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Abstract We present an unconditionally stable splitting method for the Allen–Cahn (AC) equation with logarith-
mic free energy which is more physically meaningful than the commonly used polynomial potentials. However,
owing to the singularity of the logarithmic free energy, it is difficult to develop unconditionally stable computational
methods for the AC equation with logarithmic potential. To overcome this difficulty, prior works added a stabilizing
term to the logarithmic energy or used a regularized potential. In this study, the AC equation with logarithmic poten-
tial is solved by using an operator splitting method without adding a stabilizing term nor regularizing the logarithmic
energy. The equation involving logarithmic free energy potential is solved using an interpolation method; the other
diffusion equation is solved numerically by applying a finite difference method. Each solution algorithm is uncon-
ditionally stable, the proposed scheme is unconditionally stable. Various computational experiments demonstrate
the performance of the proposed method.
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Fig. 1 Flory–Huggins
energy potential functions,
F(φ) =
θ[φ ln(φ) + (1 − φ) ln(1 − φ)]+
2θcφ(1 − φ), for
0 < φ < 1, θc = 1, and
θ = 0.3, 0.6, 0.8, 0.9, and 1
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1 Introduction

We consider an unconditionally stable numerical method for the Allen–Cahn (AC) equation [1]:

∂φ(x, t)
∂t

= −F ′(φ(x, t)) + ε2Δφ(x, t), x ∈ Ω, t > 0, (1)

where φ(x, t) is the phase field in the domain Ω ⊂ R
d (d = 1, 2, 3) and ε is a small positive constant value. Let

E(φ) =
∫

Ω

(
F(φ) + ε2

2
|∇φ|2

)
dx. (2)

Equation (1) can be obtained from Eq. (2) in an L2-gradient flow. From Eq. (2), we can then obtain

d

dt
E(φ) =

∫
Ω

(
∂φ

∂t
F ′(φ) + ε2∇ ∂φ

∂t
· ∇φ

)
dx =

∫
Ω

φt

(
F ′(φ) − ε2Δφ

)
dx = −

∫
Ω

(φt )
2dx ≤ 0, (3)

which implies that the total energy decreases over time. Here, we used the zero Neumann boundary condition. The
logarithmic energy potential is defined as

F(φ) = θ [φ ln(φ) + (1 − φ) ln(1 − φ)] + 2θcφ(1 − φ), for 0 < φ < 1, (4)

where θ and θc are the absolute and critical temperatures, respectively [2]. For a detailed derivation of Eq. (4), see
the review paper [3]. For the sake of simplicity, we assume that θc = 1 in this paper. Figure 1 shows F(φ) with
different θ values.

The AC equation with logarithmic free energy is more physically meaningful than the commonly used fourth-
order polynomial potential. However, owing to the singularity of the logarithmic free energy (4) at φ = 0 and 1, it is
difficult to develop unconditionally stable computational schemes for the AC equation with logarithmic potential.
To overcome this difficulty, either a stabilizing term is added to the logarithmic energy [4] or a regularized potential
is used [5]. The authors in [6] studied a maximum principle preserving scheme for a generalized AC equation.
Bartels and Müller [7] investigated the dynamics of the AC equation with logarithmic potentials. In [8], numerical
methods solving the Cahn–Hilliard equation with the Flory–Huggins energy potential were analyzed and studied.
In this study, we numerically solve the AC equation with logarithmic potential without adding a stabilizing term
nor regularizing the logarithmic energy.

The contents of this article are as follows. In Sect. 2, the proposed computational scheme is presented for the
AC equation with the Flory–Huggins potential. In Sect. 3, we present the results of computational experiments
conducted to verify the robustness of the proposed scheme. Conclusions are given in Sect. 4.
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(a) (b)

Fig. 2 Grids with spatial step sizes: a h and b 2h

2 Governing equation and numerical solution

The governing equation with the logarithmic potential energy is as follows:
∂φ(x, t)

∂t
= −θ [ln(φ(x, t)) − ln(1 − φ(x, t))] − 2(1 − 2φ(x, t)) + ε2Δφ(x, t). (5)

To efficiently solve Eq. (5), we apply a recently developed interpolation method [9]. Specifically, for the second-
order operator splitting method [10], we divide Eq. (5) into two parts, linear and nonlinear operators, and then
numerically solve the governing equation through the following three steps:

φ(x, t + Δt) =
(
LΔt/2 ◦ NΔt ◦ LΔt/2

)
φ(x, t) + O(Δt3), (6)

where LΔt and NΔt are linear and nonlinear operators with time step size Δt , respectively. The linear operator
is defined as LΔtφ(x, t) = φ(x, t + Δt), where φ(x, t + Δt) is a solution to ∂φ(x, t)/∂t = ε2Δφ(x, t). The
nonlinear operator is defined as NΔtφ(x, t) = φ(x, t + Δt), where φ(x, t + Δt) is a solution of ∂φ(x, t)/∂t =
−θ [ln(φ(x, t)) − ln(1 − φ(x, t))] − 2(1 − 2φ(x, t)). If two operators LΔt and NΔt have at least second-order
accuracy with respect to time, the numerical scheme using Eq. (6) is theoretically guaranteed to have second-order
accuracy with respect to time [11,12]. Now, we present the proposed numerical scheme for the AC equation with
the Flory–Huggins potential energy in a two-dimensional space Ω = (Lx , Rx )× (Ly, Ry). Let Nx and Ny be even
integers and h = (Rx − Lx )/Nx = (Ry − Ly)/Ny be a uniform spatial step size. In addition, let φk

mn be a numerical
approximation of φ(xm, yn, tk), where xm = Lx + (m − 0.5)h, yn = Ly + (n − 0.5)h, and tk = kΔt . First, we
solve the linear equation
∂φ(x, t)

∂t
= ε2Δφ(x, t) (7)

using the Crank–Nicolson (CN) scheme [13]. That is, we solve Eq. (8) using a multigrid method.

φ
k+ 1

2
mn − φk

mn

Δt
= ε2

2

(
Δhφ

k
mn + Δhφ

k+ 1
2

mn

)
, (8)

where Δhφmn = (φm+1,n + φm−1,n + φm,n+1 + φm,n−1 − 4φmn)/h2. For completeness of the exposition, we
provide a brief description of the multigrid method used for the pressure field in the Navier–Stokes equation [14].
To describe the multigrid procedure, let us consider a small discrete domain Ωh (8×8 grid) for Eq. (8) (see Fig. 2a).

Equation (8) can be expressed as

L(φ
k+ 1

2
h,mn) = fh,mn on Ωh, (9)

where the subscript h indicates the discrete values on Ωh ,

L(φ
k+ 1

2
h,mn) = φ

k+ 1
2

h,mn

Δt
− ε2

2
Δhφ

k+ 1
2

h,mn, and fh,mn = φk
h,mn

Δt
+ ε2

2
Δhφ

k
h,mn .
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We define a multigrid cycle as follows:

φ
k+ 1

2 ,p+1
h = MGcycle(φ

k+ 1
2 ,p

h , fh, ν),

where φ
k+ 1

2 ,p+1
h and φ

k+ 1
2 ,p

h are the approximations of φ
k+ 1

2
h before and after one multigrid cycle, respectively;

in addition, ν is the number of smoothing relaxations. We use a Gauss–Seidel relaxation operator in the multigrid
method. First, we rewrite Eq. (9) as

φ
k+ 1

2
h,mn =

⎡
⎣ fh,mn + ε2

φ
k+ 1

2
h,m−1,n + φ

k+ 1
2

h,m+1,n + φ
k+ 1

2
h,m,n−1 + φ

k+ 1
2

h,m,n+1

2h2

⎤
⎦

/(
1

Δt
+ 2ε2

h2

)
. (10)

Next, we apply the Gauss–Seidel update ordering to Eq. (10) as

φ̄
k+ 1

2 ,p
h,mn =

⎡
⎣ fh,mn + ε2

φ̄
k+ 1

2 ,p
h,m−1,n + φ

k+ 1
2 ,p

h,m+1,n + φ̄
k+ 1

2 ,p
h,m,n−1 + φ

k+ 1
2 ,p

h,m,n+1

2h2

⎤
⎦

/(
1

Δt
+ 2ε2

h2

)
,

where φ̄
k+ 1

2 ,p
h,mn denotes the updated value after taking the pth Gauss–Seidel iteration. In the multigrid cycle, we first

apply a pre-smoothing step as follows:

φ̄
k+ 1

2 ,ν

h = SMOOTH(φ
k+ 1

2 ,0
h , fh),

which means taking ν relaxation steps with the initial guess φ
k+ 1

2 ,0
h and the source term fh to obtain the approx-

imation φ̄
k+ 1

2 ,ν

h . Next, we compute the defect as d̄ν
h = fh − L(φ̄

k+ 1
2 ,ν

h ), and restrict it as d̄ν
2h = I 2h

h d̄ν
h . We then

solve the following equation:

L(ψ2h) = d̄ν
2h on Ω2h,

where Ω2h is the coarse grid, as shown in Fig. 2b. We interpolate the coarse grid correction as ψh = I kk−1ψ2h and
compute the corrected solution on Ωh as

φ
k+ 1

2 ,ν, after CGC
h = φ̄

k+ 1
2 ,ν

h + ψh .

