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a b s t r a c t

Triply periodic minimal surfaces (TPMSs), which are periodic in all three directions and are surfaces
of zero mean curvature, have been proven experimentally to be highly suitable for tissue scaffolds.
However, simply gluing different TPMS units with different porosities and pore sizes could induce
discontinuous structures and destroy the physical properties. In this study, we propose a simple
and efficient volume merging method for triply periodic minimal structures. The proposed method
can be divided into two steps. The first step is a novel merging algorithm for unit triply periodic
minimal structures in the implicit function framework. The composite scaffold can be designed by
merging different unit structures to satisfy the properties of internal connectivity. The second step
is to optimize the designed composite scaffolds to satisfy the properties of TPMSs. A modified Allen–
Cahn-type equation with a correction term is proposed. The mean curvature on the surface is constant
at all points in the equilibrium state. Typically, the obtained structure is smooth owing to the motion
by mean curvature flow. Therefore, the quality of the structure is significantly improved. Based on
the operator splitting method, the proposed algorithm consists of two analytical evaluations for the
ordinary differential equations and one numerical solution for the implicit Poisson-type equation. The
proposed numerical scheme can be applied in a straightforward manner to a GPU-accelerated discrete
cosine transform (DCT) implementation, which can be executed multiple times faster than CPU-only
alternatives. Computational experiments are presented to demonstrate the efficiency and robustness
of the proposed method.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

An artificial bone should consist of bio-compatible and bio-
ctive porous scaffolds to replace the natural skeleton. In general,
iological porous scaffolds should satisfy the following charac-
eristics [1]: (i) three-dimensional (3D) porous structures with
nterconnections and connected pores for the transport of nu-
rients and metabolic waste; (ii) biocompatible with artificial
egulatory mechanism for degradation and resorption; (iii) suit-
ble environmental protection for cell division, proliferation and
ifferentiation; (iv) proper mechanical performance to match the
issues at the site of transplantation. Such characteristics make
t difficult to manufacture biological porous scaffolds using tra-
itional methods. Additive manufacturing (AM) is a fabrication
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method that allows precise control over the architecture and
scales of constructed tissue scaffolds [2–4].

The fabrication of biological scaffolds using AM technology
has attracted considerable attention [5–7]. Chua et al. [8] studied
suitable polyhedral shapes that can be applied to tissue scaffolds,
and subsequently classified the unit cells. They developed a tissue
engineering scaffold library for AM [9]. Puppi et al. [10] gener-
ated an AM technique for fabricating 3D polymeric scaffolds. In
their research, two different scaffold models were fabricated by
tuning the inter-fiber distance and fibers staggering that demon-
strated acceptable reproducibility. Hollister et al. [11] proposed
an image-based design based on computed tomography or mag-
netic resonance image data for the reconstruction of a defect. It
used a Boolean combination of defect and architecture images to
create a 3D scaffold image. Xie and Steven [12] proposed an op-
timization method to generate porous structures with maximum
bulk and shear moduli, which demonstrated faster convergence
and unambiguous material definition. Implicit surface modeling,

which uses a single mathematical equation to freely generate
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Fig. 1. Multi-scale fabrication with variable porosity in the patella.
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ore shapes, such as triply periodic minimal surfaces (TPMSs),
rovides a new method for designing tissue scaffolds [2,13,14].
TPMSs have been proven experimentally to be highly suit-

ble for tissue scaffolds [15,16]. The inherent porosity of the
PMS-type model can represent the natural morphology of poly-
ers and macromolecules [3]. Using TPMS structures to cre-
te cellular materials can overcome the common weaknesses of
russ/strut-based structures [17]. Additional information regard-
ng the mechanical properties of TPMS structures is available
n [17–22]. The design of TPMS structures for tissue scaffolds
as attracted considerable attention in recent decades. Melchels
t al. [23] demonstrated that the high permeability of the porous
caffold and robust accessibility of the pores lead to more biolog-
cally favorable behavior in cell proliferation and the transport
f nutrients, and metabolites. Yoo [24,25] used a distance field
o fabricate TPMS porous scaffolds for complex tissue models.
omogeneous porous scaffolds can be manufactured using this
ethod; however, the manufacturing cost increases as the ac-
uracy increases. Yang et al. [26] proposed a heuristic method
or hybridizing different TPMS-based structures for bio-mimetic
esign. The combination of TPMS-based structures with different
orous morphologies can be generated efficiently. Feng et al. [2]
xtracted the TPMS porous scaffolds from the solid T-spline de-
igned volume. Natural bone demonstrates an anisotropic and
eterogeneous material distribution, which requires tissue scaf-
old structures to satisfy these properties [26,27]. As described
n [1,25], the internal tissue scaffolds of artificial skeletons must
e composed of structures of different types and sizes contin-
ously. The bio-morphic shape that best mimics the structural
orphology would be a continuous surface, partitioned into mul-

iple sub-spaces (pore and non-pore) [28]. Fig. 1 displays compos-
te scaffolds with different sizes of TPMS-P (P surface) units. The
ifferent colors represent units with different sizes and porosities.
he black boxes indicate progressively larger images of the multi-
orous scaffolds. As can be observed, nonuniform porosity and
ore size can locally control the permeability and stiffness to
atisfy the actual demand.
In this study, we focus on a composite porous scaffold de-

ign with complete consideration of the tissue engineering re-
uirements and global architecture optimization based on TPMS
roperties. To the best of our knowledge, the proposed ap-
roach is the first algorithm to design a composite scaffold with
ulti-scale and multi-porosity triply periodic minimal structures
ith smooth merging between the different units. The proposed
ethod can be divided into two steps. The first step is the novel
erging algorithm with unit TPMS structures in the implicit

unction framework. The composite scaffold can be designed
y merging different unit structures to satisfy the properties of
nternal connectivity. The second step is to optimize the designed
omposite scaffolds to satisfy the properties of TPMSs based on an

perator splitting method. A modified Allen–Cahn type equation m

2

with a correction term is proposed. The mean curvature on the
surface is constant at all points in the equilibrium state. Typically,
the obtained structure is smooth owing to the motion by mean
curvature flow. Different numerical experiments are performed
to demonstrate the efficiency and robustness of the proposed
algorithm.

