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Abstract In this study, we present a modified interfacial parameter to reduce the vacuum phenomenon for the
triple junction in the ternary Cahn–Hilliard (CH) equation. The triple junction is the point where three phases
meet each other. In the ternary system, we interpret a position as occupied by a phase, if the concentration
of the phase is larger than one-half. Therefore, it is well known that there exists a vacuum phenomenon:
none of the phases exist, that is, all the concentrations are less than one-half. In the proposed method, we
introduce a phase-dependent interfacial coefficient that has a constant value away from the triple junction and
smaller values in the neighborhood of the triple junction, which effectively reduces the vacuum region. To
validate the superiority of the proposed approach, we present the characteristic numerical experiments for the
ternary system. The computational results confirm the superior performance of the proposed method over the
conventional method.

1 Introduction

A wide range of important and practical industrial processes involves multiphase liquids such as oil-water-gas
multiphase fluid flows in the petroleum industry, generation of double emulsions by a microcapillary system,
and droplet dynamics in microfluid or turbulent flows [1–8]. To model a three-phase system, the ternary
Cahn–Hilliard (CH) system [9–18] has been successfully adopted. Furthermore, several efficient and accurate
numerical methods exist for ternary CH systems [19–28].

In the ternary system, we introduce continuous order parameters c1(x, t), c2(x, t), and c3(x, t) to represent
the concentration of each phase, and require the concentrations to satisfy c1(x, t) + c2(x, t) + c3(x, t) = 1.
However, the concentrations are c1(x, t) = c2(x, t) = c3(x, t) at the triple junction points, which results in
c1(x, t) = c2(x, t) = c3(x, t) = 1/3. Therefore, if we interpret the dominating phase domain on the space as
a region of greater than one-half concentration, then we may intrinsically have a vacuum phenomenon (none
of the phases exists, i.e., all the concentrations are less than one-half) around the triple junction points, as
illustrated in Fig. 1.

In this study, we present a modified interfacial parameter to reduce the vacuum phenomenon for the triple
junction in the ternary CH equation. In the proposed method, we introduce a phase-dependent interfacial
coefficient which has similar values away from the triple junction and small values in the neighborhood of
the triple junction, which effectively reduces the vacuum region. To evaluate the performance of the proposed
approach, we present the characteristic numerical experiments for the ternary system.

The outline of this paper is as follows. In Sect. 2, we present a new ternary CH system. In Sect. 3, we
describe the numerical solution algorithm for the ternary CH system. The numerical tests are presented in Sect.
4. The conclusions are given in Sect. 5.
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Fig. 1 Temporal evolution of concentrations in a ternary system. The filled contour lines are at the one-half level set of each
phase. Reprinted from Lee et al. [29] with permission from MDPI

2 Proposed ternary CH system

Let cl for l = 1, 2, 3 represent the concentration of each phase in the ternary system. The value of cl is
approximately 1 in the l-th phase, and 0 in the other phases. The variables c1, c2, and c3 are required to satisfy
the following hyperplane line constraint at x and t :

c1(x, t) + c2(x, t) + c3(x, t) = 1, (1)

where x ∈ � is the spatial variable, and t is the temporal variable. Here, � is the computational domain. The
governing equations for the ternary CH system are indicated as follows:

∂cl
∂t

= M

�l
�μl , (2)

μl = 12 f (cl)

ε2
− 3

4
�l�cl + 12β(c)

ε2
, l = 1, 2, 3, (3)

where �l is a parameter related to the interfacial force, and ε is a positive interfacial coefficient, related to the
thickness of the diffuse interface [30]. In previous studies [13,14,19,21,24,29,30], ε was taken as constant,
μl is the chemical potential of the l-th phase, F(c) = ∑3

l=1 0.5�l c2l (cl − 1)2 + 3�c21c
2
2c

3
3 is the nonlinear

potential and � ≥ 0, f (ci ) = ∂F(c)/∂cl , β(c) = − 1
�T

∑3
l=1 f (cl)/�l [30] is the Lagrange multiplier, which

is utilized to satisfy the constraint (1), 1/�T = ∑3
l=1 1/�l . In this study, we adopt the periodic or the following

zero Neumann boundary conditions:

∇cl · n|∂� = ∇μl · n|∂� = 0, l = 1, 2, 3,

where n is the normal vector to the domain boundary ∂�.
To reduce the vacuum phenomenon, as illustrated in Fig. 1, we propose a new phase-dependent interfacial

coefficient which has a similar value away from the triple junction and small values in the neighborhood of
the triple junction, which effectively reduces the vacuum region. The proposed phase-dependent interfacial
coefficient is defined as

ε(c1, c2, c3) = ε0(1 − s c1c2c3), (4)

where ε0 is a predefined positive constant and s is a scaling factor that satisfies 0 < s < 27. When s = 0,
the phase-dependent interfacial coefficient becomes a constant coefficient, ε0. Because the maximum value of
c1c2c3 is 1/27, we require s < 27 to have positive values of ε(c1, c2, c3). Owing to the constraint c1+c2+c3 =
1, we solve only the equations for c1 and c2, that is,
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∂c1
∂t

= M

�1
�μ1, (5)

μ1 = 12 f (c1)

ε2(c1, c2, c3)
− 3

4
�1�c1 − 12β(c)

ε2(c1, c2, c3)
, (6)

∂c2
∂t

= M

�2
�μ2, (7)

μ2 = 12 f (c2)

ε2(c1, c2, c3)
− 3

4
�2�c2 − 12β(c)

ε2(c1, c2, c3)
. (8)

After c1 and c2 are computed, we can directly get c3 = 1 − c1 − c2.

3 Numerical solution

Here we present the numerical scheme of a two-dimensional computational domain, � = (a, b) × (c, d). Let
h = (b − a)/Nx = (d − c)/Ny be the uniform grid size, where Nx and Ny are positive even integers. Then,
�h = {(xi , y j ) : xi = a + (i − 0.5)h, y j = c + ( j − 0.5)h, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny} is the discrete
computational domain. In addition, let cnl,i j andμn

l,i j be approximations of cl(xi , y j , n�t) andμl(xi , y j , n�t)
with time level n, where �t is the time step size. We adopt a stabilized semi-implicit scheme to discretize
Eqs. (5)–(8) in time. Spatial discretization is performed using the standard finite difference method. The fully
discrete governing equations are given by

cn+1
1,i j − cn1,i j

�t
= M

�1
�μn+1

1,i j , (9)

μn+1
1,i j = 12 f (cn1,i j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

− 3

4
�1�hc

n+1
1,i j + 12β(cni j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

+ S�1(c
n+1
1,i j − cn1,i j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

, (10)

cn+1
2,i j − cn2,i j

�t
= M

�2
�μn+1

1,i j , (11)

μn+1
2,i j = 12 f (cn2,i j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

− 3

4
�2�hc

n+1
2,i j + 12β(cni j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

+ S�2(c
n+1
2,i j − cn2,i j )

ε2(cn1,i j , c
n
2,i j , c

n
3,i j )

, (12)

where S > 0 is the stabilization parameter and the discrete Laplacian of a specific function ψ is defined as
�hψi j = (ψi+1, j + ψi−1, j − 4ψi j + ψi, j+1 + ψi, j−1)/h2. At the discrete boundary ∂�h , we utilize the
periodic or the following discrete zero Neumann boundary conditions as follows:

cn+1
1,0 j = cn+1

1,1 j , cn+1
1,Nx+1, j = cn+1

1,Nx , j
, cn+1

1,i0 = cn+1
1,i1 , cn+1

1,i Ny+1 = cn+1
1,i Ny

,

μn+1
1,0 j = μn+1

1,1 j , μn+1
1,Nx+1, j = μn+1

1,Nx , j
, μn+1

1,i0 = μn+1
1,i1 , μn+1

1,i Ny+1 = μn+1
1,i Ny

,

cn+1
2,0 j = cn+1

2,1 j , cn+1
2,Nx+1, j = cn+1

2,Nx , j
, cn+1

2,i0 = cn+1
2,i1 , cn+1

2,i Ny+1 = cn+1
2,i Ny

,

μn+1
2,0 j = μn+1

2,1 j , μn+1
2,Nx+1, j = μn+1

2,Nx , j
, μn+1

2,i0 = μn+1
2,i1 , μn+1

2,i Ny+1 = μn+1
2,i Ny

.

