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Abstract: We present an efficient and accurate computational algorithm for reconstructing a local
volatility surface from given market option prices. The local volatility surface is dependent on the
values of both the time and underlying asset. We use the generalized Black–Scholes (BS) equation
and finite difference method (FDM) to numerically solve the generalized BS equation. We reconstruct
the local volatility function, which provides the best fit between the theoretical and market option
prices by minimizing a cost function that is a quadratic representation of the difference between the
two option prices. This is an inverse problem in which we want to calculate a local volatility function
consistent with the observed market prices. To achieve robust computation, we place the sample
points of the unknown volatility function in the middle of the expiration dates. We perform various
numerical experiments to confirm the simplicity, robustness, and accuracy of the proposed method in
reconstructing the local volatility function.
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1. Introduction

In 1973, Fischer Black and Myron Scholes first introduced the Black–Scholes (BS)
equation for option pricing [1]:

∂u(S, t)
∂t

+
1
2
(σS)2 ∂2u(S, t)

∂S2 + rS
∂u(S, t)

∂S
− ru(S, t) = 0, (1)

where u(S, t) is the option value, S is the underlying price, t is the time variable, σ is
the volatility of S, and r is the short interest rate. Equation (1) is solved using boundary
conditions and a payoff condition at time t = T. The BS equation was derived under the
assumption of constant volatility. However, it is widely known that the BS equation with
constant volatility cannot accurately produce market option prices. In general, as volatility
increases, the prices of options also tend to rise because of the increasing chances of options
ending in the money. The volatility and option prices are positively correlated with each
other. A generalized BS model was proposed to overcome the limitations of the BS equation
with a constant volatility term:

∂u(S, t)
∂t

+
1
2
[σ(S, t)S]2

∂2u(S, t)
∂S2 + rS

∂u(S, t)
∂S

− ru(S, t) = 0, (2)

where σ(S, t) is the space- and time-dependent volatility function [2]. Here, we call σ(S, t)
by the local volatility function because it is a function of both the asset price S and time
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t, which is a generalization of the constant volatility. Implied volatility is the volatility
calculated by inputting the market option price, strike, current underlying asset price,
maturity time, and interest rate into the BS equation with a constant volatility, which makes
both the theoretical and market option prices the same. Therefore, the implied volatility is
the function of the market option price, strike, current underlying asset price, maturity time,
and interest rate. We can construct an implied volatility surface by changing strike prices
and maturity times while fixing the other parameter values. Note that we are interested in
constructing a local volatility function, which is a function of the asset price S and time t
not strike price and time.

Various studies have been conducted on reconstructing volatility surfaces using market
option prices. Jin et al. [3] proposed a reconstruction method for a non-constant volatility
model using the BS equation. Georgiev and Vulkov [4] developed a fast and efficient
computational method for reconstructing the time-dependent local volatility surface and
used a predictor-corrector scheme because of the non-uniqueness of the local volatility
surface. Hofmann et al. [5] developed a simultaneous reconstruction of volatility and
interest rate functions from call-and put-price functions and overcame the ill-posedness
using a two-parameter Tikhonov regularization. Georgiev and Vulkov [6] also considered
the simultaneous recovery of the temporally changing volatility and interest rate functions.
Using the BS model, Park et al. [7] proposed a calibration technique of the time-dependent
volatility and interest rate functions. Zhang et al. [8] reconstructed the local volatility
function using Dupire’s equation with total variation regularization. In quantitative finance,
the reconstruction of local volatility is an important inverse problem [9]. In [2], the authors
studied the inverse problem of solving a time-dependent local volatility function using
option prices. In [10,11], the authors proposed local volatility function reconstruction
algorithms that use an effective region of volatility. In [12], the authors presented a simple
and efficient algorithm using a jump-diffusion model to calculate time-dependent volatility.
Recently, deep learning has been attracting attention from the financial field, and a large
part of it has been used for financial time series prediction [13]. Pradeepkumar and Ravi [14]
proposed a neural network method for predicting the volatility of financial time series and
verified its superior performance compared to several other machine learning methods.
Hellmuth and Klingenberg [15] presented a numerical variation based on Bi-Fidelity on a
machine learning method. Option pricing studies [16–18] on various financial products
have been conducted, as well as option pricing studies [19–21] on the BS equation.