The remainder of this paper is organized as follows. Section 2
introduces the proposed methodology for composite scaffold de-
sign and optimization. Section 3 describes the numerical solution
algorithm for the composite porous scaffold design. Several prac-
tical examples are presented in Section 4. Finally, concluding
remarks and ideas for future research are presented in Section 5.

2. Description of the proposed method

In this section, we introduce a simple and efficient method
for designing composite structures with TPMSs. The proposed
method can be divided into two steps. First, we propose an
efficient interpolation method for merginge different TPMS units
in Section 2.1. Then, we modify the merged model to ensure the
designed TPMS to satisfy the TPMS properties in Section 2.2.

2.1. Design of a composite structure with TPMS

A TPMS is a surface on which the curvature of each point is
equal to a constant and has periodic boundary conditions [29–31].
TPMSs can be described implicitly, as indicated in Table 1.

To demonstrate the merging method clearly, we illustrate the
process of merging two P surfaces in a two-dimensional (2D)
domain. We divide the domain diagonally with a large P surface
and two smaller P surfaces inserted. Let the 2D domain Ω =

(0, Lx) × (0, Ly) and h = Lx/(Nx − 1) = Ly/(Ny − 1) be the
uniform mesh size, where Nx and Ny are positive integers. Let
ψi,j be the approximation of ψ((i − 1)h, (j − 1)h). In the finite
ifference method framework, we use the points of each cell
enter. Here, we know the points represented by circle ◦ and
aid on diagonal lines (represented by dashed lines) as displayed
n Fig. 2(a). We also know that the average value (represented
y bullet •) of the right end of the larger P surface and left end
f the smaller P surface. Our goal is to interpolate the two tiles
aturally. Therefore, we first set the P surface in the domain and
dd a smaller P surface to the parts that represent the curve. We
se the internal division between two points, represented by a
ircle and bullet, to determine the points indicated by ×. Points
xpressed by × should be redefined through linear interpolation.
s can be observed in Fig. 2(b), the volume expressed in bullet
are interpolated. In the second step, we update the volume in

he larger domain and find linear interpolation × in the smaller
omain with average value • and points ◦, as indicated in Fig. 2(c).
n the third step, we update the new volume in the smaller do-

ain, as displayed in Fig. 2(d). This process functions in the same
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Fig. 2. Schematic of merging tiles in the 2D domain. (a) Before merging volume. (b) Interpolation indicated by × from two points represented by ◦ and • for the
arger domain. (c) Interpolation indicated by × from two points represented by ◦ and • for the smaller domain. (d) After merging volume.
Table 1
Model demonstration and mathematical expression of TPMSs.
Type Surface Implicit equation

P ψP (x, y, z) = cos(2πx) + cos(2πy) + cos(2πz) = 0

D ψD(x, y, z) = cos(2πx) cos(2πy) cos(2πz)
− sin(2πx) sin(2πy) sin(2πz) = 0

G ψG(x, y, z) = sin(2πx) cos(2πy)
+ sin(2πz) cos(2πx)+sin(2πy) cos(2πz) = 0

I ψI−WP (x, y, z) = 2[cos(2πx) cos(2πy) + cos(2πy) cos(2πz)
+ cos(2πz) cos(2πx)]−cos(4πx)−cos(4πy)−cos(4πz) = 0
manner in a 3D domain. Figs. 3(a) and (b) illustrate the initial
and final structure in a 3D domain, respectively. The schematic
diagram in Fig. 3(b) describes the interpolation in a 3D domain.

In the level set framework, the calculated ψ̃ uses the zero level
as the interface to distinguish between the inside and the outside
of the composite scaffold. The volume can be determined and
denoted by a discrete function ψ̃(x), where ψ̃(x) > 0 if the voxel
is determined to be a volume voxel; otherwise, ψ̃(x) < 0. To

ink with Section 2.2, we define

(x) :=

⎧⎨⎩
1 if ψ̃(x) > α(ψ̃max − ψ̃min),
0 if ψ̃(x) < −α(ψ̃max − ψ̃min),

0.5ψ̃(x)
+ 0.5 otherwise,
α(ψ̃max−ψ̃min)

3

where ψ̃max and ψ̃min are the maximum and minimum of ψ̃ ,
respectively. α is the hyperbolic tangent parameter that controls
the conversion of the interfacial transition. Therefore, ψ ∈ [0, 1]
and the half level of ψ represent the surface of the volume, as
indicated in Fig. 4.

