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ABSTRACT
In this study, we present a classification method for ternary small data using the modified ternary Allen–Cahn (tAC) system. The governing
system is the tAC equation with the fidelity term, which keeps the solution as close as possible to the given data. To solve the tAC system with
the fidelity term, we apply an operator splitting method. We use an implicit-explicit finite difference method for solving the split equations. To
validate the robust and superior performance of the proposed numerical algorithm, we perform the comparison tests with other widely used
classifiers such as logistic regression, decision tree, support vector machine, random forest, and artificial neural network for small datasets.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094551

I. INTRODUCTION
Recently, interest in automatic classification problems has sig-

nificantly grown. In practical applications, machine learning based
multi-classification algorithms have been extended to various clas-
sification problems involving data, text, image, mobile traffic, and
network traffic.1–6 Among the multi-classification systems, the most
prevalent algorithms are machine learning methods such as support
vector machine (SVM), random forest (RF), artificial neural network
(ANN), and logistic regression (LR). SVM was originally designed
to solve classification problems of two categories. This technology
has successful results in pattern recognition, signal analysis, and
classification of images. Suykens and Vandewalle7 proposed least
squares SVM (LS-SVM), and it has been applied to solve specific
integral equations.8 However, SVM cannot be directly adopted to
solve multi-classification problems. There are two main methods
to generalize SVM to solve multi-classification problems, includ-
ing one-versus-rest SVMs (OVR-SVMs) and one-versus-one SVMs
(OVO-SVMs). The training time of the OVR-SVMs is directly
proportional to the number of categories, which makes the train-
ing difficult as the training sample increases.9 In addition, with a
large amount of the categories, OVO-SVMs break down the mul-
ticlass problem into multiple binary classification problems, which
means a hyperplane is needed to separate between every two classes.

Therefore, this will lead to the following disadvantages of the OVO-
SVMs approach. One is that the number of classifiers increases as the
number of classes. In addition, the training of each classifier only
considers the data from two classes; thus, the information from all
remaining classes is ignored.10 Therefore, some optimization models
based on SVM have been proposed to solve the multi-classification
problem. Khemchandani and Saigal11 proposed the ternary decision
structure based multi-category twin support vector machines classi-
fier, which is more efficient in handling multi-class data. Moreover,
Chang et al.12 implemented multi-class smooth SVM for a ternary
classification problem, TSSVM.

Compared with traditional machine learning algorithms, the
learning ability of neural networks has greatly promoted the devel-
opment of artificial intelligence in a more intelligent and efficient
direction. Thus, numerous neural network algorithms have been
proposed recently.13,14 For ternary classification, a convolutional
neural network (CNN) based steganalytic method was presented for
image steganalysis.15 In addition, the algorithm based on neural net-
works is also widely used in the field of medical image classification.
Using 3D CNN features and multilayer perceptron, Raju et al.16

studied the multi-classification of Alzheimer’s disease. In another
field, multilabel emotion classification of informal text was ana-
lyzed by a multi-channel BiLSTM-CNN model.17 In addition, a deep
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learning based ternary task classification system was proposed by
using the Gramian angular summation field in fNIRS neuroimaging
data.18 Other machine learning algorithms, such as random for-
est (RF), and logistic regression (LR), are also widely employed in
multi-classification problems.19–22

In this study, we propose a novel and robust ternary data
classification algorithm using the Allen–Cahn (AC)23 model with
a fidelity term for small datasets. Traditional machine learning
usually requires large training datasets, which directly affects the
performance of small datasets. To overcome this problem, various
methods are being studied24,25 and we also propose the algorithm.
The proposed AC classification system, tAC, can effectively solve the
problem when the training data are not enough. We perform various
experimental results to show that the proposed classification algo-
rithm has a high recognition rate in small datasets, and comparison
tests with other machine learning algorithms are also presented.

