
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gcom20

International Journal of Computer Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gcom20

Calibration of the temporally varying volatility and
interest rate functions

Eunchae Park, Jisang Lyu, Sangkwon Kim, Chaeyoung Lee, Wonjin Lee,
Yongho Choi, Soobin Kwak, Changwoo Yoo, Hyeongseok Hwang & Junseok
Kim

To cite this article: Eunchae Park, Jisang Lyu, Sangkwon Kim, Chaeyoung Lee, Wonjin Lee,
Yongho Choi, Soobin Kwak, Changwoo Yoo, Hyeongseok Hwang & Junseok Kim (2022)
Calibration of the temporally varying volatility and interest rate functions, International Journal of
Computer Mathematics, 99:5, 1066-1079, DOI: 10.1080/00207160.2021.1948539

To link to this article: https://doi.org/10.1080/00207160.2021.1948539

Published online: 05 Jul 2021.

Submit your article to this journal

Article views: 214

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gcom20
https://www.tandfonline.com/loi/gcom20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160.2021.1948539
https://doi.org/10.1080/00207160.2021.1948539
https://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207160.2021.1948539
https://www.tandfonline.com/doi/mlt/10.1080/00207160.2021.1948539
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2021.1948539&domain=pdf&date_stamp=2021-07-05
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2021.1948539&domain=pdf&date_stamp=2021-07-05

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
2022, VOL. 99, NO. 5, 1066–1079
https://doi.org/10.1080/00207160.2021.1948539

ARTICLE

Calibration of the temporally varying volatility and interest rate
functions

Eunchae Parka, Jisang Lyua, Sangkwon Kima, Chaeyoung Leea, Wonjin Leeb, Yongho Choic,
Soobin Kwaka, Changwoo Yoob, Hyeongseok Hwangb and Junseok Kim a

aDepartment of Mathematics, Korea University, Seoul, Republic of Korea; bDepartment of Financial Engineering,
Korea University, Seoul Republic of Korea; cDepartment of Mathematics and Big Data, Daegu University,
Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea

ABSTRACT
In this study, we develop a calibration method of the temporally varying
volatility and interest rate functions using the Black–Scholes (BS) partial
differential equation and the observed market option prices with different
strikes and expiries. The proposed method uses the piecewise linear inter-
polations between data points which are defined at the middle points of
maturity dates. When we construct the volatility and interest rate, we use
the exponential function so that the interpolated values are always positive.
Numerical experiments with synthetic and real market data demonstrate
the superior performance of the proposed method.

ARTICLE HISTORY
Received 25 January 2021
Revised 10 April 2021
Accepted 18 June 2021

KEYWORDS
Black–Scholes equation;
volatility; interest rate;
calibration; option price

2010MATHEMATICS
SUBJECT CLASSIFICATION
finance

1. Introduction

The main purpose of this paper is to develop a calibration algorithm of the time-dependent volatil-
ity and interest rate functions using the Black–Scholes (BS) equation. In [18], the authors studied a
transformation of the equation with time-varying parameters to provide a more general approach.
The observed market option prices with different strikes and expiries:

∂u(S, t)
∂t

+ 1
2
[σ(t)S]2

∂2u(S, t)
∂S2

+ r(t)S
∂u(S, t)

∂S
− r(t)u(S, t) = 0, (1)

for (S, t) ∈ R
+ × [0,T), where u(S, t) is the option value of the underlying price S and time t. Here,

σ(t) and r(t) are the time-dependent volatility and interest rate functions of time t, respectively. The
final condition is the payoff function u(S,T) = �(S) at expiry T.

