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In this paper, we present a simple and accurate adaptive time-stepping algorithm for the Allen–Cahn (AC) equation. The AC
equation is a nonlinear partial differential equation, which was first proposed by Allen and Cahn for antiphase boundary
motion and antiphase domain coarsening. The mathematical equation is a building block for modelling many interesting
interfacial phenomena such as dendritic crystal growth, multiphase fluid flows, and motion by mean curvature. The proposed
adaptive time-stepping algorithm is based on the Runge–Kutta–Fehlberg method, where the local truncation error is estimated
by using fourth- and fifth-order numerical schemes. Computational experiments demonstrate that the proposed time-stepping
technique is efficient in multiscale computations, i.e., both the fast and slow dynamics.

1. Introduction

We present a simple and accurate adaptive time-stepping
algorithm for the Allen–Cahn (AC) equation [1–3]:

∂ϕ x, tð Þ
∂t

= −
F ′ ϕ x, tð Þð Þ

ϵ2
+ Δϕ x, tð Þ, x ∈Ω, t > 0, ð1Þ

where Ω ⊂ℝd ðd = 1,2,3Þ is a bounded domain, ϕðx, tÞ is a
compositional field, FðϕÞ = 0:25ðϕ2 − 1Þ2, and ϵ is a positive
constant. The AC equation can be derived as the L2-gradient
flow of the following Ginzburg–Landau energy functional:

E ϕð Þ =
ð
Ω

F ϕð Þ
ϵ2

+ 1
2 ∇ϕj j2

� �
dx: ð2Þ

The AC equation was first proposed by Allen and Cahn,
which was introduced as a phenomenological model for anti-
phase domain coarsening in a binary alloy. The AC equation

and its various modified equations are used to deal with a wide
range of problems, such as its phase transition [1], motion by
mean curvature [4, 5], image study [6, 7], two-phase fluid
flows [8], and crystal growth [9, 10]. To understand the
dynamics of the AC equation and apply it to model scientific
phenomena, it is essential to develop effective and accurate
numerical methods for the AC equation. In general, if we
use a small uniform time step, then the fast dynamics can be
accurately captured. However, the computational cost is high.
On the other hand, if we use a large time step, then we can save
the computational cost with less accurate numerical results.

Therefore, an adaptive time-stepping technique is
needed in numerical simulations of the AC equation because
it has multiple time scales. There are several studies on time
stepping [11, 12]. In [13], the author presented the high-
order time-adaptive method for solving the AC equation
and showed the computational superiority that traditional
methods do not have in solving the equation. Guillén-
González and Tierra [14] developed an adaptive time-
stepping technique based on a residual of the discrete energy
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law at each time step. Its fastness and efficiency were con-
firmed through various numerical experiments. Fu and Yang
[15] presented an example of using adaptive time stepping to
show unconditional energy stability. Fast and efficient com-
puting results are slightly different from the result using one
small time step. Karasözen et al. [16] studied the numerical
solutions of the AC equation with constant or degenerate
mobility and polynomial or logarithmic free energy func-
tion. To reduce computational time, an adaptive time step
size method was applied, which is based on a local error esti-
mator. They used the backward Euler method and the
second-order average vector field (AVF) method to compute
the local error estimator. Liao et al. [17] presented a second-
order backward differentiation formula (BDF2) with a vari-
able time step for the AC equation. In [18], the author
obtained a solution for the time-dependent AC equation
on surfaces using an explicit time splitting scheme. An adap-
tive finite element method (FEM) for the AC equation was
developed in [19], which is based on a second-order accurate
unconditionally stable FEM and a superconvergent cluster
recovery- (SCR-) based error estimation. To show the effec-
tiveness and robustness of their proposed method, various
numerical tests were carried out. In [20, 21], the implicit
integration factor (IIF) type methods were employed to
numerically solve the space-fractional reaction-diffusion
equations including the AC equation. Zhu [22] developed
stable and effective exponential Runge–Kutta methods for
parabolic equations such as the AC equation, which is easy
to adopt the adaptive time step technique.