This paper is organized as follows: We describe the tAC equa-
tion with the fidelity term in Sec. II. Section III explains the numer-
ical scheme to solve the governing equation. Section IV presents the
results of classification for synthetic datasets and performance com-
parison with other classification methods. Conclusions are given in
Sec. V.

II. TERNARY AC EQUATION WITH THE FIDELITY TERM
We assume that total energy functional ℰ can be written as the

following equation:

ℰ (c(x, t)) = ∫
Ω

3

∑

k=1
[

F(ck(x, t))
ε2 +

1
2
∣∇ck(x, t)∣2

+
λ
2
(ck(x, t) − fk(x))

2
]dx, (1)

where x = (x, y), F(ck) = 0.25c2
k(ck − 1)2, λ is positive constant, and

a fidelity fk(x) is a preprocessed data, which satisfies the constraint
f1(x) + f2(x) + f3(x) = 1. The L2-gradient flow for Eq. (1) is the
modified tAC equation. For k = 1, 2, 3, we have the equations to be

∂ck(x, t)
∂t

= −
F′(ck(x, t))

ε2 + Δck(x, t) − λ(ck(x, t) − f k(x))

−β(c(x, t)) for x ∈ Ω, t > 0, (2)

where β(c(x, t)) = −∑3
k=1F′(ck(x, t))/(3ε2

). Here, we used the con-
straint c1(x, t) + c2(x, t) + c3(x, t) = 1. On the domain boundary,
we apply the zero Neumann boundary condition n ⋅ ∇ck(x, t)
= 0, for x ∈ ∂Ω, t > 0, where n is the unit normal vector to the
domain boundary. The detailed derivation of Eq. (2) is provided in
Appendix.

III. NUMERICAL SCHEME
Now, a computation method for the modified tAC sys-

tem is described in computational domain Ω = (Lx, Rx) × (Ly, Ry),
which is discretized as Ωh = {(xi, yj)∣xi = Lx + ih, yj = Ly + jh, 0 ≤ i
≤ Nx, 0 ≤ j ≤ Ny}, where Nx and Ny are integers; and h = (Rx − Lx)/

Nx. Let cn
k,ij be numerical approximations of ck(xi, yj, nΔt) with time

step Δt. The modified tAC equation can be split into the following

two equations by the operator splitting method:

∂ck(x, t)
∂t

= −
F′(ck(x, t))

ε2 + Δck(x, t) − β(c), (3)

∂ck(x, t)
∂t

= λ[ fk(x) − ck(x, t)]. (4)

For 0 < i < Nx, 0 < j < Ny, we use the explicit Euler method to solve
Eq. (3),

c
n+ 1

2
k,ij − cn

k,ij

Δt
= −

F′(cn
k,ij)

ε2 + Δhcn
k,ij +

3

∑

k=1

F′(cn
k,ij)

3ε2 ,

where Δhcn
k,ij = (c

n
k,i−1,j + cn

k,i+1,j + cn
k,i,j−1 + cn

k,i,j+1 − 4cn
k,ij)/h

2. Here,
we use the linear boundary condition: ck,0j = 2ck,1j − ck,2j,
ck,i0 = 2ck,i1 − ck,i2, ck,Nx j = 2ck,Nx − 1,j − ck,Nx − 2,j, ck,iNy = 2ck,i,Ny − 1

− ck,i,Ny−2. Next, we solve Eq. (4) for c
n+ 1

2
k,ij ,

cn+1
k,ij − c

n+ 1
2

k,ij

Δt
= λ( fk,ij − cn+1

k,ij ). (5)

Rewriting Eq. (5), we have

cn+1
k,ij =

c
n+ 1

2
k,ij + λΔt fk,ij

1 + λΔt
.

Because this scheme is explicit, there is a mild constraint for the
time step size, Δt < 0.25h2,26 for the stability of the scheme.

