetic energy. In this subsection, we con-
sider the KHI which consists of one layer of vortex and two 
layers of vortex on a sphere with radius R = 10 . Let us define 
the following two marker functions

where � = cos−1(z∕r) , � = tanh
−1(y, x) , r =

√
x2 + y2 + z2 . 

The initial velocity field with respect to one layer and two 
layers of vortex are defined to be

We use have = 0.1257 , Δt = 0.01 , and � = 1 to conduct simu-
lations until t = 4 . The results with respect to one layer and 
two layers of vortex are shown in Fig. 9(a) and (b), respec-
tively. It can be observed that the fluid vortex first grows 
with time evolution and then dissipates due to the viscous 
resistance of fluid. The normalized energy curves plotted in 
Fig. 9(c) indicate both processes dissipate the kinetic energy. 
Moreover, two layers of vortex quickly dissipate the kinetic 
energy.

(16)�1(�) = tanh

(
−R� + 5� + cos(10�)

0.35

)
,

(17)𝜙2(�) =

⎧⎪⎨⎪⎩

tanh

�
R𝜃−12.5𝜋∕3−cos(10𝜓)

0.35

�
if z > 0,

tanh

�
−R𝜃+17.5𝜋∕3+cos(10𝜓)

0.35

�
otherwise ,

(18)�1(�, 0) = (0.01y�1, − 0.01x�1, 0),

(19)�2(�, 0) = (0.01y�2, − 0.01x�2, 0).

Fig. 7  Velocity field on a bicon-
cave surface. Here, a shows the 
spatial discretization, b displays 
the previous result adapted from 
[34], c is the present result

Fig. 8  Velocity field on a torus. 
Here, a is adapted from [8] 
with the permission of Elsevier 
Science. The present result and 
mesh generation are shown in 
(b) and (c), respectively

Table 3  Comparison with the previous results [1, 8]

Here, |�| min and |�| max are the minimum and maximum magnitudes 
of the velocity field, respectively

Results in [1] Results in [8] Present results

|�| min 0.02 0.0203 0.0196
|�| max 0.12 0.1232 0.1179
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3.6  Flow on torus surfaces

Next, we consider the f luid f low on a torus sur-
face. The surface is defined by the zero level-set of 
d(�) =

�
(
√
x2 + y2 − R1)

2 + z2 − R2 , where R1 = 30 is fixed 
and we consider R2 = 12 and 18 to reflect different geometry 
sizes. The initial velocity field is defined to be

where nx, ny , and nz are the components of �v . We use 
Δt = 0.01 and � = 1 in this simulation. Figure 10(a) and (b) 
display the snapshots at different moments with R2 = 12 
and 18, respectively. We can find that different geometry 
sizes obviously affect the evolution of fluid field. With the 
increase of surface area, the velocity field gently evolves. 
The results in Fig. 10(c) also show that the energy evolution 
with R2 = 18 is gentler than the case with R2 = 12.

(20)�(�, 0) = (−0.1nz, nz, 0.1nx − ny),

3.7  Flow on a bunny surface

Finally, we consider the fluid flow on a complex bunny 
surface. Here, we use Δt = 0.01 , � = 2 , and the following 
three different initial velocity fields

Figures 11(a), (b), and (c) display the computational results 
at t = 8 with the initial velocity fields Eqs. (21), (22), and 
(23), respectively. The energy curves with three different 
initial velocity fields are plotted in Fig. 11(d). It can be 
observed that our proposed method works well for a complex 
surface and the kinetic energy follows the energy dissipation 
property.

(21)�1(�, 0) =(−0.01nz, 0.1nz, 0.01nx − 0.1ny),

(22)�2(�, 0) =(0.1ny, − 0.1nx + 0.01nz, − 0.01ny),

(23)�3(�, 0) =(0.01ny − 0.1nz, − 0.01nx, 0.1nx).

Fig. 9  Snapshots of KHI on a 
sphere at t = 1.5, 2.5, 4 with 
respect to one layer (a) and two 
layers (b) of vortex (from the 
left to right in each row). c is 
the evolutions of normalized 
kinetic energy of KHI



 Engineering with Computers

1 3

4  Conclusions

In this work, we proposed an efficient and practical compu-
tational scheme for simulating fluid flows on curved surfaces 
in 3D space. Instead of computing the NS equations, the 
finite volume LBM was adopted. In one time iteration, we 
only needed to directly update the distribution functions on 
each vertex in a fully explicit form. Therefore, the whole 
algorithm was highly efficient. A velocity correction tech-
nique was used to keep the updated velocity field tangential 

to the surfaces. Furthermore, the proposed method does not 
need to flatten the 1-ring neighborhoods, which was done 
in [27]. To validate our proposed method, we performed 
the simulations on sphere, torus, and bunny. The numeri-
cal results showed that our method indeed worked well for 
fluid flows on various surfaces with complex shape. In an 
upcoming work, we will extend our method for predator-
prey model [37], Ginzburg–Landau equation [38], phase-
field models [39–41], space-fractional parabolic model 
[42], and multi-component fluid flows [43–47] on arbitrarily 
curved surfaces.

Fig. 10  Snapshots of the fluid 
flows on tori at t = 0, 6, 35 
(from the left to right in each 
row). The results in top (a) and 
bottom (b) rows correspond to 
R2 = 12 and 18, respectively. c 
is the evolutions of normalized 
kinetic energy on torus surfaces
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