The adaptive time-stepping strategy has also been applied
to the modified AC equations. Fast explicit operator splitting
spectral method was presented with a new adaptive time-
stepping algorithm to solve the fractional nonlocal AC equa-
tion [23]. The fractional-in-space phase-field models were
addressed including the AC equation in [24], applying the
implicit-explicit (IMEX) methods as temporal discretization.
With the adaptive time-stepping algorithm based on the dif-
ference between the first-order and second-order IMEX
methods, they reduced the computational costs. Recently, the
adaptive time-stepping strategy was also applied to the
second-order maximum principle preserving scheme and
was proposed to solve the time-fractional AC equations in
[25]. In particular, the strategy is chosen to capture the early
rapid changes in the performance of long-term simulations.
In [26], thanks to these advantages, the adaptive time-
stepping strategy was adopted considering two fast L1 time-
stepping methods for the time-fractional AC equation. More-
over, the authors [27] proposed a variable time step BDF2
scheme for the fractional AC equation, which is energy stable
and preserves maximum bound. Therefore, it is proved that
the adaptive time-stepping algorithm is useful when we con-
sider the local or nonlocal AC equations. In addition, there
are many existing works on the adaptive time stepping for a
variety of local and nonlocal phase-field models: the Cahn–
Hilliard equation [28], molecular beam epitaxy (MBE) model
[29, 30], phase-field crystal model [31], and so on.

The main purpose of the paper is to propose a simple
and accurate adaptive time-stepping algorithm for the AC
equation. Our proposed algorithm is based on the Runge–

Kutta–Fehlberg (RKF) method [32], where the fourth- and
fifth-order numerical schemes are used for the local trunca-
tion error estimation.

The contents of this paper are summarized as follows. In
Section 2, the proposed numerical solution algorithm is pre-
sented. In Section 3, numerical results using the proposed
method are shown. Conclusions are made in Section 4.

2. Numerical Solution

For simplicity of notation, we rewrite Equation (1) as

ϕt = AC ϕð Þ, ð3Þ

where ACðϕÞ = −F ′ðϕÞ/ϵ2 + Δϕ. In this section, we describe
the AC equation in a three-dimensional domain Ω = ðLx, RxÞ
× ðLy, RyÞ × ðLz , RzÞ. Let us discretize the domainΩ by a reg-
ular Cartesian grid Ωh with spatial step h = ðRx − LxÞ/Nx = ð
Ry − LyÞ/Ny = ðRz − LzÞ/Nz, where Nx, Ny, and Nz are posi-
tive integers. That is, Ωh = fðxi, yj, zkÞ jxi = Lx + ði − 0:5Þh, yj
= Ly + ðj − 0:5Þh, zk = Lz + ðk − 0:5Þh, i = 1,⋯,Nx, j = 1,⋯,
Ny , k = 1,⋯,Nzg. Let ϕnijk be the approximation of ϕðxi, yj,
zk, nΔtÞ, where Δt = T/Nt is a time step, T is the final time,
Nt is the total number of time steps, and n is a nonnegative
integer. We define the discrete maximum norm as

ϕj j∞ = max
1≤i≤Nx1≤j≤Ny1≤k≤Nz

ϕijk

��� ���:
ð4Þ

To solve Equation (3), we adopt an explicit RKF method.
Due to the explicit scheme, the linear term Δϕðx, tÞ in the
AC Equation (1) restricts the time step for stability of the
numerical solution as Δt < 0:5h2/d, where d = 1,2,3 is spatial
dimension. However, the time step restriction is not severe
in the case of the second-order partial differential equations,
and sufficiently small time steps should be taken for numerical
solutions with higher accuracy [33, 34]. Therefore, we take Δ
tmax = 0:49h2/d as the maximum time step size. Let AChðϕnijk
Þ = −F ′ðϕnijkÞ/ϵ2 + Δhϕ

n
ijk be the discrete AC operator, where

Δhϕ
n
ijk = ðϕni−1,jk + ϕni+1,jk + ϕni,j−1,k + ϕni,j+1,k + ϕnij,k+1 + ϕnij,k−1 − 6