Herewe adopt the nonlinearmultigridmethodwith aGauss–Seidel relaxation [31] to solve the discrete systems
(9)–(10) and (11)–(12) separately. Please refer to [32] for the details of the multigrid method. It is easy to
obtain cn+1

3,i j = 1 − cn+1
1,i j − cn+1

2,i j with the updated cn+1
1,i j and cn+1

2,i j . The numerical procedure in one iteration is
completed.
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4 Numerical experiments

We validate the performance of the proposed model by adopting various computational experiments such
as triple junction, ternary phase separation, liquid lens, raising bubble, and pressure jump. In the following
simulations, we choose �1 = �2 = �3 = 1, � = 0.1, and S = 20; and the discrete homogeneous Neumann
boundary condition unless otherwise specified.

4.1 Triple junction

First, we validate the proposed model by investigating the evolution of the triple junction. The following initial
conditions on � = (0, 1) × (0, 1) are used:

c1(x, y, 0) =
{
1, if x < 0.5 and y > 0.4,
0, otherwise,

c2(x, y, 0) =
{
1, if x > 0.5 and y > 0.4,
0, otherwise,

c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0).

We use �t = 0.01, M = 0.01, and h = 1/128. For the CH-type phase-field model, a small and positive
interfacial coefficient ε0 controls the evolutionary dynamics of the interface. In general, a relatively large
and appropriate ε0 is required to obtain smooth interfacial dynamics. However, the vacuum phenomenon is
always observed if relatively large ε0 is utilized (see Fig. 1). Although a smaller ε0 can be used to reduce the
vacuum phenomenon, the evolution of the interface will be pinned, because the strong nonlinearity increases
the stiffness of the problem. In this test, we aim to illustrate that the proposed model can reduce the vacuum
phenomenon with a relatively large ε0. To perform the comparison, we set three pairs as (s, ε0) = (0, 0.036),
(0, 0.018), and (25, 0.036), where s = 0 represents the cases with constant interfacial coefficient. Figure
2a illustrates the snapshots at t = 8 with s = 0 and ε0 = 0.036. In this case, the interfacial coefficient
ε(c1, c2, c3) = c0 is constant. We can observe that a vacuum phenomenon appears. As illustrated in Fig. 2b,
we display the result with s = 0 and ε0 = 0.018. Although the vacuum phenomenon is reduced by using a
smaller value of ε0, the evolutionary dynamics is pinned. In Fig. 2c, the result with s = 25 and ε0 = 0.036
indicates that the proposed method not only captures the interfacial dynamics but also significantly reduces
the vacuum phenomenon. In Fig. 2d–f, we display the evolutions of mass with respect to (s, ε0) = (0, 0.036),
(0, 0.018), and (25, 0.036), respectively. It can be observed that the mass of each component is conserved,
even if a non-constant interfacial coefficient is used.

Next, we consider the initial conditions with randomly distributed values of c1, c2, and c3. Here, the
parameter values are the same as those of the previous test. The top and bottom rows of Fig. 3 display the
computational results with s = 0 and s = 25 at different computational moments. Evidently, the proposed
model reduces the vacuum phenomenon at triple junctions and three components arrive at a regular state, where
the contact angle is approximately 120◦.

4.2 Ternary phase separation

Phase separation is a basic benchmark problem for the ternary CH model. In a homogeneous ternary mixture,
the concentration fluctuations grow with time and lead to the formation of three-component state. In this test,
we consider the initial conditions on � = (0, 1) × (0, 1) as follows:

c1(x, y, 0) = 1

3
+ 0.01rand(x, y), c2(x, y, 0) = 1

3
+ 0.01rand(x, y),

c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0),

where rand(x, y) is a random number in [−1, 1]. We use h = 1/128, �t = 0.01, M = 0.01, and ε0 = 0.036.
The top row of Fig. 4 shows the computational results at t = 0.8 with s = 0, s = 18, and s = 25, respectively.
We discover that the vacuum phenomenon is significantly reduced as the value of s is increased. In the bottom
row of Fig. 4, we plot the evolutions of mass with respect to s = 0, 18, 25. We observe that the mass of each
phase is conserved even if the non-constant interfacial coefficient is adopted.
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(c)(b)

(a)

(d) (e) (f)

Fig. 2 Triple junction with a s = 0, ε0 = 0.036; b s = 0, ε0 = 0.018; and c s = 25, ε0 = 0.036. Here, the red, blue, and green
regions are occupied by c1, c2, and c3, respectively. Here, d–f illustrate the evolution of mass of each phase.