2.2. Modification methodology for TPMS structures

Let us use φ(x) to define implicit surface Γ = {x : φ(x) =

0.5} in a 3D domain Ω , which implies that the interior of the
surface is {x : φ(x) > 0.5} and the exterior of the surface is
{x : φ(x) < 0.5}. To ensure that the composite structure is a
TPMS, i.e., κ(φ) = λ (∀x ∈ Γ ), we use the Allen–Cahn equation
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Fig. 3. Schematic of merging tiles in the 3D domain. (a) Before merging volume. (b) After merging volume.
Fig. 4. (a) and (b) are the one-dimensional schematics of ψ̃ and ψ , respectively. The gray region represents the interfacial region of the scaffold.
E

φt = |∇φ|(κ(φ)−λ(φ)) for the modification [32,33]. Here, κ is the
mean curvature, and λ is the average value of the mean curvature
over the surface, which can be denoted as⎧⎪⎪⎨⎪⎪⎩
κ = ∇ · (

∇φ

|∇φ|
),

λ =

∫
Γ
κds∫

Γ
ds

=

∫
Ω
κδ(φ)dx∫

Ω
δ(φ)dx

,

(1)

here δ(x) is the Dirac delta function. It should be conclusively
onfirmed that κ(φ) ≡ λ implies that the mean curvature on the
urface is constant at all points. In our previous work [32], we
ombined the Cahn–Hilliard model with the variational level-set
odel and motivated the equilibrium profile

(φ) =
φ2(1 − φ)2

4
≈
ϵ2

2
|∇φ|

2. (2)

eferring to [4], a hyperbolic tangent profile φ(x, t) = 0.5 +

.5 tanh
(
d(x, t)/(2

√
2ϵ)
)
is used in our phase field system, and we

define d(x, t) as the distance function, which is from the interface
to x. The delta function of Eq. (1) is defined as δ(φ) = |∇φ|

according to [34]. Based on the double-well potential functional
in Eq. (2) and the regularized Dirac delta function, Eq. (1) can be
derived as

κ = ∇

(
1

|∇φ|

)
· ∇φ +

∆φ

|∇φ|
= ∇

( √
2ϵ

φ(1 − φ)

)
· ∇φ +

∆φ

|∇φ|

= −

√
2ϵ(1 − 2φ)|∇φ|

2

φ2(1 − φ)2
+

∆φ

|∇φ|
= −

(1 − 2φ)
√
2ϵ

+

√
2ϵ∆φ

φ(1 − φ)

=

√
2

ϵφ(1 − φ)

(
−φ3

+
3
2
φ2

−
φ

2
+ ϵ2∆φ

)
=

1
(

−
F ′(φ)

2 +∆φ

)
(3a)
|∇φ| ϵ

4

λ =

∫
Ω
κδ(φ)dx

fΩδ(φ)dx
=

∫
Ω
κ|∇φ|dx∫

Ω
|∇φ|dx

=

√
2
∫
Ω

(
−F ′(φ) + ϵ2∆φ

)
dx

ϵ
∫
Ω
φ(1 − φ)dx

=
−

√
2
∫
Ω
F ′(φ)dx +

√
2ϵ2

∫
∂Ω

∂φ

∂n ds
ϵ
∫
Ω
φ(1 − φ)dx

=
−

√
2
∫
Ω
F ′(φ)dx

ϵ
∫
Ω
φ(1 − φ)dx

.

(3b)

Then, the modified Allen–Cahn can be rewritten as

φt = |∇φ|(κ(φ) − λ) = −
F ′(φ)
ϵ2

+∆φ − λ
φ(1 − φ)

√
2ϵ

. (4)

By constructing the free energy functional in the L2 space as

(φ) =

∫
Ω

(
F (φ)
ε2

+
|∇φ|

2

2
+ λ

g(φ)
√
2ϵ

)
dx+

∫
Ω

β

2
(ψ(x)−φ(x))2dx,

(5)

where g(φ) = φ2/2 − φ3/3, we can derive the system with a
constrained gradient flow as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ε2
+∆φ(x, t) − λ

φ(1 − φ)
√
2ϵ

+ β(ψ(x) − φ(x, t)), x ∈ Ω, t > 0

φ(x, 0) = ψ(x), x ∈ Ω,

∂φ(x, t)
∂n

= 0, x ∈ ∂Ω, t > 0,

(6)

Here, β is a positive constant, φ satisfies the Neumann bound-
ary conditions on ∂Ω , and n is the outward normal vector. As
mentioned in Section 2.1, ψ describes a merged structure from
two nearby TPMSs; it approximates but is not a minimal surface.
The obtained discrete function φ(x), which approaches the given
ψ(x), indicates that the curvature of each point on the surface is
equal to a constant. This system can ensure that the calculated
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esults, φ, remain as similar as possible to the original model, ψ .
he modified Allen–Cahn equation (6) ensures that total energy
(φ) in Eq. (5) decreases with time:

d
dt

E (φ) =

∫
Ω

(
F ′(φ)
ε2

φt + ∇φ · ∇φt + λ
g ′(φ)
√
2ϵ
φt

)
dx

− β

∫
Ω

(ψ − φ)φtdx

=

∫
Ω

(
F ′(φ(x, t))

ε2
−∆φ(x, t) + λ

φ(1 − φ)
√
2ϵ

− β(ψ(x) − φ(x, t))) φtdx = −

∫
Ω

φ2
t dx ≤ 0,

(7)

hich implies that the solution of Eq. (6) is stable. Observing the
odified equation, we find that function φ becomes a minimal
tructure in the equilibrium condition. The overall shape is similar
o the original ψ because of fidelity term β(ψ−φ). Therefore, the
tructure of the merged tiles can be modified as a minimal sur-
ace. In summary, the flowchart of the framework for improving
he merged volume is displayed in Fig. 5.