IV. COMPUTATIONAL EXPERIMENTS
We present the computational test results for two synthetic

datasets: three moons and three spirals in 2D. We consider the
domain Ω = (0, 1) × (0, 1), a time step Δt = 0.12h2, a grid size
h = 1/100, and ε = εm = hm/(4

√

2 tanh−1
(0.9)).27 We propose a

preprocessing process for the given data to construct the fidelity
term in the modified tAC system. Because we solve Eq. (3) using
the lattice-based numerical method, we construct the fidelity term
by distributing the information of the given data scattered across the
computational domain Ω to adjacent grid points. Herein, each data
information was distributed to adjacent grid points using bilinear

FIG. 1. Schematic illustration of defining a fidelity term. The color of each point
means its class, and the length of the color bar is proportional to the size of the
normalized allocation information value of each grid. (a) and (b) are the linearly
weighted distribution results in 2d and 3d, respectively.
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FIG. 2. Fidelity of three moons dataset: (a) c1, (b) c2, and (c) c3.

weighted interpolation. Figure 1 shows the distribution process for
adjacent grid points at each point, where the data classes are shown
by coloring. As shown in Fig. 1(b), the information values of each
class at the four grid points of the intermediate cell can be expressed
as a unit length since the sum of the information values of the three
classes is normalized to 1.

In addition, when multiple information of the same class is
assigned to one grid point, the largest value is taken for that grid
point. Finally, if there is no value assigned to a grid point, 1/3
is assigned. Figure 2 shows the fidelity term allocated information
for the three moons dataset, where each class is shown in different
colors.

A. Synthetic datasets
The modified tAC system can be applied to classifying the three

class data as three moon (TM) data and three spiral (TS) data with
numerical parameters: ε = ε4 and λ = 1000.

1. Example 1: Three moons
TM dataset has three half circles. Each half circle consists of N

data. In other words, there are 3N points in the dataset. The center of
the upper semicircle is origin, and its have their centers radius is 1.2
of the two lower semicircles that are (−1.3, 0.5) and (1.3, 0.5) with
radius 1. Then, Gaussian noise with mean 0 and standard deviation
0.1 is added to all points. The dataset can be generated as follows:

D1 = {(x, y)∣ x = 1.2 cos(θ) + z1, y = 1.2 sin(θ) + z2},
D2 = {(x, y)∣ x = 1.3 + cos(θ) + z1, y = 0.5 − sin(θ) + z2},
D3 = {(x, y)∣ x = −1.3 + cos(θ) + z1, y = 0.5 − sin(θ) + z2},

(6)

where 0 < θ < π and Gaussian noise z1, z2 ∼ N(0, 0.1). Now, we con-
sider the generated dataset D = D1 ∪D2 ∪D3. Figure 3 shows the
data generated by Eq. (6) and the number of data of each class
N = 1000.

The color of each point means a different class. Then, we add
margins and scale the axes to fit the model domain Ω. The size of

FIG. 3. Example 1: TM dataset with N = 1000.

FIG. 4. Example 1: TM dataset. The color of each point means a different class.
(a) is the result of adding margins on the raw dataset shown in Fig. 3, (b) is the
normalized dataset showing the train data with Ntrain = 1000, and (c) is test data
with Ntest = 100. (d) shows classification results on the test data, where the black
dots are points that fail to classify correctly.

each margin is proportional to the length of each axis of the gen-
erated data as shown in Fig. 4(a). Through data scaling, we have
to make the range of all features the same. Specifically, the prepro-
cessing to fit the computational domain Ω = (0, 1) × (0, 1) can be
written as

X̃ = A(X − X0),

X̃ = (x̃ , ỹ)T , X = (x, y)T ,

X0 = (−rxmax + (1 + r)xmin,−rymax + (1 + r)ymin)
T ,

A =
⎛

⎜

⎝

1/(1 + 2r)(xmax − xmin) 0

0 1/(1 + 2r)(ymax − ymin)

⎞

⎟

⎠

,

(7)

where a margin ratio r = 0.1. The goal is to get a decision bound-
ary that classifies the learning data presented in Fig. 4(b) using the
proposed algorithm. Figure 4(d) shows the decision curve and the
classification results of the test data presented in Fig. 4(c). Here, the
black points are the classification failed data.