ϕnijkÞ/h2. Here, the homogeneous Neumann boundary condi-
tion [35] is used. Given final time T, tolerance tol, current time
t, time step Δt, and numerical solution φn

ijk at t, the RKF
method is as follows. The computation for the numerical solu-
tion is repeated for i = 1,⋯,Nx , j = 1,⋯,Ny, and k = 1,⋯,
Nz . Let us define the coefficient equations:

k1 = ΔtACh ϕnijk

� �
,

k2 = ΔtACh ϕnijk +
1
4 k1

� �
,

k3 = ΔtACh ϕnijk +
3
32 k1 +

9
32 k2

� �
,

2 Journal of Function Spaces



k4 = ΔtACh ϕnijk +
1932
2197 k1 −

7200
2197 k2 +

7296
2197 k3

� �
,

k5 = ΔtACh ϕnijk +
439
216 k1 − 8k2 +

3680
513 k3 −

845
4104 k4

� �
,

k6 = ΔtACh ϕnijk −
8
27 k1 + 2k2 −

3544
2565 k3 +

1859
4104 k4 −

11
40 k5

� �
:

ð5Þ

Let

R = 1
Δt

1
360 k1 −

128
4275 k3 −

2197
75240 k4 +

1
50 k5 +

2
55 k6

� �
ð6Þ

be an approximation for the local truncation error of the RKF
method. The detailed explanation of the coefficient calcula-

tion, i.e., k1,⋯, k6, and the local truncation error given by
Equation (6) can be found in [36].

If jRj∞ ≤ tol, then set t = t + Δt and

ϕn+1ijk = ϕnijk +
25
216 k1 +

1408
2565 k3 +

2197
4104 k4 −

1
5 k5: ð7Þ

Otherwise, i.e., jRj∞ > tol, then we do not update time t
and repeat the computation using a new time step. To bound
truncation error produced by applying the nth-order
method with a new time step size δΔt by tol, we choose q
so that δnjRj∞ ≤ tol [36], that is,

δ ≤
tol
Rj j∞

� �1/n
: ð8Þ
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Figure 1: Given a circle (8), temporal evolution of (a) the zero level contour and (b, c) its radius RðtÞ with different grid sizes and ϵ values,
respectively.
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Figure 2: Given a sphere (9), (a)–(c) are the temporal evolution of the sphere and (d, e) are the changes in its radius according to different
grid sizes and ϵ values, respectively.
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Then, we can take δ satisfying (8) with n = 4 as follows:

δ = 0:84 tol
Rj j∞

� �1/4
≤

tol
2 Rj j∞

� �1/4
: ð9Þ

Next, we set a new time step as follows:

Δt =
0:1Δt if δ < 0:1,
δΔt if 0:1 ≤ δ ≤ 4,
4Δt if δ > 4:

8>><
>>: ð10Þ

Finally, we set Δt =min ðΔt, ΔtmaxÞ, and if t + Δt > T ,
then set Δt = t + Δt − T .

3. Numerical Results

In this section, numerical experiments in two- and three-
dimensional (2D and 3D) spaces are performed to confirm
the basic properties of the AC equation and to investigate
the effect of the adaptive time-stepping technique.