In 1973, Black and Scholes [2] derived the BS equation with constant volatility and interest rate.
This model is one of the most widely used models in the option pricing field. However, the con-
stant parameter does not reflect arbitrage-free market and volatility skew, etc. To solve this problem,
many researchers presented different methods for time-dependent parameters. Elettra and Rossella
[5] derived the Geske formula for compound options with time-dependent volatility and interest
rate and compared them with the Geman–El Karoui–Rochet formula. Yunxia and Xiping [23] con-
sidered the underlying asset driven by the Ornstein–Uhlenback (OU) process and the interest rates
driven by the Hull–White model in order to price the European call and put options. The OU pro-
cess does not make any economic assumptions in the actuarial approach, hence it applies not only

CONTACT Junseok Kim cfdkim.korea.ac.kr Department of Mathematics, Korea University, Seoul 02841, Republic of
Korea

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2021.1948539&domain=pdf&date_stamp=2022-03-31
http://orcid.org/0000-0002-0484-9189
mailto:cfdkim.korea.ac.kr

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1067

to the arbitrage-free, equilibrium, and complete markets but also to arbitrage, non-equilibrium, and
incomplete markets. Guardasoni [8] straightforwardly applied semi-analytical method for pricing of
barrier options with time-dependent interest rate, volatility, and dividend. It may be considered as an
alternative approach for the BS equation with time-dependent parameters. In [11], a solution of an
ordinary differential equation in which the time-dependent interest rate is assumed to be zero in stan-
dard deviation of the interest rate from the Vasicek model is applied to the BS equation. In addition,
there are various studies related to the time-dependent volatility and interest rate using BS equation
[14,16–19].

There are also many authors who studied the reconstruction of local volatility using the stochastic
volatility model [10], which was developed to overcome the disadvantage of the BS model. In [7],
the authors investigated the Heston hybrid model with a stochastic interest rate, which combines a
stochastic volatility equity and interest rate process, and presented the approximations for the model
by emphasizing the importance of speed of pricing.When theirmodel is used, there is no need for sev-
eral calculations. Grzelak [6] proposed a new local volatility framework which allows large-stepping
simulation. He and Chen [9] developed a closed-form solution for the European call options using
stochastic volatility models. In [1], a stochastic local volatility technique was introduced for valuat-
ing exotic options by finite difference method. In [13], a closed-form formula was presented to aid
the calibration of the regime-switching model to resolve the time-intensive problems. Daněk and
Pospíšil also developed another regime-switching algorithm for the stochastic volatility jump diffu-
sion model [4]. In [12], the authors presented a method to price derivatives with stochastic volatility
and stochastic interest rate through the conditional Monte Carlo framework. Until now, neverthe-
less, the BS equation continued to be used and studied steadily as mentioned above. In this study, we
present the method for calibration of the time-dependent volatility and interest rate functions using
the BS equation.

The rest of the paper is organized as follows. In Section 2, we explain our numerical algorithm
for constructing the time-dependent volatility function and interest rate function. In Section 3,
computational tests are described. Conclusions are made in Section 4.

2. Numerical algorithm

Let S be the underlying asset price and τ = T − t be the time to expiry. Then, Equation (1) can be
rewritten as

∂u(S, τ)

∂τ
= 1

2
[σ(τ)S]2

∂2u(S, τ)

∂S2
+ r(τ)S

∂u(S, τ)

∂S
− r(τ)u(S, τ), (2)

for (S, τ) ∈ � × (0,T] with u(S, 0) = �(S) for S ∈ � = (0, L) [20]. We numerically solve
Equation (2) using a finite difference method (FDM). Let uni ≡ u(Si, n�τ) be the numerical approx-
imation of the solution of Equation (2) for i = 1, 2, . . . , NS and n = 0, 1, . . . , Nτ . Here,�τ = T/Nτ

is uniform temporal step size andNτ is the number of time steps.We use the non-uniform asset price
domain. Figure 1 shows the non-uniform grid. Here, we define the spatial step size hi−1 = Si − Si−1.

Letσ n ≡ σ(n�τ) and rn ≡ r(n�τ)be the discrete variable volatility and interest rate, respectively.
By applying the fully implicit-in-time and non-uniform space difference scheme to Equation (2), we

Figure 1. Non-uniform grid with a spatial step size hi−1.