. Numerical solution

We employ a fast scheme with an operator splitting-based
ybrid numerical method to obtain an efficient scheme. Let Nx ×

y × Nz be the number of voxels in the computational domain,
here Nx, Ny, and Nz are even integers. Let xi = ihx, yj = jhy,

k = khz , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and 1 ≤ k ≤ Nz , where hx, hy,
nd hz are the uniform mesh sizes. Furthermore, we define φn

ijk
s an approximation of φ(xijk, n∆t), where xijk = (xi, yj, zk) and
∆t is the time step. Considering the original problem in Eq. (6),
we refer to our previous work [33] and divide it into a series of
simpler problems as

∂

∂t
φ1(x, t) = β(ψ(x) − φ1(x, t)), (n − 1)∆t < t ≤ n∆t, (8a)

∂

∂t
φ2(x, t) = ∆φ2(x, t) +

λφ1(1 − φ1)
√
2ϵ

, (n − 1)∆t < t ≤ n∆t,

(8b)

∂

∂t
φ3(x, t) = −

F ′(φ3)
ϵ2

, (n − 1)∆t < t ≤ n∆t. (8c)
5

Here, we use φ1, φ2, and φ3 to denote the solutions of Eqs. ((8)a),
((8)b) and ((8)c) as⎧⎪⎪⎨⎪⎪⎩
φ1(x, (n − 1)∆t) = φ(x, (n − 1)∆t),

φ2(x, (n − 1)∆t) = φ1(x, n∆t),

φ3(x, (n − 1)∆t) = φ2(x, n∆t).

(9)

he solution of Eq. (6) at time t = n∆t is φ(x, n∆t) = φ3(x, n∆t).
Eq. ((8)a) is an ordinary differential equation, i.e. βdt +

1
φ−ψ

dφ =

0. With initial condition φn
ijk, we obtain the following solution

after ∆t:

φ
1,n+1
ijk = e−β∆tφn

ijk + (1 − e−β∆t )ψijk. (10)

We demonstrate an implicit method based on the result of the
previous subproblem as

φ
2,n+1
ijk − φ

1,n+1
ijk

∆t
= ∆φ

2,n+1
ijk +

λφ
1,n+1
ijk (1 − φ

1,n+1
ijk )

√
2ϵ

, (11)

hich can be solved using a GPU-accelerated discrete cosine
ransform (DCT) solver. Based on Eq. (3b), λ is computed as

=
−

√
2
∑Nx

i=1
∑Ny

j=1
∑Nz

k=1 F
′(φ1,n+1

ijk )

ϵ
∑Nx

i=1
∑Ny

j=1
∑Nz

k=1 φ
1,n+1
ijk (1 − φ

1,n+1
ijk )

. (12)

Here, the homogeneous Neumann volume condition is applied.
We rewrite Eq. ((8)c) as

0 =
dt
ϵ2

+
dφ

F ′(φ)
=

dt
ϵ2

+
−2dφ
φ

+
4dφ

φ − 0.5
+

2dφ
1 − φ

, (13)

and then solve this as

φn+1
ijk = φ

3,n+1
ijk =

1
2

+
φ

2,n+1
ijk − 0.5√

e
−∆t
2ϵ2 + (2φ2,n+1

ijk − 1)2(1 − e
−∆t
2ϵ2 )

, (14)

ith initial condition φ2,n+1
ijk .

To confirm that the total energy is globally non-increasing,
we must prove that ϵ(φn+1) ≤ ϵ(φn). The proposed discrete
scheme is not unconditionally energy stable owing to nonlinear
term λφ(1 − φ)/(

√
2ϵ). However, the numerical tests in Sec-

tion 4.1 indicate that the numerical scheme is stable with an
appropriate time step. The proposed governing equation (6) can
be solved using other energy stable schemes, such as the con-
vex splitting temporal [35], operator splitting coupled with the
Fourier pseudo-spectral approximation [36], and backward differ-
entiation formula numerical schemes [37]. The energy stability
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line denotes the 0.5 level of the middle slice of the composite scaffold. From (a) to (e), the iterations are 1, 4, 8, 12, and 18, respectively.
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Fig. 7. Evolution of total energy of the proposed model for three time steps. It
should be noted that we have normalized the total energy by the energy at the
initial time.

and convergence analysis of the operator splitting method can
be found in [36,38]. There are also different numerical schemes
in Eq. (6), such as the energy stable SAV-type [39], high or-
der exponential time [40,41], and modified energy stable BDF2
schemes [42]. Compared to the aforementioned schemes, the
advantages of the proposed scheme are summarized as follows.
(i) The proposed numerical method for Eqs. (10), (11), and (14)
is easy to implement and can achieve fast convergence as the
algorithm consists of two analytical evaluations for the ordi-
nary differential equations and one implicit Poisson-type equa-
tion solver. (ii) For ordinary differential equations, their compu-
tational complexity is O(N), where N is the size of the mesh grid.
or the implicit Poisson-type equation solver, we apply a fast DCT
ethod with a computational complexity of O(N logN). (iii) The
roposed numerical scheme can be applied in a straightforward
anner to a GPU-accelerated DCT implementation, which can be
xecuted multiple times faster than CPU-only alternatives.

. Experimental tests

In this section, we focus on the continuous connection be-
ween different unit scaffolds in biological tissue and obtaining
6

superior mechanical properties of the structure. We will discuss
different types of scaffolds based on TPMSs. We stop the evolution
and regard the numerical results as the steady-state solution
when relative error ∥φn+1

− φn
∥2/∥φ

n
∥2 is less than a tolerance

tol. Unless otherwise stated, throughout this paper, we use h = 1,
∆t = 0.5, and ϵ = 1.