3.1. Shrinking Circle and Sphere. As ϵ⟶ 0, the zero level set
of ϕmoves according to motion by mean curvature [5]. Given
a circle in 2D space and a sphere in 3D space, we observe that
their radii decrease over time. First, we consider a circle with
the initial radiusR0. The radiusRðtÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 − 2t

p
is the analytic

solution at time t [33]. The initial condition is given as

ϕ x, y, 0ð Þ = tanh R0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
ffiffiffi
2

p
ϵ

 !
, ð11Þ

on the computational domain Ω = ð−1, 1Þ × ð−1, 1Þ with Nx

×Ny mesh. The space step size h = 2/Nx, tol = 1:0e-5, and an
initial radius R0 = 0:7 are used. We consider the effects of grid
sizes and ϵ on the dynamics of the AC equation. Figure 1(a)
shows the zero level contours with Nx =Ny = 100 and ϵ =
0:05. Here, the arrow indicates the direction of temporal evolu-
tion. Figure 1(b) shows the temporal evolution of the radius
RðtÞ with different grid sizes up to time t = 0:245h2. Here, ϵ
= 0:05 is fixed. As the number of grid points increases, we
can observe the convergence of the numerical solutions to

(a) (b)

(c) (d)

Figure 3: (a–d) Snapshots of the temporal evolution of an initially square shape with ϵ =
ffiffiffiffiffiffiffiffiffi
0:02

p
in square domain ð−5, 5Þ × ð−5, 5Þ at time

t = 0, 0:2, 0:3, and 0:5, respectively.
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the analytic solution RðtÞ. Figure 1(c) shows the temporal evo-
lution with different values of ϵ. Here, Nx =Ny = 100 are used
and the final time is 0:245. As shown in Figure 1(c), too small
and too large values of ϵ decreases and increases the evolution
of the interface, respectively. This is because the numerical
spatial resolution is too low and the curvature is too large to
capture the detailed structure compared to ϵ.

We conduct the similar simulation with a sphere in 3D
space. Let R0 be the initial radius of the sphere, then the
radius RðtÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 − 4t

p
is the analytic solution at time t

[33]. The initial condition is given as

ϕ x, y, z, 0ð Þ = tanh R0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
ffiffiffi
2

p
ϵ

 !
, ð12Þ

on the computational domain Ω = ð−1, 1Þ × ð−1, 1Þ × ð−1, 1Þ
with Nx ×Ny ×Nz mesh. The space step size h = 2/Nx, tol
= 1:0e-5, and the initial radius R0 = 0:7 are used.
Figures 2(a)–2(c) show the temporal evolution of sphere

with Nx =Ny =Nz = 75 and ϵ = 0:05. Figure 2(d) represents
the effect of grid size. Here, ϵ value is fixed to 0:05. It is
observed that the larger grid size, the closer the numerical
solution is to the analytic solution. Figure 2(e) illustrates
the effect of ϵ value on the dynamics of the AC equation.
Here, Nx =Ny =Nz = 75 are used, and the numerical solu-
tion with ϵ = 0:05 agrees well with the analytic solution.

3.2. Comparison with Previous Results. In this section, we
compare our numerical results with previous studies for
the AC equation [37]. We consider a square shape as an ini-
tial condition,

ϕ x, y, 0ð Þ =
+1,−2 ≤ x ≤ 2 and − 2 ≤ y ≤ 2,
−1, otherwise,

(
ð13Þ

on 2D domain Ω = ð−5, 5Þ × ð−5, 5Þ with ϵ =
ffiffiffiffiffiffiffiffiffi
0:02

p
and

homogeneous Neumann boundary conditions on the bound-
aries of domain ∂Ω. Figure 3 shows snapshots in 2D with
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Tol = 1.0e-4
Tol = 1.0e-7

Figure 5: Initial condition (dotted line); and the numerical results with tol = 1:0e-1, 1:0e-4, and 1:0e-7 with the exact solution (solid line) at
time t = 0:2.
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square shape as initial condition (13) at time t = 0, 0:2, 0:3,
and 0:5 from left to right. The initial square shape transforms
into a circular shape over time under the effect of the AC equa-
tion dynamics. Then, we compute the shrinking area of ϕ due
to the motion by mean curvature and compare it with the the-
oretical area using the solution at a reference time tref = 0:1.
We can find theoretical area using analytic solution [33]. We
obtain reference areaAref and reference radius Rref at t = tref as

Aref = 〠
Nx

i=1
〠
Ny

j=1

1 + ϕtrefij

2 ,

Rref =
ffiffiffiffiffiffiffiffi
Aref
π

r
:

ð14Þ

Using RðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
ref − 2ðt − tref Þ

p
, we obtain theoretical

area as πR2ðtÞ. Figure 4 compares the theoretical area with

numerical one. From the computational results as shown in
Figures 3 and 4, our test results are accurate and consistent
with the results from the reference test [37].