The primary contribution of this paper is to propose a simple, efficient, and accurate
computational method for reconstructing the local volatility function using only given
market option prices, expiration times, strike prices, and the generalized BS equation.
Some assumptions and additional requirements in the existing literature are Tikhonov
regularization, Dupire’s equation, and effective region of volatility. Compared to the
previous methods, which involve several assumptions and additional requirements for
reconstructing the local volatility function, the proposed algorithm only uses the minimum
requirements. Therefore, it is one of the simplest reconstruction methods for the local
volatility function.

The layout of this paper is as follows. In Section 2, we present the proposed algorithm
for optimizing the local volatility function. In Section 3, computational experiments are
performed to demonstrate the efficiency and accuracy of the proposed algorithm. Finally,
in Section 4, conclusions are presented.

2. Methodology

We now briefly describe the proposed algorithm of optimizing the local volatility
function. We use the generalized BS Equation (2) to reconstruct the local volatility function
σ(S, t) from market option prices. Equation (2) can be rewritten as

∂u(S, τ)

∂τ
=

1
2
[σ(S, τ)S]2

∂2u(S, τ)

∂S2 + rS
∂u(S, τ)

∂S
− ru(S, τ), (3)
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for (S, τ) ∈ Ω × (0, T] with initial condition u(S, 0), where τ = T − t. We numerically
solve Equation (3) using the finite difference scheme. Let un

i ≡ u(Si, n∆τ) be the numerical
solution of Equation (3) for i = 1, 2, . . . , NS and n = 0, 1, . . . , Nτ . In this study, unless
otherwise specified, we use a uniform temporal size ∆τ = 1/360. We use the non-uniform
asset price discrete domain as shown in Figure 1. Here, hi = Si+1 − Si and S1 = 0.

Figure 1. Non-uniform grid with spatial step size hi.

Let σn
i ≡ σ(Si, n∆τ) be discrete variable volatility. Using the implicit Euler method,

we discretize Equation (3) as follows:

un+1
i − un

i
∆τ

=
(σn+1

i Si)
2

2

(
2un+1

i−1
hi−1(hi + hi−1)

−
2un+1

i
hihi−1

+
2un+1

i+1
hi(hi + hi−1)

)
(4)

+rSi

(
−hiun+1

i−1
hi−1(hi + hi−1)

+
(hi − hi−1)un+1

i
hi−1hi

+
hi−1un+1

i+1
hi(hi−1 + hi)

)
− run+1

i .

We can then rewrite Equation (4) as

αiun+1
i−1 + βiun+1

i + γiun+1
i+1 = bi, for i = 2, · · · , NS, (5)

where

αi =
rSihi − (σn+1

i Si)
2

hi−1(hi + hi−1)
, βi =

1
∆τ
−

rSi(hi − hi−1)− (σn+1
i Si)

2

hi−1hi
+ r,

γi = −
Sihi−1

hi(hi−1 + hi)
−

(σn+1
i Si)

2

hi(hi−1 + hi)
, bi =

un
i

∆τ
.

We use the zero Dirichlet boundary condition at S1, that is, un+1
1 = 0, and linearity

condition at SNS , that is, un+1
NS+1 = 2un+1

NS
− un+1

NS−1, for all n [22]. To numerically solve
the discrete system (5), we use the Thomas algorithm [23]. Note that the generalized BS
equation is a degenerate parabolic partial differential equation and has a zero coefficient
in front of the partial derivatives at S1 = 0. However, we use the homogeneous Dirichlet
boundary condition at S1; therefore, we do not encounter a degenerate problem. In addition,
we assume a positive local volatility function. Let us assume that we have market option
prices {Uα

β} at Tα for α = 1, . . . , Mα and exercise prices Kβ for β = 1, . . . , Mβ. Here,
T1 < . . . < TMα and K1 < · · · < KMβ

. Using the given option prices {Uα
β}, we compute the

local volatility function σ(S, t) by minimizing the following mean-square error (MSE) [10]:

E(σ) = 1
Mα Mβ

Mα

∑
α=1

Mβ

∑
β=1

ωα
β[uKβ

(σ; S0, Tα)−Uα
β ]