4.1. Evolution of our proposed algorithm

Fig. 6 displays the evolution of the proposed modified algo-
rithm. Here, we use a composite scaffold consisting of P-surface
and G-surface unit structures. In Fig. 6(a) to (e), the iterations
are 1, 4, 8, 12, and 18, respectively. The tolerance is tol = 1e−4.
Fidelity term parameter β is set to 0.3. As can be observed, the
surface of the composite structure becomes smooth under the
influence of the mean curvature flow. To illustrate the details, we
display the 0.5 level of the middle slice. The internal region is
gradually connected under the mean curvature flow.

To demonstrate the energy dissipation with the composite
structure, we plot the discrete total energy curves with three
different time steps: ∆t = 0.5, ∆t = 1, and ∆t = 5 in Fig. 7.
t should be noted that we have normalized the total energy by
he total energy at the initial time. As can be observed in Fig. 7,
he discrete total energy is non-increasing. The time step is less
han 1, i.e., ∆t ≤ 1. The discrete total energy curve is unstable
hen a larger time step is used. However, it is well known that

arge time steps can cause less accurate results, and smaller time
teps result in greater computational costs. Therefore, to maintain
he proposed scheme’s accuracy and reduce computational costs,
n appropriate value for ∆t is 0.5.
Fig. 8 displays the evolution of the average mean curvature. As

xpected for the mean curvature flow, the solid red line gradually
onverges to the dotted blue line after undulating, which means
hat the average mean curvature of the composite scaffold grad-
ally converges to a fixed value and implies that the surface of
he composite scaffold has constant mean curvature.
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Fig. 8. Evolution of the average mean curvature with iterative steps. The dotted
lue line represents the converged mean curvature.

.2. Scaffold with different sizes of TPMSs

There is a demand for merging scaffolds of different sizes in
n artificial tissue scheme [43]. In the artificial tissue model, the
oundary and the inner regions require different precision for
he scaffolds [14]. However, in the process of merging structures
f different sizes, problems such as disconnectedness and the
issatisfying properties of minimal surfaces become challenges
n the application of a composite scaffold for biological tissue
odels as indicated in the left subfigure in Fig. 9.
The right subfigure in Fig. 9 displays the composite scaffold

btained using the proposed method. For more internal details,
e selected eight consecutive slices of the connecting region in
he middle of the scaffold for display. From the gray figures, we
an observe the contrast changes in the composite scaffold. It
s important to note that the proposed method can effectively
esign a multi-scale tissue scaffold and maintain its internal
onnectivity.
To demonstrate that the designed composite scaffold can be

anufactured correctly using additive manufacturing techniques,
e manufactured a multi-scale P-surface scaffold, as shown in
ig. 10. It can be observed that the composite scaffold is suitable
or manufacturing, with acceptable stability and strong connec-
ivity. Furthermore, it can be printed without support structures.
n particular, this property of printing without support structures
s extremely important in the 3D printing of bio-related scaffolds.

To demonstrate the efficiency of the composite porous scaffold
btained using the proposed method, we computed the magni-
ude and distribution of the von Mises stress on a loading force
f 150 N using the finite element method. Here, the material
f the Schwarz P unit cells is assumed to be homogeneous,
sotropic, and linearly elastic poly-DL-lactide. Fig. 11(a) and (b)
how the magnitude and distribution of the von Mises stress on
he modified and original scaffolds, respectively. The simulation
esults confirm that the stresses on the modified scaffold are
ore smoothly distributed than those on the original scaffold.
hese results imply that the modified scaffold structure is more
table than the original.
7

4.3. Scaffold with different porosities of TPMS

For cell growth and the adhesion of biological tissue, scaffolds
should have many pores. The highly porous structure should have
a large surface area for cell growth and sufficient volume for
blood vessel growth [43–45]. In addition, the size of the pores
and specification of the porosity influence the mechanical stabil-
ity [46]. In the field of tissue engineering, porous scaffolds with
non-uniform properties are desired. Salgado et al. [47] proposed
that the bone tissue varies spatially in terms of structure and
composition, and different bone tissues have different charac-
teristics to address the different requirements. Structures with
acceptable performance for tissue or cell culturing make a signif-
icant difference in tissue engineering [48]. Hence, tissue scaffolds
that have property gradients such as porosity and permeability
are desirable. With the proposed method, continuous variation
between the TPMS unit scaffolds with different porosities can be
easily generated, as shown in Fig. 12. Here, β = 0.5 and tol =

e−4 are used. To better demonstrate the superiority of the pro-
osed algorithm better, we combined eight P-surface structures
ith different porosities in the composite scaffold. In addition, we
emonstrate the composite structures from different perspective,
nd slice the scaffold uniformly along the z-direction, as shown
n the top row of Fig. 12. As can be seen, the proposed method
an achieve continuous transition between the unit structures
nd retain the main characteristics of the TPMS. Furthermore,
he developed program successfully generated defect-free human
one scaffolds for TPMS-based unit cell libraries. For example,
e used P-surface unit scaffolds to design the skeleton model

nternally, as shown in Fig. 1. With this method, the internal
egions of the scaffold are properly combined with the given
hapes of the bone models in a conforming manner by the signed
istance field with the arbitrarily shaped bone models. Observing
he numerical results, the proposed method can effectively design
ifferent porous scaffolds with high-quality external anatomical
one surfaces.