Finally, we take a post-smoothing step:

φ
k+ 1

2 ,p+1
h = SMOOTH(φ

k+ 1
2 ,ν, after CGC

h , fh).

These steps consist of a two-grid correction scheme. The multigrid procedure is defined as the recursively applied

two-grid correction schemes. This is a multigrid cycle, which terminates if the consequence error ‖φk+ 1
2 ,p+1

h −
φ
k+ 1

2 ,p
h ‖∞ is smaller than a given tolerance, where

‖φ‖∞ = max
1≤m≤Nx ,1≤n≤Ny

|φmn|.

More details on the multigrid procedure can be found in [14].
Next, we solve the following nonlinear equation:

∂φ(x, t)
∂t

= −F ′(φ(x, t)) = −θ [ln(φ(x, t)) − ln(1 − φ(x, t))] − 2(1 − 2φ(x, t)). (11)

However, unlike the fourth-order polynomial free energy potential, there is no closed-form solution for the
logarithmic free energy potential. To stably solve Eq. (11), we propose the following algorithm based on the recently
developed interpolation method [9]. Let φα and φβ be the two critical values of F(φ), that is, F ′(φα) = F ′(φβ) = 0.
Because of the symmetrical feature of F(φ), φα +φβ = 1 is satisfied. To obtain φα , Newton’s method [15] is used.
Using three different tolerances, tol = 1e−4, 1e−8, and 1e−12, we compute φα and the number of iterations for each
tolerance. The initial guess is set to φ0 = 0.999 and we conduct the iterative process φk+1 = φk − F ′(φk)/F ′′(φk)
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Table 1 For each tolerance, the values of φα are given with respect to θ = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9

Tol θ

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1e−4 0.00129(4) 0.00715(5) 0.02122(6) 0.04633(7) 0.08568(8) 0.14476(8) 0.23725(9)

1e−8 0.00129(5) 0.00718(7) 0.02124(8) 0.04633(8) 0.08568(9) 0.14479(9) 0.23729(10)

1e−12 0.00129(6) 0.00718(7) 0.02124(8) 0.04633(9) 0.08568(9) 0.14479(10) 0.23729(11)

The number of iterations are shown in parentheses. Notably, φβ = 1 − φα

Fig. 3 Values of φα and φβ

with respect to θ

until |F ′(φk)/F ′′(φk)| < tol. Then, we set φα = φk+1. Table 1 shows φα and the number of iterations with various
values of θ and tol. In this case, the value of φβ can be obtained using the condition φα + φβ = 1.

From now on, we will use tol = 1e−12 for all numerical experiments. Figure 3 shows the values of φα and φβ

with respect to θ .
Let us assume θ , ε, and Δt are given. We uniformly discretize the interval [φα, φβ ] ⊂ [0, 1], that is, I =

{Ii |Ii = φα + (φβ − φα)(i − 1)/(M − 1), for i = 1, . . . , M}, where M is an odd integer and I always includes
0.5. We solve Eq. (11) on I with Δτ = Δt/Nτ until t = Δt . Note that Nτ is defined below. Figure 4 displays
the computational results of Eq. (11) on I at t = Δt using the Euler method with Δτ and the initial condition,
Φi (0) = Ii for i = 1, . . . , M. That is,

Φi ((s + 1)Δτ) = Φi (sΔτ) − Δτ F ′(Φi (sΔτ)), for s = 0, . . . , Nτ − 1. (12)

After computing all Φi (Δt) for i = 1, . . . , M once, we use these values to solve Eq. (11) by using an interpolation.
Next, we compute Nτ to stably evaluate Eq. (12) for the given values of θ , ε, and Δt . If Ii = φα, 0.5, or φβ , then

from Eq. (12) we have

Φi ((s + 1)Δτ) = Ii , for s = 0, . . . , Nτ − 1. (13)

Next, let us suppose 0.5 < Ii < φβ and Φi (0) = Ii . Then from Eq. (12) we have

Φi (Δτ) = Ii − Δτ F ′(Ii ). (14)

As can be seen in Fig. 5, F ′(Ii ) = θ ln Ii
1−Ii

+ 2(1 − 2Ii ) < 0 for 0.5 < Ii < φβ and θ < 1; therefore, we have
Φi (Δτ) > 0.5 from Eq. (14) for any Δτ .