3.3. Traveling Wave Solutions. Let us consider traveling wave
solutions of Equation (1) with an initial condition

ϕ x, y, 0ð Þ = 1
2 1 − tanh x

2
ffiffiffi
2

p
ϵ

� �
, ð15Þ

on 2D domain Ω = ð−1, 9Þ × ð−0:01,0:01Þ. Then, its closed-
form solution on the infinite domain is

ϕ x, y, tð Þ = 1
2 1 − tanh x − st

2
ffiffiffi
2

p
ϵ

� �
, ð16Þ
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Figure 6: Temporal evolution with the initial states (14): (a) zero level contour of ϕðx, y, tÞ with tol = 1:0e-7 and (b–d) the changes in the
time step size Δt, the discrete total energy EhðtÞ with different tol values, and the maximum and the minimum of ϕ.
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where s = 3/ð ffiffiffi
2

p
ϵÞ is the speed of the traveling wave [38].

Figure 5 shows the initial condition (dotted line); and the
computational results with tol = 1:0e-1, 1:0e-4, and 1:0e-7
with the exact solution at time t = 0:2. Here, Nx = 1000, Ny

= 2, and ϵ = 0:06 are used. In this case of the traveling wave
solution, the results are almost independent of the tolerance
values because it has simple unique time scale.

3.4. Effect of tol. Let us consider the effect of tol on the size of
the time step. The initial conditions are

ϕ x, y, 0ð Þ =
1, if xj j < 0:8 and yj j < 0:8,
−1, otherwise,

(
ð17Þ

on the domain Ω = ð−1, 1Þ × ð−1, 1Þ. We use Nx =Ny =Nz

= 100, h = 2/Nx, and ϵ = 0:05. Figure 6(a) shows the tempo-
ral evolution of the zero level contours of ϕðx, y, tÞ with tol

= 1:0e-7. Numerical tests are conducted to observe the
changes in the time step Δt over time t as shown in
Figure 6(b) according to the different tolerance values tol.
When a relative large tolerance is used, the time step is Δt
= Δtmax except the early times where there are sharp cor-
ners. However, when a small tolerance is used, the time step
varies adaptively. It takes small time steps at not only the
early times but also the later times with large curvature of
interface. Figure 6(d) shows the temporal evolution of the
discrete total energy EhðtÞ with different tolerance values.
We can confirm the total energies decrease for all cases.
Here, the discrete total energy is defined as

Eh tð Þ = 〠
Nx

i=1
〠
Ny

j=1

F ϕtij

� �
ϵ2

+ 1
2

ϕti+1,j − ϕtij
h

 !2

+ 1
2

ϕti,j+1 − ϕtij
h

 !22
4

3
5h2,
ð18Þ
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Figure 7: Temporal evolution with the initial states (16): (a) zero level contour of ϕðx, y, tÞ with tol = 1:0e-7; (b–d) the changes in the time
step size Δt, the discrete total energy EhðtÞ, and the maximum and the minimum of ϕ with different tol values.
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three different tol.

9Journal of Function Spaces



where ϕtij = ϕðxi, yj, tÞ and we have used the homogeneous
Neumann boundary condition. In Figure 6(d), the maxi-
mum and minimum values of ϕ are given. It is observed that
the numerical solutions are bounded in ½−1, 1�.