2. Example 2: Three spiral
TS dataset has three Archimedean spiral structures with N

= 1000, as shown in Fig. 5.

FIG. 5. example 2: TS data. The color of each point means a different class. (a) is
train data with Ntrain = 1000, (b) is test data with Ntest = 100, and (c) the result for
classifying test data and the black dots are data that fail to classify.
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The train and test datasets are generated by spiral equation as
D1 = {(x, y)∣ x = (a + bθ) cos(θ) + z1, y = (a + bθ) sin(θ)) + z2},

D2 = {(x, y)∣ x = (a + bθ) cos(θ + 2π/3) + z1,
y = (a + bθ) sin(θ + 2π/3)) + z2},

D3 = {(x, y)∣ x = (a + bθ) cos(θ + 4π/3) + z1,
y = (a + bθ) sin(θ + 4π/3)) + z2}.

(8)
where a = 0.2 and b = 0.3, and 0 < θ < 2π and Gaussian noise z1, z2
∼ N(0, 0.1).

Then, we add margins and normalize the dataset to fit the com-
putational domain Ω = (0, 1) × (0, 1) by Eq. (7) with r = 0.1. We
get the TS data as shown in Fig. 5(a). We apply the proposed algo-
rithm to get a decision boundary that classifies the data for Fig. 5(a).
Figure 5(c) shows the decision curve and the classification results of
the test data presented in Fig. 5(b). Here, the black points are the
classification of failed data.

B. Comparison with other classifiers
In this subsection, the proposed algorithm is compared with

classifiers that are widely used to verify the performance. We con-
sider various classifiers: artificial neural network (ANN), random
forest (RF), decision tree (DT), support vector machine (SVM),
and logistic regression (LR). The parameters of the four classifica-
tion algorithms (as LR: lambda, SVM: gamma and cost, DT and
RF: min split, min bucket, max depth, and complexity) applied
were determined as best set using a grid search method. ANN
structure consisted of 8 layers and 30 nodes of each layer, and
the activation functions are ReLU and softmax, and the loss func-
tion and optimizer are cross-entropy and Adam, respectively. The
rest of the unmentioned parameters uses the default setting in the
scikit-learn and TensorFlow package. To measure the performance
of the proposed algorithm and different classifiers, we use com-
monly used accuracy (ACC), the area under the accuracy of the
receiver operating characteristic curve (AUC), and the area under
the precision–recall curve (AUPR), and F1-score. Four effective
measures are based on TP, FP, TN, and FN, which denote true pos-
itive, false positive, true negative, and false negative, respectively.
ACC was defined by the ratio of the samples correctly classified
to the total samples, i.e., ACC = (TP + TN)/(TP + FP + TN + FN).
AUC represents the trade-off between the true positive rate (speci-
ficity) and the false positive rate (1-sensitivity), where specificity

TABLE I. Performance of classification on TM and TS dataset with Ntrain = 1000 and
Ntest = 100.

tAC LR SVM DT RF ANN

TM

ACC 1.0 0.85 1.0 1.0 0.99 1.0
AUC 1.0 0.97 1.0 1.0 1.0 1.0
AUPR 1.0 0.95 1.0 1.0 1.0 1.0
F1-score 1.0 0.85 1.0 1.0 0.99 1.0

TS

ACC 0.93 0.33 0.95 0.87 0.91 0.94
AUC 0.98 0.61 1.0 0.90 0.97 1.0
AUPR 0.97 0.50 1.0 0.81 0.94 0.98
F1-score 0.93 0.33 0.95 0.87 0.91 0.94

TABLE II. Performance of classification on TM and TS datasets with Ntrain = 20 and
Ntest = 100.