In addition, we want to find Δτ satisfying the condition Ii − Δτ F ′(Ii ) < φβ , that is,

Δτ <
Ii − φβ

F ′(Ii )
= Ii − φβ

θ
[
ln

(
Ii

1−Ii

)]
+ 2(1 − 2Ii )

. (15)

The term on the right-hand side of inequality (15) decreases with respect to Ii , as shown in Fig. 6.
Therefore, we consider the limit of the term as Ii approaches φβ . By using L’Hôpital’s rule, we have

Δτ ≤ lim
Ii→φβ

Ii − φβ

θ
[
ln

(
Ii

1−Ii

)]
+ 2(1 − 2Ii )

= lim
Ii→φβ

1

θ
(

1
Ii

+ 1
1−Ii

)
− 4

= 1

θ
(

1
φβ

+ 1
1−φβ

)
− 4

. (16)
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Fig. 4 Numerical solution
Φ(Δt) of Eq. (11) on I

Fig. 5 F ′(Ii ) =
θ[ln(Ii ) − ln(1 − Ii )] +
2(1 − 2Ii ) for
θ = 0.3, 0.6, 0.8, 0.9, and
1. Blue lines indicate the
value of φβ and have the
same symbols for each θ .
(Color figure online)
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Fig. 6 Semilogy plot of
(Ii − φβ)/F ′(Ii ) with
respect to Ii . Here, θ = 0.8
is used
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Table 2 Least upper bound of Δτ with different values of θ

θ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Δτ 0.0044 0.0192 0.0499 0.1044 0.2026 0.4064 1.0279

Fig. 7 Schematic diagram
of the interpolation

Using the result in Eq. (16), Table 2 lists the least upper bound of Δτ with different values of θ .

From the definition of Δτ = Δt/Nτ and the stability condition (16), Nτ ≥ Δt
(
θ
(

1
φβ

+ 1
1−φβ

)
− 4

)
should

be satisfied. Therefore, unless otherwise specified, we set Nτ =
[
Δt

(
θ
(

1
φβ

+ 1
1−φβ

)
− 4

)]
+ 1, where [x] is

the greatest integer less than or equal to x . Given the intermediate solution from the first step, φ
k+ 1

2
mn , the second

step is to solve Eq. (11) by using the pre-computed values and interpolation. We can find a node Ii satisfying

Ii ≤ φ
k+ 1

2
mn ≤ Ii+1 for some i and 1 ≤ i ≤ M − 1. We then define

φk+1
mn = Ii+1 − φ

k+ 1
2

mn

Ii+1 − Ii
Φi (Δt) + φ

k+ 1
2

mn − Ii
Ii+1 − Ii

Φi+1(Δt), (17)

as schematically illustrated in Fig. 7.
The proposed numerical scheme is unconditionally stable because each step in the operator splitting method is

also unconditionally stable.

3 Computational tests

We perform several computational tests to show the dynamics of the AC equation with logarithmic free energy
potential. Unless otherwise stated, we use M = 101. Notably, we should have an interval for φ satisfying F ′′(φ) < 0
to obtain a double-well potential. Figure 8 shows F ′′(φ) = θ [1/φ + 1/(1 − φ)] − 4 with various θ values. To find
the condition for θ , let us consider the following equation:

F ′′(φ) = θ

(
1

φ
+ 1

1 − φ

)
− 4 = θ

φ(1 − φ)
− 4 ≥ 4θ − 4, (18)

which implies F ′′(φ) ≥ 0 if θ ≥ 1. Therefore, to have a double-well potential, θ should be less than 1.
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Fig. 8 Plot of F ′′(φ) =
θ[1/φ + 1/(1 − φ)] − 4
with θ = 0.3, 0.6, 0.8, 0.9,

and 1
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3.1 Maximum principle

We demonstrate that our proposed method preserves the maximum principle, which is essential for the logarithmic
energy potential. The discrete governing equation can be divided into two parts: linear and nonlinear operators, as
indicated in Eq. (6). In the first step, the CN scheme (8) is unconditionally stable from the von Neumann analysis
[16,17]. The second step is unconditionally stable because of the definition of the subcycling update of the time
step, as described in the inequality (15), and the interpolation with the outside cut-off in interval [φα, φβ ]. Therefore,
the overall proposed scheme is unconditionally stable. Furthermore, we can theoretically guarantee the maximum
principle for both the nonlinear and linear equations if the initial condition is in the interval [φα, φβ ]. Now, we verify
the maximum principle through a numerical test. Let φ(x, 0) = (φβ − φα) rand(x) + φα be the initial condition
on Ω = (0, 1), where rand(x) is a random number between 0 and 1. The numerical tests are conducted with two
different θ values while Nx = 128, h = 1/Nx , Δt = 0.001, and ε = 0.02 are fixed. Herein, we take θ = 0.3
and θ = 0.9. As observed earlier, φα and φβ have different values depending on θ ; it can also be verified that the
maximum principle is preserved as shown in Fig. 9a and c. Figure 9b and d shows the temporal evolution of the
maximum and minimum values of φ(x, t) over time, which also suggests that the values do not go beyond the range
[φα, φβ ].

3.2 Unconditional stability

To show the unconditional stability of the proposed method, let us consider the scheme used, i.e.,

φ(x, t + Δt) =
(
LΔt/2 ◦ NΔt ◦ LΔt/2

)
φ(x, t),

where LΔt and NΔt are the linear and nonlinear operators with the time step size Δt , respectively. The proposed
method consists of the following two steps:

Step 1: The heat equation is solved using the CN scheme, which is unconditionally stable. This can be proved
from the von Neumann analysis [16,17].

Step 2: The nonlinear equation is solved using the explicit Euler scheme and the interpolation method. This
method also guarantees an unconditional stability owing to the definition of a subcycling update of the
time step and interpolation.

Therefore, because both steps have unconditional stability, the entire method guarantees the unconditional sta-
bility. Now, numerical tests are conducted to verify that our proposed method is unconditionally stable. On a
one-dimensional domain Ω = (0, 1), the initial condition is φ(x, 0) = 0.5 + 0.1(rand(x) − 0.5). The parameters
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Fig. 9 Snapshots of temporal evolution of the random initial concentration (φβ − φα)rand(x) + φα at different times with a θ = 0.3
and c θ = 0.9. For each θ , b and d show the temporal evolutions of the maximum (top) and minimum (bottom) of φ(x, t) over time

are Nx = 128, h = 1/Nx , θ = 0.8, and ε = 0.02. We use three different time steps Δt = h2, 10h2, and 100h2

with a fixed final time of T = 10000h2. As shown in Fig. 10, even if the temporal step size becomes large, the
numerical solutions do not blow up and show stable results.

3.3 Convergence and computational cost tests

A convergence test is conducted to investigate the accuracy of the proposed method, which is theoretically second-
order accuracy in both space and time. Therefore, we compute the accuracy of the numerical scheme by concurrently
decreasing both the spatial and temporal step sizes by half. On the domain Ω = (0, 1), the initial condition is set
to φ(x, 0) = 0.5 + 0.3 cos(2πx). The parameters θ = 0.8, ε = 0.02, and the final time T = 0.025/64 are fixed.
The spatial step size is h = 1/Nx , and the temporal step size is Δt = T/Nt , where Nx and Nt are positive integers.

The error is defined as eNt
Nx i

= φ
Nt
Nx i

− 1
2

(
φ

2Nt
2Nx 2i−1

+ φ
2Nt
2Nx 2i

)
and the rate of convergence is defined as the ratio

of successive l2-norm errors as log2

(
||eNt

Nx
||2/||e2Nt

2Nx
||2

)
. Table 3 lists the l2-errors and rates of convergence of the
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Fig. 10 Snapshots at final time of T = 10,000h2 with the random initial concentration φ(x, 0). Three different time steps are used: a
Δt = h2, b Δt = 10h2, and c Δt = 100h2

Table 3 l2-errors and rates of convergence with respect to spatial and temporal step sizes

Nx × Nt 64 × 25 Rate 128 × 50 Rate 256 × 100 Rate 512 × 200
128 × 50 256 × 100 512 × 200 1024 × 400

l2 error 6.4038e−5 2.00 1.5987e−5 2.00 4.0052e−6 2.00 9.9967e−7

Fig. 11 CPU time
according to various spatial
step sizes

16 32 64 128
0
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100

150

200
C

P
U

 ti
m

es
(s

)
Data
Linear fit

proposed method with respect to spatial and temporal step sizes and shows that the proposed scheme is second-order
accuracy in both space and time.