1068 E. PARK ET AL.

obtain that

un+1
i − uni

�τ
= (σ n+1Si)2

2

(
2un+1

i−1
hi−1(hi−1 + hi)

− 2un+1
i

hi−1hi
+ 2un+1

i+1
hi(hi−1 + hi)

)

+ rn+1Si

(
−hiun+1

i−1
hi−1(hi−1 + hi)

+ (hi − hi−1)un+1
i

hi−1hi
+ hi−1un+1

i+1
hi(hi−1 + hi)

)

− rn+1un+1
i . (3)

We can rewrite the above Equation (3) as

αiun+1
i−1 + βiun+1

i + γiun+1
i+1 = bi, for i = 2, . . . ,NS, (4)

where αi = rn+1Sihi
hi−1(hi−1+hi) − (σ n+1Si)2

hi−1(hi−1+hi) , βi = 1
�τ

− rn+1Si(hi−hi−1)
hi−1hi + (σ n+1Si)2

hi−1hi + rn+1, γi =
− rn+1Sihi−1

hi(hi−1+hi) − (σ n+1Si)2
hi(hi−1+hi) , and bi = uni

�τ
. For boundary conditions, we use the zero Dirichlet condi-

tion at S1, that is, un+1
1 = 0 and the linear condition at SNS , that is, u

n+1
NS+1 = 2un+1

NS
− un+1

NS−1 for all n
[22]. To solve the resulting discrete tri-diagonal system (4), we apply the Thomas algorithm [21].

Next, we present the proposed algorithm for constructing the temporally varying volatility and
interest rate using option prices. Suppose that we have a set of measurements {Uα

β }, where Uα
β is the

market price of the options with the exercise time Tα for α = 1, . . . ,Mt and the exercise price Kβ

for β = 1, . . . ,Mk. Here, we assume that T1 < . . . < TMt andK1 < · · · < KMk . Using the given data,
we determine a piecewise volatility function σ(t) and a piecewise interest rate function r(t) in the
least-squares sense. That is, we minimize the following mean-square error (MSE):

E(σ , r) = 1
MtMk

Mt∑
α=1

Mk∑
β=1

ωα
β [uKβ (σ , r; S0,Tα) − Uα

β]
2, (5)

where uKβ (σ , r; S0,Tα) is the numerical solution at S = S0 of Equation (2) with the strike price Kβ at
time Tα . Here, ωα

β is a normalized weight, i.e. trading volume of Uα
β . LetW

α
β be the trading volume

of Uα
β , then we define the normalized weight as ωα

β = Wα
β /
∑Mk

γ=1W
α
γ , which implies

∑Mk
γ=1 ωα

β = 1
for α = 1, . . . ,Mt .

In this study, we use the lsqcurvefit routine, which is a non-linear curve-fitting solver in MATLAB
R2019a [15], to find the optimal values σ and r that minimize the cost function E(σ , r). Now, we
present the detailed process of the proposed algorithm.We use the notation Tα+ 1

2
= (Tα + Tα+1)/2

for α = 1, . . . ,Mt − 2.
Given initial guess σ̃ 0

α (α = 1, . . . ,Mt), we define the piecewise linear volatility function as

σ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
2 −σ 0

1
T 3
2

t + σ 0
1 , if t ∈ [0, T 3

2
],

σ 0
α+1−σ 0

α

T
α+ 1

2
−T

α− 1
2

(t − Tα− 1
2
) + σ 0

α , if t ∈ [Tα− 1
2
, Tα+ 1

2
], 2 ≤ α ≤ Mt − 2,

σ 0
Mt−σ 0

Mt−1
TMt−TMt− 3

2

(t − TMt− 3
2
) + σ 0

Mt−1, if t ∈ [TMt− 3
2
, TMt],

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1069

Figure 2. Schematic illustrations of the piecewise linear (a) volatility function and (b) interest rate function from our proposal.