.4. Parameter sensitivity analysis

We conducted a parameter sensitivity analysis for model pa-
ameters tol and β . The last term in Eq. (6) is the fidelity term
o ensure that φ remains close to ψ . Parameter β balances the
idelity term and motion by mean curvature flow, which means
hat it can control the convergent mean curvature of the struc-
ure. As can be seen in Fig. 13, different β values can lead to
ifferent results. From Fig. 13(a) to (d), we choose β as 0.01,
.1, 1, and 10, respectively, leading to mean curvatures of 0.022,
0.012, −0.05, and −0.032, respectively. To demonstrate the

nfluence of β further, we plotted 0.5 contour lines in Fig. 13(e).
Fig. 9. Composite structure with the D-surface. The size of the structure above is twice that of the structure below. The grayscale images are eight slices at the
connection area of the composite structure.
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Table 2
Effect of tol values.
Tolerance Iteration Average mean curvature CPU time (s)

1e−1 1 −0.024 0.73
1e−4 15 −0.038 9.98
1e−8 53 −0.038 36.52

Here, the red, green, blue, and magenta colors represent isolines
with β values of 0.01, 0.1, 1, and 10, respectively. From the close-
p view, we can see that the surface of the composite scaffold
s smoother with smaller values of β . Therefore, considering
lgorithm efficiency, we suggest using 0.1 ≤ β ≤ 1.
Eq. (6) ensures that the total energy, E(φ), decreases with

espect to time, which implies that the solution of the proposed
ethod is stable. Therefore, we can stop the evolution and as-
ume that the computational result is a steady-state solution
hen relative error ∥φn+1

− φn
∥2/∥φ

n
∥2 is less than tolerance

ol. Here, we choose tol = 1e−1, tol = 1e−4, and tol = 1e−8. As
hown in Fig. 14, the volume obtained using tol = 1e−8 appears
o be marginally smoother than that using tol = 1e−4. Observing
 a

8

he results in Table 2, a smaller tol requires considerably more
terations to achieve a relative error for the numerical solution
hat is less than the given tol. An acceptable stopping condition
s important for the efficiency of the proposed partial differential
quation-based method. In this paper, we suggest using tol =

e−4.

.5. Design of a porous scaffold with a simple external shape

In this section, we use the distance field method for Boolean
perations between the composite scaffold and external surface.
et us define φs and φcs as the implicit functions of the external
urface and composite scaffold, respectively. Boolean operations
uch as union, subtraction, and intersection can be defined as
ollows:
φs ∪ φcs = max (φs, φcs) (union)
φs − φcs = min (φs,−φcs) (subtraction)
φs ∩ φcs = min (φs, φcs) (intersection)

sing these methods, we can avoid the time-consuming trimming
nd re-meshing operations. To illustrate this method further, we



Y. Li, Q. Xia, S. Yoon et al. Computer Physics Communications 264 (2021) 107956
Fig. 12. Combination of multi-porosity P-surface. The top row presents the internal slices along the z-direction. The bottom row shows the three directional views.
Fig. 13. Parameter sensitivity analysis for β in fidelity term. The complex scaffold is composed of a P-surface and I-WP-surface unit structures. From (a) to (d), β is
0.01, 0.1, 1, and 10, respectively. Stop condition tol is the same for the four results as in 1e−4. (e) 0.5 contour lines of slices from (a) to (d). Red, green, blue, and
magenta represent lines with β of 0.01, 0.1, 1, and 10, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
demonstrate a cylinder composed of a multi-scale P-surface as
shown in Fig. 15. Fig. 15(a) shows a porous scaffold with a unit
9

P-surface with the same scale, where the solid red line is the unit
circle. Then, we replace the original scaffold with the P-surface
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Fig. 14. Parameter sensitivity analysis for stop condition tol. The top row is the 3D scaffold surface. The bottom row is the 0.5 contour of the middle slice. From
a) to (c), tolerance tol = 1e−1, 1e−4 and 1e−8, respectively. β is fixed at 0.5.
Fig. 15. Hollow cylinder composite scaffold with a multi-scale P-surface micro-structure. The top and bottom rows represent the simulation results of a composite
caffold in the 2D and 3D domains, respectively. (d) and (f) are the portrait and landscape closer view of (e), respectively.
f a scale that is twice as large in a circle of 0.8, as displayed in
ig. 15(b). It can be observed that there is no acceptable transition
r connection between the structures of different scales. With the
roposed method, the multi-scale composite scaffold becomes
trongly connected, as shown in Fig. 15(c). In the 3D space,
e used the cylinder surface and composite scaffold to perform
he Boolean operation, as shown in Fig. 15(e). Fig. 15(d) and (f)
re portrait and landscape closer views of (e), respectively. It is
mportant to note that the proposed method can be effectively
ombined with the signed distance field to construct a composite
caffold with a complex anatomical external shape.

.6. Application of composite scaffolds

To verify the efficiency of the proposed method in design-
ng an actual bone model, we implement subarea fabrication
10
with different unit sizes and porosities. Fig. 16(a) shows a seg-
mented human bone from a CT image. Fig. 16(b) shows the
fabricated scaffold with non-uniform G-surface units. Fig. 16(c)
is a closer view of Fig. 16(b). The proposed method can achieve a
hierarchical design for tissue engineering.