2, (6)

where uKβ
(σ; S0, Tα) is the computational solution at S = S0 of Equation (3) with strike

price Kβ at time Tα and initial condition u0
i = max(Si − Kβ, 0) for i = 1, 2, . . . , NS. Here,

ωα
β is one if market data are used; zero otherwise. We apply the lsqcurvefit function in

MATLAB R2021a [24] to compute the optimal volatility function σ that minimizes cost
function E(σ). To achieve robust computation, we place points of the unknown volatility
function at the middle times of the expiration dates [3]. We use the following notation
t1 = 0; tq = (Tq−1 + Tq)/2 for q = 2, . . . , Mα − 1 and tMα = TMα , as shown in Figure 2a.
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(a)
(b)

(c)
(d)

Figure 2. Schematics of the local volatility function in the proposed scheme: (a) sample point
coordinates, (b) sample volatility values at the sample points, (c) grid used in the finite difference
method, and (d) interpolated volatility values at the grid of query points.

Let us define the piecewise linearly interpolated volatility function σ(S, t) that satisfies

σ(S, t) = σpq if S = Xp and t = tq,

where (Xp, tq) are the sample points and σpq are the sample volatility values at the sample
points, as shown in Figure 2b. Figure 2c,d show the grid used in the finite difference method
and the interpolated volatility values at the grid of query points, respectively.

The superior properties of the proposed method are its simplicity, efficiency, and
accuracy in reconstructing the local volatility function using only the given market option
prices, strike prices, expiration times, and generalized BS equation. For interested readers,
MATLAB code with a uniform grid size is provided in the Appendix A.

3. Computational Experiments

We present several numerical experiments to demonstrate the effectiveness of the
proposed algorithm. We also provide the CPU times using an Intel(R) Core(TM) i9-12900K
CPU 3.19 GHz processor for each experiment.

3.1. Effect of Initial Guess of σ(S, t)

First, we examine the effect of the initial guess of σ(S, t) on reconstructing the local
volatility function. As a test problem, we consider the following local volatility function on
Ω = (0, 3S0)× (0, 1); see Figure 3a:

σ(S, t) = 0.00001(S− S0)
2 + 0.1 cos(πt)− 0.2t + 0.4, (7)

where S0 = 100. The parameters used are ∆τ = 1/360, NS = 301, r = 0.01, Tα = 0.25α for
α = 1, 2, 3, 4, and strike prices Kβ = 92.5 + 2.5β for β = 1, 2, . . . , 5. Using these parameter
values, we generate market call option prices {Uα

β} for α = 1, 2, 3, 4 and β = 1, 2, 3, 4, 5.
Figure 3b shows the option prices computed using the given volatility function (7) and
two reconstructed local volatility functions with different initial guesses. Figure 3c,e are



Mathematics 2022, 10, 2537 5 of 12

the reconstructed volatility surfaces using initial guesses σ(S, t) = 0.1 and σ(S, t) = 0.9,
respectively. Figures 3d,f are the overlapped surfaces of (c) and (e) with the given reference
volatility function, respectively.

(a)
95 97.5 100 102.5 105

8

10

12

14

16

(b)

(c) (d)

(e) (f)

Figure 3. (a) Given local volatility function σ(S, t) = 0.00001(S − S0)
2 + 0.1 cos(πt) − 0.2t + 0.4.

(b) Option prices computed using the given and reconstructed volatility functions. (c,e) are recon-
structed volatility functions with initial guesses σ(S, t) = 0.1 and σ(S, t) = 0.9, respectively. (d,f) are
the overlapped surfaces of (c) and (e) with (a), respectively.

These results are in good agreement with each other in the effective volatility region,
which is computed using the probability density function of a log-normal distribution to
define the effective area. The existence of the effective domain is mainly due to the fact that
the volatility term in the BS equation (2) is close to zero where the second derivatives of the
option prices are small. In the case of call options, the option prices are close to linearly
far away from the strike prices. As schematically shown in Figure 4, the boundary of the
effective volatility region is a parabola-type shape; see [10] for more details.