where σ 0
α = exp(σ̃ 0

α). Similarly, given initial guess r̃0α (α = 1, . . . ,Mt), the piecewise linear interest
rate function is defined as

r(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r02−r01
T 3
2

t + r01, if t ∈ [0, T 3
2
],

r0α+1−r0α
T

α+ 1
2
−T

α− 1
2

(t − Tα− 1
2
) + r0α , if t ∈ [Tα− 1

2
, Tα+ 1

2
], 2 ≤ α ≤ Mt − 2,

r0Mt−r0Mt−1
TMt−TMt− 3

2

(t − TMt− 3
2
) + r0Mt−1, if t ∈ [TMt− 3

2
, TMt],

where r0α = exp(r̃0α). Note that we can avoid the negative value in σ(t) and r(t) by using the exponen-
tial function. Figure 2 illustrates the piecewise linear volatility and interest rate functions, respectively.
The black dots mean the initial guess points and the white dots mean the value that substituted the
initial guess points using the exponential function. We can obtain initial piecewise linear functions
by interpolating these points.

Using these initial volatility and interest rate functions, we start the lsqcurvefit routine to find the
optimal values σ and r that minimize the cost function E(σ , r).

3. Computational tests

Now, we show the performance of the proposed time-dependent volatility construction algorithm
by computational tests with manufactured volatility functions, interest rate function and option
data from a real market. All computations are performed on a 3.60GHz Intel PC with 8GB of
RAM loaded with MATLAB R2019a. If there is no other mention, we use the uniform temporal
step size �τ = 1/360 and the non-uniform spatial grid � = {15i | i = 0, . . . , 5} ∪ {80 + 1.25j | j =
0, . . . , 32} ∪ {125 + 15k | k = 0, . . . , 11} in the following experiments. Additionally, we assume the
prices are equally weighted, that is, the trading volumes of each strike with the same maturity are the
same.

3.1. Manufactured data 1

First, we consider the following non-linear manufactured volatility and interest rate functions:

σ(t) = 0.3e−t , r(t) = 0.5t2 + 0.1. (6)

Next, we obtain reference values for the call option that are based on these manufactured volatility
function and interest rate function (6) by solving Equation (3) with Tα = 90α/360 for α = 1, 2, 3, 4
and Kβ = 70 + 10β for β = 1, 2, . . . , 5. The European call option prices generated by the given
functions (6) are represented in Table 1.

1070 E. PARK ET AL.

Table 1. European call option prices generated by the volatility and interest rate functions σ(t) = 0.3e−t , r(t) = 0.5t2 + 0.1.

Kβ 80 90 100 110 120

T1 = 90/360 22.96 13.63 6.02 1.80 0.36
T2 = 180/360 25.86 17.12 9.78 4.73 1.93
T3 = 270/360 28.66 20.34 13.17 7.72 4.11
T4 = 360/360 31.34 23.37 16.35 10.70 6.56

Figure 3. Estimated piecewise linear functions from the proposed algorithm compared to (a) the exact volatility function σ(t) =
0.3e−t and (b) the exact interest rate function r(t) = 0.5t2 + 0.1.

Figure 4. Estimated piecewise linear functions from the proposed algorithm compared to (a) the exact volatility function σ(t) =
0.3e−t , with fixed interest rate r = 0.01 and (b) the exact interest rate function r(t) = 0.5t2 + 0.1, with fixed volatility σ = 0.3.

Then, we demonstrate the proposed algorithm with the initial guesses σ̃ 0
n = −2, r̃0n = −2, n =

1, 2, 3, 4. Figure 3 illustrates the obtained piecewise linear volatility and interest rate functions. Here,
we denote the exact functions with the dotted line and the estimated functions from our algorithm
with the solid line. Also, we have inserted the point set {σn, rn}, n = 1, 2, 3, 4 with some dots on the
black solid line. From these figures, we can confirm our proposed method satisfactorily recovers the
exact volatility and interest rate functions.We present theMSE between the estimated functions from
the numerical test and the exact ones. The values are 1.1413e-6 and 2.9398e-5 for volatility and interest
rate, respectively.