Next, we measure the CPU time (seconds) with respect to the spatial step size. Note that this experiment is
calculated using MATLAB R2020b software on an Intel Core i5-6400 CPU machine at 2.71GHz with 4 GB of
memory. The parameters Δt = 1/1282 and Nt = 106 are used, and the other conditions are the same as those
applied in the above test. For Nx = 16, 32, 64, and 128, the CPU time is measured as 20.952, 42.499, 84.344,

and 164.468. As shown in Fig. 11, we can observe the linear fitting for the CPU times, which implies the complexity
of the algorithm follows O(Nx ).

3.4 Linear stability analysis

We investigate the linear stability of the governing equation around φ ≡ 0.5. Linearizing the AC equation (5) with
the logarithmic free energy potential about φ ≡ 0.5 yields

φt = −(4θ − 4)(φ − 0.5) + ε2Δφ.
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Fig. 12 Growth rates of
analytic and numerical
solutions for different even
wave numbers
k (k = 0, 2, 4, . . . , 20). The
small inset figures show
temporal evolutions of the
numerical solution for
k = 2 and k = 20
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We assume the solution to have the following form:

φ(x, t) = 0.5 + α(t) cos(kπx), (19)

where α(t) is an amplitude at wave numbers k satisfying |α(0)|  1. Substituting Eq. (19) into the linearized
equation, we then obtain

α′(t) =
[
4 − 4θ − ε2π2k2

]
α(t). (20)

The solution to Eq. (20) is α(t) = α(0)eλt , where λ = 4 − 4θ − ε2π2k2 is the analytic growth rate. The numerical
growth rate is defined as follows:

λ̃ = 1

T
log

( ||φNt − 0.5||∞
α(0)

)
.

Let φ(x, 0) = 0.5 + 0.01 cos(kπx) be the initial profile on Ω = (0, 1), where k is a positive even integer of
less than or equal to 20. The parameter values used in this test are Nx = 256, h = 1/Nx , Δt = 0.001, Nt = 500,
ε = 0.02, θ = 0.3, and T = 500Δt . Figure 12 shows the result of a linear stability test using our proposed method.
For different wave numbers k (k = 0, 2, 4, . . . , 20), the analytic growth rate λ (solid line) and numerical growth
rate λ̃ (circled markers) match each other well.

3.5 Spinodal decomposition of a binary mixture

In this test, we present the results of a decomposition of a binary mixture with a random initial condition. We set
the initial profile on Ω = (−1, 1) × (−1, 1) as follows:

φ(x, y, 0) = 0.5 + 0.05 rand(x, y),

where rand(x, y) is a random number in (−1, 1). As the parameters, the spatial step size of h = 1/128, the temporal
step size of Δt = 30h, ε = 0.025, and θ = 0.8 are used. Figure 13 shows the snapshots of the evolution of φ(x, y, t)
at different times, and these results are similar to those of the AC equation using the double-well polynomial potential
[18]. The numerical results also indicate that the proposed scheme is stable even for a large time step.

3.6 Shrinking phenomenon

We confirm the shrinking phenomenon [4], which is one of the dynamics of the AC equation with the logarithm free
energy potential. The parameters used are h = 1/128, Δt = h, and ε = 0.015. Let us consider an initial condition
on Ω = (−1, 1) × (−1, 1) as follows:

φ(x, y, 0) =
{

φβ if |x | ≤ 0.8 and |y| ≤ 0.8,

φα otherwise.
(21)
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Fig. 13 Snapshots of the evolutions of the random initial concentration φ(x, y, 0) at different times. The initial conditions are
φ(x, y, 0) = 0.5 + 0.05 rand(x, y). The times are described below each figure

Fig. 14 Shrinking
phenomenon of the AC
equation with logarithm free
energy potential
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-1

-0.5
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As shown in Fig. 14, the initial square shape shrinks to a circular shape regardless of the θ values. Here, contours
are drawn at the φ = 0.5 level at t = 120,000Δt .