Next, we consider another initial condition with the
same parameters and domain as the above test:

ϕ x, y, 0ð Þ =
1 if x − 0:3j j < 0:5 and y − 0:3j j < 0:5ð Þ,

or x + 0:6j j < 0:2 and y + 0:6j j < 0:2ð Þ,
−1 otherwise:

8>><
>>:

ð19Þ

With tol = 1:0e-7, the zero level contours of ϕðx, y, tÞ
over time are shown in Figure 7(a). As mentioned above,
according to the property of the AC equation called motion
by mean curvature, the evolution is fast for large curvatures,
i.e., small radii. On the other hand, for large radii, curvatures
are small and their evolution is slow. In Figure 7(b), the
changes in the time step Δt are shown with different toler-
ance values. Figures 7(c) and 7(d) show the discrete total
energy EhðtÞ and the maximum and minimum values of ϕ
according to different tolerance values, respectively. There-
fore, the total energies decrease and the numerical solutions
ϕ are bounded in ½−1, 1�. In addition, in Figure 7(d), we
compare the numerical results obtained from the proposed
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Figure 9: (a–d) Snapshots of the 3D spiral shape at time t = 0, 0:03, 0:06, and 0:1, respectively. (e) Temporal evolution of the time step Δt
according to three different tol.
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method and an explicit Euler method with Δt = Δtmax. Both
are explicit methods; however, when adopting the proposed
method, we can use a slightly larger Δt than the explicit
Euler method. Let us assume that the initial condition (19)
is given with a single time step, not the adaptive time step.
With a large time step, we might miss capturing fast dynam-
ics, whereas using a small time step to capture the fast
dynamics is inefficient in terms of overall computational
cost. For this reason, therefore, our proposed method using
multitime steps has an advantage.

3.5. Shrinking Spirals. We simulate a shrinking test with a
2D spiral shape. Figure 8(a) shows the initial condition
which is a spiral shape expressed as a filled zero contour in
2D. The initial value of ϕ is ϕðx, y, 0Þ = 1 in the inside of spi-
ral and otherwise ϕðx, y, 0Þ = −1 on the computational
domain Ω = ð−1, 1Þ × ð−1, 1Þ. Other parameters are Nx =
Ny = 100, h = 2/Nx, and ϵ = 0:03. In Figures 8(a)–8(d), the
results show the phenomenon that the interface is evolved
according to the motion by mean curvature. From left to
right, the evolutionary times are t = 0, 0:01, 0:07, and 0:16.
Here, we set tol = 1:0e-5. Figure 8(e) shows the temporal
evolution of the adaptive time step sizes according to three
different tolerance tol = 1:0e-5, 1:0e-6, and 1:0e-7.

Next, we make a 3D spiral shape on the computational
domain Ω = ð−1, 1Þ × ð−1, 1Þ × ð−1, 1Þ and simulate a simi-
lar shrinking test. The initial condition is shown in
Figure 9(a). Initial value of ϕ is defined as ϕðx, y, z, 0Þ = 1
in the inside of the spiral and otherwise ϕðx, y, z, 0Þ = −1.
We use the parameters as Nx =Ny =Nz = 100, h = 2/Nx,
and ϵ = 0:03. Figures 9(b)–9(d) illustrate that the spiral
shape is shrinking by motion by mean curvature. Here, tol
= 1:0e-5. Figure 9(e) shows the temporal evolution of the
adaptive time step sizes according to three different toler-
ance tol = 1:0e-5, 1:0e-6, and 1:0e-7.

4. Conclusion

In this study, we presented a simple and accurate adaptive
time-stepping algorithm for the AC equation. The proposed
adaptive time-stepping algorithm was based on the Runge–
Kutta–Fehlberg method, where the local truncation error
was estimated using fourth- and fifth-order numerical
schemes. Computational experiments demonstrated that the
proposed time-stepping technique was efficient in multiscale
computations, i.e., both the fast and slow dynamics. In future
work, we will apply finite element version such as [39].
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