4.3 Liquid lens

In this section, we consider a liquid lens with a phase-dependent interfacial coefficient. The component c1
initially occupies the circular region which is located at the interface of the components c2 and c3. With the
temporal evolution of interfaces, the circular region occupied by c1 is elongated, owing to the interfacial force.
The initial conditions on � = (0, 1) × (0, 1) are defined as follows:

c3(x, y, 0) = 0.5 + 0.5 tanh

(
0.2 − √

(x − 0.5)2 + (y − 0.5)2

2
√
2ε0

)

,

c1(x, y, 0) = (1 − c3(x, y, 0))

(

0.5 + 0.5 tanh

(
y − 0.5

2
√
2ε0

))

,

c2(x, y, 0) = 1 − c1(x, y, 0) − c3(x, y, 0).
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Fig. 3 Temporal evolution of the triple junctions: top row (s = 0) and bottom row (s = 25). Here, the red, blue, and green regions
are occupied by c1, c2, and c3, respectively

Fig. 4 Phase separation with different phase-dependent interfacial coefficients. Here, the red, blue, and green regions are occupied
by c1, c2, and c3, respectively. The bottom row displays the evolution of mass of each phase
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Fig. 5 Liquid lens at t = 8 with different phase-dependent interfacial coefficients. Here, the red, blue, and green regions are
occupied by c1, c2, and c3, respectively

here we use h = 1/128, �t = 0.01, M = 0.01, and ε0 = 0.036. In Fig. 5, we show the snapshots at t = 8
with different values of s = 0, s = 18, and s = 25. Evidently, our proposed model obviously reduces the
vacuum phenomenon with an increase of s.

4.4 Raising bubble with fluid flow

In this subsection, we investigate the rising bubble in ternary fluid system. The dimensionless governing
equations consist of the convective ternary CH model and incompressible Navier–Stokes (NS) model as
follows:

∂cl
∂t

+ ∇ · (clu) = 1

Pe�l
�μl , (13)

μl = 12F ′(cl)
ε2

− 3

4
�l�cl + 12β(c)

ε2
, l = 1, 2, 3, (14)

ρ(c)
(

∂u
∂t

+ u · ∇u
)

= −∇ p + 1

Re
∇ · [η(c)(∇u + ∇uT )] + SF(c)

+ ρ(c)
Fr2

g, (15)

∇ · u = 0, (16)

where u = (u, v) is the velocity field, u and v are the velocity components along the x- and y-directions,
respectively, p is the pressure, ρ(c) = ∑3

l=1 ρl cl is the density of the entire system, and η(c) = ∑3
l=1 ηl cl is

the viscosity of the entire system. Here, ρl and ηl are the density and viscosity of the l-th phase, respectively.
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Gravity is g = (0,−g). The continuous surface tension of the ternary system is [33]

SF(c) = −
3∑

l=1

1

Wel
∇ ·

( ∇cl
|∇cl |

)

∇cl =
3∑

l=1

1

Wel
∇ ·

(

− ∇cl
|∇cl |

)

|∇cl | ∇cl
|∇cl | , (17)

where ∇ · (−∇cl/|∇cl |) is the curvature, |∇cl | is the Dirac delta function [34], ∇cl/|∇cl | is the unit normal
vector to the interface. The dimensionless parameters are the Reynolds number Re, Peclet number Pe, Weber
numbers Wel and l = 1, 2, 3, and the Froude number Fr . To numerically solve the incompressible NS
model, Eqs. (15) and (16), we adopt the projection method with pressure correction. For some details of the
implementation of the projection method, please refer to [35,36]. Along the x-direction, we apply the periodic
boundary condition for all variables. The homogeneous Neumann boundary condition is considered along the
y-direction.