The signed distance field is used to fabricate the bone tissue
with P surface unit successfully. Fig. 17 shows a visualization
of the resulting scaffold. For improved visualization, we show
the brittle part of the bone. Fig. 17(a) shows the three level
contours of the signed distance function. We fabricated a scaffold
with different porosities with P structure units in the areas of
different colors, as indicated in Fig. 17(b). The blue, cyan, and
red colors represent structures with porosities of 50%, 70%, and
90%, respectively. It is clear that the pore size of the scaffold close
to the boundary is considerably smaller than that at the middle,
where the gradient changes in pore size and porosity are distinct.
Comparing this result with the conventionally designed porous
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Fig. 16. (a) Segmented human bone from a CT image. (b) Adaptive fabricated scaffold with non-uniform G-surface units. (c) Closer view of (b).
Fig. 17. Scaffold fabrication with variable porosity in the head of the arm bone. (a) Divided regions for different porosities. (b) Designed scaffold with multi-porosity.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
scaffold, we can observe that the proposed method decreases
the porosity naturally from the middle of the bone structure
downwards. This non-uniform distribution in porosity and pore
size can change the permeability and stiffness to adapt to actual
demands.

5. Conclusion

The main objective of this study was to design composite
orous scaffolds for tissue engineering. First, we proposed a novel
erging algorithm for composite porous scaffolds using a unit
PMS and an implicit function framework. To the best of our
nowledge, this is the first attempt to design multi-scale compos-
te porous scaffolds using the finite difference method. Then, we
ptimized the designed composite scaffolds based on an Allen–
ahn type equation to satisfy the properties of the TPMSs. Based
n the operator splitting method, the proposed algorithm consists
f two analytical evaluations for the ordinary differential equa-
ions and one implicit Poisson-type equation solver. The proposed
umerical scheme can straightforwardly be applied to a GPU-
ccelerated DCT implementation, which can be executed multiple
imes faster than CPU-only alternatives. The optimized scaffold
as a smooth surface, where the mean curvature of each point is
onstant owing to the motion by mean curvature flow. Several
umerical examples were presented to demonstrate that the
roposed method is robust and produces multi-scale composite
caffolds with superior performance.
11
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Y.B. Li is supported by National Natural Science Foundation
of China (No. 11871056, No.11771348). B.H. Lu are supported
by Shaanxi Provincial Science and Technology Planning Project
(2017KTZD6-01) and Dongguan University of Technology High-
level Talents (Innovation Team) Research Project (KCYCXPT-
2016003). C. Lee expresses thanks for the support from the
BK21 FOUR program. The corresponding author (J.S. Kim) was
supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry
of Education (NRF-2016R1D1A1B03933243). The authors would
like to thank the reviewers for their constructive and helpful
comments regarding the revision of this article.

References

[1] D.W. Hutmacher, Biomaterials 21 (2000) 2529–2543.
[2] J. Feng, J. Fu, C. Shang, Z. Lin, B. Li, Comput. Methods Appl. Mech. Engrg.

336 (2018) 333–352.
[3] Y. Wang, Comput. Aided Des. 39 (2007) 179–189.
[4] S.D. Yang, H.G. Lee, J. Kim, Commun. Comput. Phys. 181 (2010) 1037–1046.
[5] T.S. Huang, M.N. Rahaman, N.D. Doiphode, M.C. Leu, B.S. Bal, D.E. Day, X.
Liu, Mater. Sci. Eng. C 31 (2011) 1482–1489.

http://refhub.elsevier.com/S0010-4655(21)00076-X/sb1
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb2
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb2
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb2
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb3
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb4
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb5
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb5
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb5


Y. Li, Q. Xia, S. Yoon et al. Computer Physics Communications 264 (2021) 107956
[6] X.Y. Kou, S.T. Tan, Comput. Aided Des. 42 (2010) 930–941.
[7] P. Geoffroy-Donders, G. Allaire, O. Pantz, J. Comput. Phys. 401 (2020)

108994.
[8] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Int. J. Adv. Manuf. Technol.

21 (2003) 291–301.
[9] M.W. Naing, C.K. Chua, K.F. Leong, Y. Wang, Rapid Prototyping J. 11 (2005)

249–259.
[10] D. Puppi, C. Mota, M. Gazzarri, D. Dinucci, A. Gloria, M. Myrzabekova, L.

Ambrosio, F. Chiellini, Biomed. Microdevices. 14 (6) (2012) 1115–1127.
[11] S.J. Hollister, R.A. Levy, T.M. Chu, J.W. Halloran, S.E. Feinberg, Int. J. Oral

Maxillofac. Surg. 29 (2000) 67–71.
[12] Y.M. Xie, G.P. Steven, Basic Evolutionary Structural Optimization, Springer,

1997.
[13] J.A. Sanz-Herrera, J.M. Garc1́a-Aznar, M. Doblaré, Comput. Methods Appl.

Mech. Engrg. 197 (2008) 3092–3107.
[14] S. Rajagopalan, R.A. Robb, Med. Image Anal. 10 (2006) 693–712.
[15] S. Gómez, M.D. Vlad, J. López, E. Fernández, Acta Biomater. 42 (2016)

341–350.
[16] F. Liu, Z. Mao, P. Zhang, D.Z. Zhang, J. Jiang, Z. Ma, Mater. Des. 160 (2018)

849–860.
[17] D.W. Abueidda, M. Bakir, Rashid K. Abu Al-Rub, J.S. Bergstrom, N.A. Sobh,

I. Jasiuk, Mater. Des. 122 (2017) 255–267.
[18] J.R. Jones, G. Poologasundarampillai, R.C. Atwood, D. Bernard, P.D. Lee,

Biomaterials 28 (2007) 1404–1413.
[19] A.L. Olivares, E. Marsal, J.A. Planell, D. Lacroix, Biomaterials 30 (2009)

6142–6149.
[20] Y. He, Y. Zhou, Z. Liu, K.M. Liew, Mater. Des. 132 (2017) 375–384.
[21] O. Al-Ketan, R.K.A. Al-Rub, Adv. Eng. Mater. 21 (2019) 1900524.
[22] L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, W.F. Lu, Addit.