3.7 Decrease of the total energy

We consider the total energy decrease over time. The discrete energy E(φk) is defined as follows:

E(φk) =
Nx∑
m=1

Ny∑
n=1

F(φk
mn)h

2 + ε2

2

Nx−1∑
m=1

Ny−1∑
n=1

[
(φk

m+1,n − φk
mn)

2 + (φk
m,n+1 − φk

mn)
2
]
. (22)

The initial condition (21) is used. The parameter values used are Nx = Ny = 256, h = 1/128, Δt = h, ε = 0.015,
and θ = 0.8. Figure 15 shows the temporal evolution of the discrete total energy. We can confirm that the discrete
total energy decreases as the number of temporal iterations increases.

3.8 Thickness of the interface transition layer

Next, we study the effects of ε and θ on the interface transition layer. We select four values of ε, that is, ε =
0.5h, h, 2h, and 4h, for each θ . The initial condition on Ω = (0, 2π) × (0, π/4) is given as follows:

φ(x, y, 0) = φβ − φα

2
cos(x) + φα + φβ

2
, (23)
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Fig. 15 Discrete total
energy E(φk) over time in
two-dimensional space
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Fig. 16 Schematic
illustration of the interface
layer

Table 4 Thickness of the interface transition layer L with various values of θ and ε

Case ε = 0.5h ε = h ε = 2h ε = 4h

θ = 0.3 0.9561h 2.0981h 4.1833h 7.5222h

θ = 0.6 0.9712h 2.7437h 5.1392h 9.9361h

θ = 0.8 2.2877h 4.3349h 8.3342h 16.4906h

θ = 0.9 2.9795h 6.348h 12.4647h 24.7671h

which means that max(φ(x, y, 0)) = φβ and min(φ(x, y, 0)) = φα . The parameter values h = 2π/256 and
Δt = 10h are used. We proceed with the evolution of the initial condition (23) until the discrete l2-norm of the
difference of two successive time step solutions is less than 10−6, that is, ‖φn+1 − φn‖ < 10−6. Then, we call the
final state of φn+1 the equilibrium state.

Let us define the thickness of the interface transition layer L as the difference of x1 and x2, as shown in
Fig. 16. Here, x1 and x2 satisfy φ(x1, y, t) = φβ − φdi f f and φ(x2, y, t) = φα + φdi f f , respectively, where
φdi f f = (φβ − φα)/20. Table 4 shows the thickness of the interface transition layer L for the various values of ε

and θ .
Furthermore, Fig. 17a and b shows the equilibrium states of φ with ε = 0.5h and ε = 4h, respectively, for each

θ . The numerical result using ε = 0.5h indicates the equilibrium state with a sharp interfacial transition layer, as
shown in Fig. 17a. Meanwhile, the result of using ε = 4h shows the relatively smooth interfacial transition layer,
as shown in Fig. 17b.

By fitting the data using linear functions, we obtain the following equations:

ε0.3(L) = 0.5356L − 0.0025, (24)

ε0.6(L) = 0.3974L + 0.0002, (25)
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Fig. 17 Equilibrium state for various θ with (a) ε = 0.5h and (b) ε = 4h

Fig. 18 εθ (L) with respect
to L with linear fitting
functions for
θ = 0.3, 0.6, 0.8, and 0.9

ε0.8(L) = 0.2466L − 0.0016, (26)

ε0.9(L) = 0.1614L − 0.0001. (27)

Figure 18 shows εθ (L) with respect to L with linear fitting functions for θ = 0.3, 0.6, 0.8, and 0.9.

3.9 Motion by mean curvature

Let us consider the following rescaled AC equation:

∂φ(x, t)
∂t

= − F ′(φ(x, t))
ε2 + Δφ(x, t), x ∈ Ω, t > 0. (28)

Motion by mean curvature is an important feature of the AC equation. The radius at time t is R(t) =√
R0

2 + 2(1 − d)t , where R0 is the initial radius. Please refer to [19] for further details. Here, we conduct a
two-dimensional test using the following initial condition:

φ(x, y, 0) = φβ − φα

2
tanh

(
1 − √

x2 + y2

2
√

2ε

)
+ φα + φβ

2
(29)
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(a) t = 0 (b) t = 2500Δt (c) t = 5000Δt
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Fig. 19 a–c Evolutions of the initial concentration φ(x, y, 0) with θ = 0.8 at different times, as described below each figure. d Analytic
and numerical solutions to the evolution of the radius with θ = 0.8

on the computational domain (−1.2, 1.2) × (−1.2, 1.2) with Nx = Ny = 256. The parameters used are h =
2.4/256, θ = 0.8, and Δt = h2. In particular, we use ε = ε0.8(14h) from Eq. (26), that is, L = 14h. Figure 19a–c
shows the snapshots of φ at different times. As shown in Fig. 19d, the radius of the circle shrinks over time and is
similar to an analytic solution. This result indicates that the motion by mean curvature is well preserved in the AC
equation with the logarithm potential energy.