At this time, we conduct tests by fixing one of two variables to be constant. Figure 4 represents the
results obtained. Figure 4(a) indicates the volatility function obtained when the interest rate r = 0.01
is fixed and Figure 4(b) indicates the volatility function obtained when the volatility σ = 0.3 is fixed.
As shown in Figure 3, we use the samemark representations. Furthermore, we add the constant inter-
est rate and the constant volatility in the two graphs. Even if each interest rate or volatility is fixed as
a constant, a satisfactory result could be confirmed.

Next, we consider this test without taking exponentiation when we calibrate. Given initial guess
σ 0

α , r0α(α = 1, . . . ,Mt), we can construct the piecewise linear functions as shown in Figure 5.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1071

Figure 5. Schematic illustrations of the piecewise linear (a) volatility function and (b) interest rate functionwithout exponentiation.

Figure 6. Estimated piecewise linear functions calibrated without exponentiation compared to (a) the exact volatility function
σ(t) = 0.3e−t and (b) the exact interest rate function r(t) = 0.5t2 + 0.1.

With these functions, we apply the calibration algorithm. Figure 6 represents the estimated
piecewise linear functions. The MSE values are 1.1413e-6, 2.9398e-5 for volatility and interest rate,
respectively.

We obtain almost the same result compared to the above test. However, there still probability that
the estimated values may be negative in some cases. To prevent this problem, we include the step to
take exponentiation.

3.2. Manufactured data 2

In this section, we consider another following non-linear manufactured volatility and interest rate
functions:

σ(t) = 0.1 sin(4π t) − 0.1t + 0.2, r(t) = 0.15 cos(1.5π t) + 0.3t. (7)

We obtained the best performed set {σn, rn}, n = 1, 2, . . . , 6 in the lsqcurvefit routine by solving
Equation (3) with Tα = 30α/360 for α = 1, 2, . . . , 12 and Kβ = 70 + 10β for β = 1, 2, . . . , 5.

Figure 7 represents the piecewise linear functions from the obtained set {σn, rn}, n = 1, 2, . . . , 6.
Here, we use the same indications as above in Figure 3. Fluctuations of the two functions seem to be
quite severe. We can gain very similar functions to the exact ones even in that case. In this case, the
MSE values are 2.0756e-5, 9.5211e-7 for volatility and interest rate, respectively.

We conducted numerical experiments when large datasets with more maturities and strike prices
are given and other optimization algorithms to demonstrate the robustness of the proposed algorithm.
We consider the manufactured volatility and interest rate Equation (7) with Tα = 18α/360 for α =
1, 2, . . . , 20 and Kβ = 65 + 5β for β = 1, 2, . . . , 21. The total market data is 420 prices.

Figure 8 represents the time-dependent functions from the obtained set {σn, rn}, n = 1, 2, . . . , 20.
Here,we use the lsqcurvefitwith the default trust-region-reflective algorithm.We can gain very similar

1072 E. PARK ET AL.

Figure 7. Estimated piecewise linear functions from the proposed algorithm compared to (a) the exact volatility function σ(t) =
0.1 sin(4π t) − 0.1t + 0.2 and (b) the exact interest rate function r(t) = 0.15 cos(1.5π t) + 0.3t.

Figure 8. (a) Comparison of European call option price(circle-marked solid line) with numerical option prices (star-marked solid
line). (b) Constructed volatility and interest rate function.

functions to the exact ones even in that case. In this case, the MSE values are 1.5245e-6, 0.0151 for
volatility and interest rate, respectively.

Next, we looked at the performance for other optimization algorithms. For the previous test sets,
we use the lsqcurvefit with the Levenberg–Marquardt algorithm to solve Equation (3).

Figure 9(a) shows the two algorithms converged to the same solution. In the Levenberg–Marquardt
algorithm used, the MSE values are 1.5245e-6, 0.0151 for volatility and interest rate, respectively. The
accuracy of the two algorithms is similar.