tAC LR SVM DT RF ANN

TM

ACC 0.99 0.86 0.95 0.87 0.92 0.94
AUC 1.0 0.97 1.0 0.91 0.99 1.0
AUPR 1.0 0.95 1.0 0.81 0.98 0.99
F1-score 0.99 0.85 0.95 0.86 0.92 0.94

TS

ACC 0.92 0.35 0.91 0.87 0.89 0.67
AUC 0.98 0.60 0.97 0.90 0.97 0.86
AUPR 0.97 0.53 0.95 0.80 0.95 0.77
F1-score 0.92 0.35 0.91 0.87 0.89 0.67

and sensitivity are defined as TN/(FP + TN) and TP/(TP + FN),
respectively. AUPR represents the trade-off between the precision
and the recall where precision and recall are defined as TP/(TP
+ FP) and TP/(TP + FN). Finally, the F1-score is known as a har-
monic average of precision and recall and defined as 2(precision
× recall)/(precision + recall) = 2TP/(2TP + FP + FN). The gener-
alization performance results were reported by ACC, AUC, AUPR,
and F1-score, which were measured on test data. All the perfor-
mances of the classifier algorithms are measured on a computer with
an Intel(R) Xeon(R) CPU @ 2.30 GHz. The test data of all tests used
the data presented in Figs. 4(c) and 5(b)

We conducted numerical experiments on large datasets and
small dataset of the learning dataset size. The classification per-
formance of the proposed algorithm and different algorithms for
Ntrain = 1000 and Ntrain = 20 is presented in Tables I and II, respec-
tively. It can be observed from Table I that not only the proposed
algorithm, modified tAC, but also all other algorithms show high
accuracy for TM dataset of a relatively simple structure. Although
the performance of all algorithms for TS data is lower than in TM
data, the tAC, SVM, and ANN show high accuracy of 0.9 or more.
Usually, when there is less learning data, the performance of the
algorithm is lower than when the learning data are abundant. How-
ever, from Table II, it can be seen that there is little change in the
performance of the proposed algorithm. Therefore, the proposed
algorithm is robust and accurate better than the different algo-
rithms for small datasets. For TM data, when Ntrain = 1000, the CPU
times(in seconds) for ANN and tAC are 158.93 and 2.37, respec-
tively, and for TS data, 46.30 and 2.41, respectively. For TM data,
when Ntrain = 20, the CPU times(in seconds) for ANN and tAC

TABLE III. Performance drop due to smaller training dataset.

tAC LR SVM DT RF ANN

TM

ACC 0.01 0.01 0.05 0.13 0.07 0.06
AUC 0.00 0.00 0.00 0.09 0.01 0.00
AUPR 0.00 0.00 0.00 0.19 0.02 0.01
F1-score 0.01 0.00 0.05 0.14 0.07 0.06

TS

ACC 0.01 0.02 0.04 0.00 0.02 0.27
AUC 0.00 0.01 0.03 0.00 0.00 0.14
AUPR 0.00 0.03 0.05 0.01 0.01 0.21
F1-score 0.01 0.02 0.04 0.00 0.02 0.27
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FIG. 6. Confusion matrices for TM dataset with Ntrain = 1000 and Ntest = 100: (a)
tAC, (b) LR, (c) SVM, (d) DT, (e) RF, and (f) ANN.

FIG. 7. Confusion matrices for TS dataset with Ntrain = 1000 and Ntest = 100: (a)
tAC, (b) LR, (c) SVM, (d) DT, € RF, and (f) ANN.

FIG. 8. Confusion matrices for the TM dataset with Ntrain = 20 and Ntest = 100: (a)
tAC, (b) LR, (c) SVM, (d) DT, (e) RF, and (f) ANN.

FIG. 9. Confusion matrices for the TS dataset with Ntrain = 20 and Ntest = 100: (a)
tAC, (b) LR, (c) SVM, (d) DT, (e) RF, and (f) ANN.
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are 86.59 and 2.34, respectively, and for TS data, 142.52 and 2.37,
respectively.