Because the results are virtually independent of the initial guess, we will use σ(S, t) =
0.5 as an initial guess for reconstructing the local volatility function from now on. When
σ = 0.1 and σ = 0.9, the CPU times for computing the local volatility functions are 36.73
and 36.04 s, respectively.
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Figure 4. Schematic diagram of the effective volatility region.

In real-world practical applications, the local volatility function from the real-world
market data may have oscillations. To confirm the proposed algorithm can recover the local
volatility function that can generate such function, we consider a reference local volatility
function similar to that in [25] (see Figure 5c):

σ(S, t) =
2
5
− 4

25
e

t
2 cos

(
4πS
3S0

)
on Ω = (0, 3S0)× (0, 1), (8)

where S0 = 100. The parameters used are ∆τ = 1/360, NS = 301, r = 0.01, Tα = 0.25α for
α = 1, 2, 3, 4, and strike prices Kβ = 75 + 5β for β = 1, 2, . . . , 9. Figure 5a shows the option
prices calculated using the given volatility function (8) and reconstructed local volatility
function. Figure 5b,d are the reconstructed local volatility function and overlapped surfaces
with (c), respectively. The two local volatility surfaces are in good agreement each other in
the effective volatility region, which is schematically shown in Figure 4, and the computed
option prices are almost identical. We can observe the proposed algorithm can recover
the oscillatory local volatility function. The CPU time for computing the local volatility
function is 101.27 s.

(a)

80 90 100 110 120

0

5

10

15

20

25

30

(b)

(c) (d)

Figure 5. (a) Option prices computed using the given and reconstructed local volatility func-
tions. (b) Reconstructed local volatility function. (c) Given local volatility function σ(S, t) =
2
5 −

4
25 et/2 cos

(
4πS
3S0

)
. (d) Overlapped surfaces of (b,c).



Mathematics 2022, 10, 2537 7 of 12

We consider another reference local volatility function, which was used in [26] (see
Figure 6c):

σ(S, t) = 0.1
(

1 +
S0

S
+

(S− S0)
2

100S

)
on Ω = (0, 3S0)× (0, 1), (9)

where S0 = 100. The parameters used are ∆τ = 1/360, NS = 301, r = 0, Tα = 0.25α
for α = 1, 2, 3, 4, and strike prices Kβ = 87.5 + 2.5β for β = 1, 2, . . . , 11. Figure 6a,b,d are
the option prices computed using Equation (9) and reconstructed local volatility function,
and the overlapped surfaces of the reference and reconstructed local volatility surfaces,
respectively. The two local volatility surfaces are in good agreement each other in the
effective volatility region, which is schematically shown in Figure 4 and the computed
option prices are almost identical. The CPU time is 78.10 s.

(a)

90 92.5 95 97.5 100 102.5 105 107.5 110

3

6

9

12

15

(b)

(c) (d)

Figure 6. (a) Option prices computed using the given and reconstructed local volatility func-
tions. (b) Reconstructed local volatility function. (c) Given local volatility function σ(S, t) =

0.1
(

1 + S0
S + (S−S0)2

100S

)
. (d) Overlapped surfaces of (b,c).

Next, we consider a more complex local volatility function on Ω = (0, 3S0)× (0, 1)
with respect to the time variable (see Figure 7c):

σ(S, t) = 0.00001(S− S0)
2 + 0.1 cos(6πt)− 0.2t + 0.4, (10)

where S0 = 100. The parameters used are ∆τ = 1/360, NS = 301, r = 0.01, Tα = α/12
for α = 1, 2, . . . , 12, and strike prices Kβ = 90 + 2.5β for β = 1, 2, . . . , 7. Figure 7a,b,d are
the option prices computed using Equation (10) and reconstructed local volatility function,
and the overlapped surfaces of the reference and reconstructed local volatility surfaces,
respectively. The two local volatility surfaces are in good agreement each other in the
effective volatility region, which is schematically shown in Figure 4, and the computed
option prices are almost identical. The CPU time is 369.66 s.
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(a)

92.5 95 97.5 100 102.5 105 107.5

3

6

9

12

15

18

(b)

(c) (d)

Figure 7. (a) Option prices computed using the given and reconstructed local volatility functions.
(b) Reconstructed local volatility function. (c) Given local volatility function σ(S, t) = 0.00001(S−
S0)

2 + 0.1 cos(6πt)− 0.2t + 0.4. (d) Overlapped surfaces of (b,c).