Manuf. 23 (2018) 505–515.
[23] F.P.W. Melchels, A.M.C. Barradas, C.A.V. Blitterswijk, J.D. Boer, J. Feijen, D.W.

Grijpma, Acta. Biomater. 6 (2010) 4208–4217.
[24] D.J. Yoo, Int. J. Precis. Eng. Man. 12 (2011) 61–71.
[25] D.J. Yoo, Biomaterials 32 (2010) 7741–7754.
12
[26] N. Yang, Z. Quan, D. Zhang, Y. Tian, Comput. Aided Des. 56 (2014) 11–21.
[27] S.J. Hollister, C.Y. Lin, Comput. Methods Appl. Mech. Engrg. 196 (2007)

2991–2998.
[28] S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, G.E. Schröder-Turk, Biomaterials

32 (2011) 6875–6882.
[29] J.K. Guest, J.H. Prévostb, Comput. Methods Appl. Mech. Engrg. 196 (2007)

1006–1017.
[30] X.C. Ye, X.C. Lin, J.Y. Xiong, H.H. Wu, G.W. Zhao, D. Fang, Mater. Res.

Express. 6 (2019) 125609.
[31] Y. Jung, K.T. Chu, S. Torquato, J. Comput. Phys. 223 (2007) 711–730.
[32] Y. Li, S. Guo, Appl. Math. Comput. 295 (2017) 84–94.
[33] Y. Li, S. Lan, X. Liu, B. Lu, L. Wang, Pattern Recognit. 107 (2020) 107478.
[34] H.G. Lee, J. Kim, Internat. J. Numer. Methods Engrg. 91 (2012) 269–288.
[35] J. Shen, C. Wang, X. Wang, S.M. Wise, SIAM J. Numer. Anal. 50 (2012)

105–125.
[36] C. Zhang, H. Wang, J. Huang, C. Wang, X. Yue, Appl. Numer. Math. 119

(2017) 179–193.
[37] Y. Yan, W. Chen, C. Wang, S.M. Wise, Commun. Comput. Phys. 23 (2018)

572–602.
[38] X. Li, Z. Qiao, H. Zhang, SIAM J. Numer. Anal. 55 (2017) 265–285.
[39] C. Zhang, J. Ouyang, C. Wang, S.M. Wise, J. Comput. Phys. 423 (2020)

109772.
[40] K. Cheng, Z. Qiao, C. Wang, J. Sci. Comput. 81 (2019) 154–185.
[41] Y. Li, H.G. Lee, B. Xia, J. Kim, Comput. Phys. Commun. 200 (2016) 108–116.
[42] W. Chen, C. Wang, S. Wang, X. Wang, S.M. Wise, J. Sci. Comput. 84 (2020)

27.
[43] X.H. Liu, P.X. Ma, Ann. Biomed. Eng. 32 (2004) 477–486.
[44] S.J. Hollister, Nature Mater. 4 (2005) 518–524.
[45] Z. Dong, Y. Li, Q. Zou, Appl. Surf. Sci. 255 (2009) 6087–6091.
[46] F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma, S. Wang,

Biomaterials 25 (2004) 1891–1900.
[47] A.J. Salgado, O.P. Cotinho, R.L. Reis, Macromol. Biosci. 4 (2004) 743–765.
[48] I. Martin, S. Miot, A. Barbero, M. Jakob, D. Wendt, J. Biomech. 4 (2007)

750–765.

http://refhub.elsevier.com/S0010-4655(21)00076-X/sb6
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb7
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb7
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb7
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb8
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb8
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb8
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb9
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb9
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb9
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb10
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb10
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb10
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb11
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb11
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb11
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb12
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb12
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb12
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb13
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb13
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb13
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb14
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb15
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb15
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb15
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb16
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb16
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb16
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb17
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb17
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb17
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb18
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb18
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb18
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb19
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb19
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb19
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb20
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb21
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb22
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb22
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb22
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb23
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb23
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb23
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb24
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb25
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb26
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb27
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb27
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb27
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb28
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb28
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb28
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb29
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb29
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb29
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb30
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb30
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb30
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb31
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb32
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb33
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb34
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb35
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb35
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb35
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb36
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb36
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb36
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb37
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb37
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb37
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb38
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb39
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb39
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb39
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb40
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb41
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb42
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb42
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb42
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb43
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb44
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb45
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb46
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb46
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb46
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb47
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb48
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb48
http://refhub.elsevier.com/S0010-4655(21)00076-X/sb48

	Simple and efficient volume merging method for triply periodic minimal structures
	Introduction
	Description of the proposed method
	Design of a composite structure with TPMS
	Modification methodology for TPMS structures

	Numerical solution
	Experimental tests
	Evolution of our proposed algorithm
	Scaffold with different sizes of TPMSs
	Scaffold with different porosities of TPMS 
	Parameter sensitivity analysis
	Design of a porous scaffold with a simple external shape
	Application of composite scaffolds

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