Table III shows that absolute difference between all the values
in Tables I and II. Classifiers other than tAC are more affected by
the drop in performance results caused by smaller training datasets,
which suggests that tAC is more robust in learning from small
datasets than other classifiers we tested.

Figures 6 and 7 present confusion matrices from all the
algorithms for TM and TS datasets with Ntrain = 1000, respectively.

Figures 8 and 9 presented confusion matrices obtained using all
the algorithms for TM and TS datasets with Ntrain = 20, respectively.

V. CONCLUSIONS
In this study, we presented a novel classification method for

ternary data using the tAC system with a fidelity term for small
datasets. To solve the tAC system with the fidelity term, we used the
operator splitting method with an implicit-explicit FDM for solving
the split equations. To validate the robust and superior performance
of the proposed AC classification system, we performed the compar-
ison tests with other widely used classifiers such as LR, SVM, DT, RF,
and ANN. Here, the hyperparameters of each model are determined
as the best set using the grid search method. In general, if there is not
enough learning data, the performance of the model is poor. How-
ever, the proposed algorithm achieves high-accuracy performance
on small datasets, which can be confirmed by the results. The num-
ber of features of input data is mostly two or more. As the number of
features increases, the proposed AC classification system increases in
dimension, resulting in high costs. This is called the curse of dimen-
sionality. Therefore, for future work, we will overcome the curse of
dimensionality by applying dimensional reduction methods such as
PCA28–30 or another method31 to the data preprocessing process and
expand the modified tAC to classify multi-class datasets (4 or more).
In addition, introducing a dynamically reconstructed grid structure
that balances the classification performance and the required com-
putational burden of fidelity terms would result in a computationally
more efficient method.
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APPENDIX: DERIVATION OF THE GOVERNING
EQUATION

To derive Eq. (2), let us consider a gradient flow such as

∂c(x, t)
∂t

= − grad ℰ (c)(x, t), (A1)

where grad ℰ (c) is computed as follows. Let g(x) = (g1(x),
g2(x), g3(x)) be a smooth vector-valued function satisfying
∑

3
k=1gk(x) = 0,

(grad ℰ (c), g) =
d

dθ
ℰ (c + θg)∣θ=0

=
d

dθ∫Ω

3

∑

k=1
[

F(ck + θgk)

ε2 +
1
2
∣∇(ck + θgk)∣

2

+
λ
2
(ck + θgk − fk)

2
]dx∣

θ=0

=
d

dθ∫Ω

3

∑

k=1
[

1
4ε2 (ck + θgk)

2
(ck + θgk − 1)2

+
1
2
[(ck + θgk)x]

2
+

1
2
[(ck + θgk)y]

2

+
λ
2
(ck + θgk − fk)

2
]dx∣

θ=0

=

3

∑

k=1
∫

Ω
[

1
ε2 ck(ck − 0.5)(ck − 1)gk

+ (ck)x(gk)x + (ck)y(gk)y + λ(ck − fk)gk]dx

= ∫
Ω
[

F′(c)
ε2 − Δc + λ(c − f)] ⋅ g dx

= ∫
Ω
[

F′(c)
ε2 − Δc + λ(c − f) + β(c)1] ⋅ g dx

= (
F′(c)

ε2 − Δc + λ(c − f) + β(c)1, g),

where F′(c) = (F′(c1), F′(c2), F′(c3)), c = (c1, c2, c3), f = ( f1, f2,
f3), β(c) = −∑3

k=1F′(ck)/(3ε2
), and 1 = (1, 1, 1). Here, we used the
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zero Neumann boundary condition and the fact that ∫Ωβ(c)1 ⋅
g dx = ∫Ωβ(c)∑3

k=1gk(x) dx = 0. Therefore, we have

grad ℰ (c) =
F′(c)

ε2 − Δc + λ(c − f) + β(c)1. (A2)

From Eqs. (A1) and (A2), we drive the governing equations for the
tAC as shown in Eq. (2).
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