3.2. Local Volatility Surface from KOSPI 200 Index

We perform a real market test using the proposed algorithm to obtain a local volatility
function with KOSPI 200 index call option datasets on 14 January 2020. Table 1 lists real
market data with the various strikes and maturities. The strikes used in the table are
Kβ = 310 + 2.5(β− 1) for β = 1, 2, · · · , 5 and the maturity times are T1 = 30∆τ, T2 = 58∆τ,
and T3 = 86∆τ, where ∆τ = 1/365. The current value of the KOSPI 200 index is S0 = 301.53
and the interest rate is r = 0.0149.

Table 1. KOSPI 200 index call option prices on 14 January 2020 with respect to the strike and
maturity. Our data source is the market data system of the Korea Exchange (KRX Market Data
System: https://data.krx.co.kr/, accessed on 19 June 2022).

Kβ 310.0 312.5 315.0 317.5 320.0

T1 = 30∆τ 1.43 0.93 0.59 0.35 0.20
T2 = 58∆τ 2.99 2.29 1.66 1.22 0.89
T3 = 86∆τ 4.28 3.51 2.79 2.13 1.84

Figure 8 shows the results of the proposed method by applying the real market call
option prices, as listed in Table 1. We can confirm that the computational prices obtained
from the proposed method are very similar to the real market values at each maturity and
strike price. It can be inferred from Figure 8a,b that the proposed algorithm works well in
the real market KOSPI 200 call option data. The CPU time is 9.90 s.

Let us consider another real-world financial test. Table 2 lists the real market data with
respect to the strikes and maturities. Strikes used in the table are Kβ = 355 + 2.5(β− 1) for
β = 1, 2, · · · , 5 and the maturity times are T1 = 6∆τ, T2 = 34∆τ, and T3 = 62∆τ, where
∆τ = 1/365. The current value of the KOSPI 200 index is S0 = 356.01 and interest rate is
r = 0.0151.

https://data.krx.co.kr/
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310 312.5 315 317.5 320

0

1

2

3

4

5

(a) (b)

Figure 8. (a) Call option market and computed prices. (b) Reconstructed local volatility function.

Table 2. KOSPI 200 index call option price on 8 April 2022 with respect to the strike and maturity.
Our data source is the market data system of the Korea exchange (KRX Market Data System: https:
//data.krx.co.kr/, accessed on 19 June 2022).

Kβ 355.0 357.5 360.0 362.5 365.0 367.5 370.0 372.5 375.0 377.5 380.0 382.5 385.0 387.5 390.0

T1 = 6∆τ 3.61 2.20 1.22 0.62 0.25 0.11 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
T2 = 34∆τ 7.52 6.09 4.85 3.82 2.95 2.18 1.60 1.14 0.79 0.54 0.39 0.27 0.21 0.15 0.12
T3 = 62∆τ 10.00 8.55 7.04 6.35 5.29 4.37 3.32 2.68 2.30 1.74 1.47 1.16 0.91 0.72 0.55

Figure 9 shows the result of the proposed method by applying the real market call
option prices as listed in Table 2. We can find that numerical values from the proposed
method are quite similar with the real market values at each maturity and strike price. It
can be inferred from Figure 9a,b that the proposed algorithm works well in the real market
KOSPI 200 call option data. The CPU time is 9.58 s.

355 360 365 370 375 380 385 390

0

2

4

6

8

10

(a) (b)

Figure 9. (a) Call option market and computed prices. (b) Reconstructed local volatility function.