3.10 Three-dimensional case

The governing equation (5) and the proposed numerical method can be straightforwardly applied to three-
dimensional domain. First, the spinodal decomposition test is conducted in three-dimensional domain Ω =
(−1, 1) × (−1, 1) × (−1, 1). A random initial condition is given as follows:

φ(x, y, z, 0) = 0.5 + 0.3 rand(x, y, z), (30)

where rand(x, y, z) is a random number in (−1, 1). For a three-dimensional case, the parameters used are Nx =
Ny = Nz = 64, h = 1/32, Δt = 30h, ε = 0.025, and θ = 0.8. Figure 20 shows the snapshots of the evolution of
φ(x, y, z, t) at different times. On a three-dimensional case, even with a large time step, stable results are obtained.
The results are similar to the dynamics of the AC equation using the double-well polynomial potential [18].

Next, we consider the dynamics of the motion by mean curvature on a three-dimensional case. The initial
condition and the parameters used in this test are as follows:

φ(x, y, z, 0) = φβ − φα

2
tanh

(
1 − √

x2 + y2 + z2

2
√

2ε

)
+ φα + φβ

2
(31)
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Fig. 20 Snapshots of evolutions of the random initial concentration φ(x, y, z, 0) at different times. The initial conditions are
φ(x, y, z, 0) = 0.5 + 0.3 rand(x, y, z). The times are described below each figure
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Fig. 21 a–cEvolutions of the initial concentration φ(x, y, z, 0) with θ = 0.8 at different times as described below each figure.dAnalytic
and numerical solutions of the evolution of the radius with θ = 0.8. e Discrete total energy E(φk) over time in three-dimensional space
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on the computational domain (−1.2, 1.2) × (−1.2, 1.2) × (−1.2, 1.2) with Nx = Ny = Nz = 128, h = 2.4/128,
θ = 0.8, ε = ε0.8(14h), and Δt = h2. We also define the 3D discrete energy E(φk) as

E(φk) =
Nx∑
m=1

Ny∑
n=1

Nz∑
l=1

F(φk
mnl)

h3

ε2

+h

2

Nx−1∑
m=1

Ny−1∑
n=1

Nz−1∑
l=1

[
(φk

m+1,nl − φk
mnl)

2 + (φk
m,n+1,l − φk

mnl)
2 + (φk

mn,l+1 − φk
mnl)

2
]
.

Figure 21a–c shows the snapshots of φ at a level of 0.5. The decrease in radius is compared to the analytic solution
over time. Figure 21e shows the discrete total energy for the initial condition (31). As with the two-dimensional
test, the result confirms that the analytic and numerical solutions are in good agreement.

4 Conclusions

In this paper, we developed an unconditionally stable numerical method for the AC equation with logarithmic free
energy. The logarithmic energy is more physically meaningful than the commonly used fourth-order polynomial
potentials. However, owing to the singularity of the logarithmic free energy, it is difficult to develop unconditionally
stable numerical methods for the AC equation with the logarithmic free energy. To overcome this difficulty, previous
methods involved adding a stabilizing term to the logarithmic energy or using a regularized potential. By contrast,
we used an interpolation method that does not add a stabilizing term nor regularize the logarithmic energy. Various
numerical experiments were conducted to demonstrate the performance of the proposed method. The proposed
solution algorithm may be a useful tool in a study on the dynamics of the AC equation with the logarithmic free
energy. Compared to convex–concave splitting techniques, we do not introduce a stabilizing parameter that may
cause time step rescaling [20]. Herein, we used the finite difference method, which is simple and easy to combine
with other settings such as the Navier–Stokes equation. However, the proposed scheme can also be applied to other
frameworks such as the finite element method [21,22], which is a good approach to solving equations on complex
domains.
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