Numerical tests are performed on � = (0, 2) × (0, 4). The initial conditions are as follows:

c1(x, y, 0) = 0.5 + 0.5 tanh

(
0.3 − √

(x − 1)2 + (y − 1.62)2

2
√
2ε0

)

,

c2(x, y, 0) = (1 − c1(x, y, 0))

(

0.5 + 0.5 tanh

(
y − 2

2
√
2ε0

))

,

c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0),

u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 0.

Here we use h = 1/64, �t = 2.4414e-3, ε0 = 0.048, Re = 100, Pe = 40000/ε0, We1 = 7.5, We2 = 10,
We3 = 5, Fr = 1, g = 1, the density ratio is ρ1 : ρ2 : ρ3 = 1 : 3 : 5, the viscosity ratio is η1 : η2 :
η3 = 1 : 1 : 1. In Fig. 6, we display the computational results with different values of s = 0 and s = 25 at
different computational moments. It can be observed that the proposed model with phase-dependent interfacial
coefficient obviously reduces the vacuum phenomenon. Figure 7 displays the evolution of mass of each phase
with respect to s = 0 and s = 25. It can be observed that mass conservation is satisfied.

4.5 Pressure jump

Finally, we investigate the pressure distribution, which is widely used as the benchmark problem for multi-
phase fluid system [33]. With the absence of fluid viscosity, gravity, and other external forces, the Laplace
formula [33] gives [p] = σκ , where [p] is the pressure jump near the interface, σ is the surface tension
coefficient, and κ is the curvature. For a circular droplet, we have [p] = σκ = σ/R, where R is the radius. For
a ternary system with the surface tension formula (17), we have σmn = 1/Wem + 1/Wen [33], where σmn is
the surface tension coefficient between fluid m and fluid n. The decomposition can be expressed as follows:

1

We1
= σ12 + σ13 − σ23

2
,

1

We2
= σ12 + σ23 − σ13

2
,

1

We3
= σ13 + σ23 − σ12

2
.

In this test, the domain is set to be � = (0, 2) × (0, 1). The initial conditions are defined as

c1(x, y, 0) = 0.5 + 0.5 tanh

(
0.15 − √

(x − 0.5)2 + (y − 0.5)2

2
√
2ε0

)

, (18)

c1(x, y, 0) = 0.5 + 0.5 tanh

(
0.15 − √

(x − 1.5)2 + (y − 0.5)2

2
√
2ε0

)

, (19)

c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0), (20)

u(x, , y, 0) = v(x, y, 0) = p(x, y, 0) = 0. (21)

Figure 8a illustrates the initial stage. Here, we use h = 1/512, �t = 3.8147e-5, ε0 = 0.0038, Re = 1,
Pe = 1/ε0, σ12 = 1, σ13 = 0.75, σ23 = 1.5. In Fig. 8b, the distribution of pressure is plotted. From the
Laplace formula, the exact pressure jumps are [p] = 5 and [p] = 10. The numerical and exact pressure jumps
at y = 0.5 are plotted in Fig. 8c, we discover that the computational and exact results are in good agreement
with each other.
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Fig. 6 Raising bubble in a ternary fluid system. Here, the red, blue, and green regions are occupied by c1, c2, and c3, respectively.
The top and bottom rows illustrate the snapshots at t = 3.66 and t = 4.88

Fig. 7 Evolutions of the mass of each phase with respect to s = 0 and s = 25



4494 J. Yang et al.

(a) (b)

(c)

Fig. 8 Pressure distribution in a ternary system. Here, a, b, and c are initial state, pressure distribution, and pressure jumps at
slice y = 0.5

5 Conclusions

In this study, we proposed a novel ternary CH systemwith a phase-dependent interfacial coefficient. In contrast
to the constant interfacial coefficient used in previous researches [13,14,19,21,24,29,30], the present model
has a similar value of interfacial coefficient away from the triple junction and small values in the neighborhood
of the triple junction. Various numerical experiments indicated that the vacuum phenomenon is significantly
reduced. In future studies, we will extend the ternary CH system to the N -component CH system, (N > 3).
Wemay use ε(c1, · · · , cN ) = ε0(1−s

∑
1≤p<q<r≤N cpcqcr ), 0 < s < 27 for the phase-dependent interfacial

coefficient in the N -component CH system.
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