4. Conclusions

In this article, we presented a simple and accurate numerical method for reconstructing
the local volatility function, which is dependent on both the values of the underlying
asset and time, from given market option prices. The generalized BS equation and finite
difference method were used. We reconstructed the local volatility function, which provides
the best fit between the theoretical and market option prices. We performed several
computational experiments and the results demonstrated the efficiency and accuracy of
the proposed algorithm in reconstructing the local volatility function. Traders and risk
managers use portfolios to hedge risks posed by volatility. Our proposed computational
method accurately reflects real market volatility. Therefore, it is expected that portfolios
constructed using the proposed method will be helpful to them. In future work, we plan
to apply the proposed method to the calibration of the local volatility jump-diffusion
models [27,28]. The proposed scheme will be extended using the generalized fractional BS

https://data.krx.co.kr/
https://data.krx.co.kr/
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equation [29] for better interpretation of the real financial market. Furthermore, it would
be interesting to use put option market prices in reconstructing the local volatility function
and consider the total cost functional consisting call and put option prices. In this study, we
focused on real financial data from South Korea. Therefore, it will be useful to investigate
the performance of the propose algorithm in other nations’ financial indexes, such as the
Hang Seng, S&P 500, and Euro Stoxx 50 indices.
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Appendix A

The following code is the main program with a uniform grid size, which is also
available from the corresponding author’s webpage: https://mathematicians.korea.ac.kr/
cfdkim/open-source-codes/, accessed on 19 June 2022.

1 clear al l ;
2 global Nx h x r dt S0 t T T2 NK xx yy Xq Yq A;
3 S0 = 100; r = 0.01; Nx = 301; Lx = 3*S0 ; x = linspace (0 ,Lx,Nx) ; h = x(2) -x(1) ;
4 dt = 1.0/360.0; T = [90 180 270 360]; LT = length(T) ;
5 t = linspace (0 ,dt*T(LT) ,T(LT)+1) ; [Xq,Yq] = meshgrid(x , t ) ; T2(1) = 0;
6 for t i = 2:LT-1
7 T2( t i ) = (T( ti -1)+T( t i ) )/2;
8 end
9 T2(LT) = T(LT) ;

10 for vj = 1:T(LT)+1
11 for vi = 1:Nx
12 exvol(vi , vj ) = 0.00001*(x( vi ) -S0)^2+0.1*cos(pi* t ( vj ) ) -0.2* t ( vj ) +0.4;
13 xxx(Nx*( vj -1)+vi ) = x( vi ) ; yyy(Nx*( vj -1)+vi )=t ( vj ) ;
14 exv(Nx*( vj -1)+vi ) = exvol(vi , vj ) ;
15 end
16 end
17 ST = [95:2.5:105]; NK = length(ST) ;
18 for k = 1:LT
19 A(1+NK*(k-1) :k*NK,1) = ST; A(1+NK*(k-1) :k*NK,2) = T(k) ;
20 end
21 xdata = A( : ,1 ) ; xx = xxx; yy = yyy; CV = BScallT(exv, xdata) ;
22 tmp = [x(1) 0.5*S0 S0 1.5*S0 x(end)] ; xx = [ ] ; yy = [ ] ;
23 for j = 1:LT
24 xx = [xx tmp] ; yy(1+length(tmp) *( j -1) : j *length(tmp) ) = dt*T2( j ) ;
25 end
26 vol0 = 0.5*ones( length(xx) ,1) ; lb = 0*vol0 ; ub = 0*vol0+1.0;
27 options = optimset( 'MaxIter ' ,5) ;
28 vol = lsqcurvefit (@BScallT , vol0 , xdata , CV, lb , ub, options) ;
29 U = griddata(xx,yy, vol ,Xq,Yq) ; V = BScallT(vol , CV) ;
30 figure (1) ; c l f ;
31 mesh([x(1:10:end) x(end)] , [ t (1:10:end) t(end)] , exvol([1:10:end end] ,[1:10:end end]) ' )
32 axis ( [x(1) x(end) t (1) t(end) 0 1]) ; view( -15 ,45) ; grid on; box on
33 set (gca , ' fontsize ' ,18) ; t i t l e ( 'Given local volatil ity surface ' )
34 xlabel ( '$S$ ' , ' Interpreter ' , ' latex ' ) ; ylabel ( ' $t$ ' , ' Interpreter ' , ' latex ' ) ;
35 zlabel ( '$\sigma$ ' , ' Interpreter ' , ' latex ' , ' rotation ' ,0)
36 figure (2) ; c l f ; hold on; box on; grid on

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/


Mathematics 2022, 10, 2537 11 of 12

37 plot (A( : ,1 ) ,CV, 'ko ' , ' linewidth ' ,1 , 'markersize ' ,10) ;
38 plot (A( : ,1 ) ,V, 'kx ' , ' linewidth ' ,1 , 'markersize ' ,10) ;
39 axis ( [ST(1) -.5 ST(end)+.5 min([min(CV) min(V) ] ) -.5 max([max(CV) max(V) ]+.5) ] ) ;
40 set (gca , ' fontsize ' ,18) ; legend( ' Interpreter ' , ' latex ' , ' string ' , . . .
41 { 'Given $\sigma(S, t )$ ' , 'Reconstructed $\sigma(S, t )$ ' } )
42 xlabel ( '$K$ ' , ' Interpreter ' , ' latex ' ) ; ylabel ( ' Price ' , ' Interpreter ' , ' latex ' ) ;
43 figure (3) ; c l f ;
44 mesh([x(1:10:end) x(end)] , [ t (1:10:end) t(end)] ,U([1:10:end end] ,[1:10:end end]) )
45 axis ( [x(1) x(end) t (1) t(end) 0 1]) ; view( -15 ,45) ; grid on; box on
46 set (gca , ' fontsize ' ,18) ; t i t l e ( 'Reconstructed local volatil ity surface ' )
47 xlabel ( '$S$ ' , ' Interpreter ' , ' latex ' ) ; ylabel ( ' $t$ ' , ' Interpreter ' , ' latex ' ) ;
48 zlabel ( '$\sigma$ ' , ' Interpreter ' , ' latex ' , ' rotation ' ,0)
49 figure (4) ; c l f ; hold on; view( -15 ,45) ; grid on; box on
50 mesh([x(1:10:end) x(end)] , [ t (1:10:end) t(end)] ,U([1:10:end end] ,[1:10:end end]) )
51 mesh([x(1:10:end) x(end)] , [ t (1:10:end) t(end)] , exvol([1:10:end end] ,[1:10:end end]) ' )
52 axis ( [x(1) x(end) t (1) t(end) 0 1]) ; set (gca , ' fontsize ' ,18)
53 t i t l e ( 'Overlapped local volatil ity surfaces ' )
54 xlabel ( '$S$ ' , ' Interpreter ' , ' latex ' ) ; ylabel ( ' $t$ ' , ' Interpreter ' , ' latex ' ) ;
55 zlabel ( '$\sigma$ ' , ' Interpreter ' , ' latex ' , ' rotation ' ,0)
56 function V = BScallT(vol , CV)
57 global Nx h x r dt S0 xx yy Xq Yq A;
58 vf = griddata(xx,yy, vol ,Xq,Yq) ' ;
59 for j = 1: length(A( : ,1 ) )
60 Nt = A( j ,2) ; u( : , 1 ) = max(x-A( j ,1) ,0) ;
61 for n = 1:Nt
62 for i = 2:Nx
63 a( i -1) = r*x( i )/(2*h) -(vf ( i ,Nt-n+1)*x( i ) )^2/(2*h^2) ;
64 d( i -1) = 1/dt+(vf ( i ,Nt-n+1)*x( i ) )^2/ĥ 2+r ;
65 c( i -1) = -r*x( i )/(2*h) -(vf ( i ,Nt-n+1)*x( i ) )^2/(2*h^2) ;
66 end
67 a(Nx-1) = a(Nx-1) -c (Nx-1) ; d(Nx-1) = d(Nx-1)+2*c(Nx-1) ;
68 b = u(2:Nx,n)/dt ; u(2:Nx,n+1) = thomas(a ,d, c ,b) ;
69 end
70 V( j ,1) = interp1(x ,u( : , Nt+1) ,S0) ;
71 end
72 end
73 function x = thomas(alpha , beta ,gamma, f )
74 n = length( f ) ;
75 for i = 2:n
76 mult = alpha( i )/beta( i -1) ; beta( i ) = beta( i ) -mult*gamma( i -1) ; f ( i ) = f ( i ) -mult* f ( i -1) ;
77 end
78 x(n) = f (n)/beta(n) ;
79 for i = n-1: -1:1
80 x( i ) = ( f ( i ) -gamma( i ) *x( i+1))/beta( i ) ;
81 end
82 end
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