3.3. Stability test

In this section, we consider manufactured functions with white noise for stability. First, we construct
new volatility and interest rate functions by adding white noise to the manufactured functions. The
new noised functions are as follows:

σnew(t) = σ(t)(1 + γW1),

rnew(t) = r(t)(1 + γW2),

where γ is a noise weight and W1,W2 follow standard normal distributions. Then, we apply our
proposed algorithm using these functions.We conduct stability tests with functions (7). To recognize
the effect of noise weight, we conduct tests in some cases. Figures 10 and 11 illustrate the obtained
piecewise linear volatility and interest rate functions when γ = 1/15, 1/5. Here, the blue dots denote

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1073

Figure 9. (a) Numerical option price, (b) Constructed volatility and interest rate function with the trust-region-reflective
algorithm(circle-marked solid line) and the Levenberg–Marquardt algorithm(star-marked solid line).

Figure 10. Estimated piecewise linear functions from the proposed algorithm with noise when γ = 1
15 compared to (a) the exact

volatility function σ(t) = 0.1 sin(4π t) − 0.1t + 0.2 and (b) the exact interest rate function r(t) = 0.15 cos(1.5π t) + 0.3t.

Figure 11. Estimated piecewise linear functions from the proposed algorithm with noise when γ = 1
5 compared to (a) the exact

volatility function σ(t) = 0.1 sin(4π t) − 0.1t + 0.2 and (b) the exact interest rate function r(t) = 0.15 cos(1.5π t) + 0.3t.

manufactured function with white noise. Table 2 shows the MSE values for volatility and interest rate
in each case. Even in functions with noise, we can find that the proposed method exhibits stability.

3.4. Effective test

In this section, we demonstrate the effectiveness of the proposed method by performing the test in
the paper [3]. We use the time-dependent volatility function in the test case1 of the paper [3]. The

1074 E. PARK ET AL.

Table 2. MSE values for manufactured volatility and inter-
est rate functions with noise.

γ 1/5 1/10 1/15

σ 3.0483e−5 2.1917e−5 2.0925e−5
r 2.5853e−5 7.1310e−6 3.6782e−6

Figure 12. Exact time-dependent volatility function and Estimated time-dependent volatility function (a) call option and (b) put
option.

time-dependent volatility function is followed:

σ(t) = 10 + 5 sin
(
2π

t
T

)
, 0 ≤ t ≤ T (8)

The parameters used in this section are taken as follows: The underlying asset price S is chosen from 0
to 20with asset price interval�S = 0.0625, the initial underlying asset price S0 = 10, time tomaturity
T = 50/365, time interval �t = 1/365, the strike price K = 11, and interest rate r = 0.2. We are
going to conduct two tests. We compute the call option price and the put option price using the
parameters and the Levenberg–Marquardt algorithm. Then, we apply the proposed algorithm using
the time-dependent volatility function (8).Here, the red dotted line denotes the exact time-dependent
volatility function and the black solid line denotes the estimated time-dependent volatility function
using the proposed method (Figure 12).

The average error for the exact and estimated functions is defined as

Average error (%) = 1
N

N∑
n=1

∣∣∣∣σn,exact − σn,estimated

σn,exact

∣∣∣∣× 100(%). (9)

In the reference paper [3], the average error for put option is observed with 2.47e−8%. Table 3
shows the average error for call and put option using the proposed algorithm. The proposed
algorithm has been found to calibrate time-dependent volatility that is more similar to manufactured
time-dependent volatility.

Table 3. Average error values for the exact time-
dependent volatility and the estimated time-dependent
volatility functions.

Option Call Put

Average error(%) 6.2652e−10 8.6030e−10

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1075

3.5. Manufactured data 3

On the third test, we consider manufactured volatility surface and constant interest rate:

σ(S, t) = (
10−5(S − S∗)2 + 0.2

)
e−t , r(S, t) = 0.015, (10)

where S∗ = 100 and S∗ = 300. Then S∗ = 100 and S∗ = 300 indicate ‘smile’ volatility and ‘skew’
volatility for the underlying asset, respectively (see Figure 13). We set Tα = 90α/360 for α =
1, 2, . . . , 4 and Kβ = 85 + 5β for β = 1, 2, . . . , 5.

Figure 14(a ,b) show the estimated option price using the proposed algorithm for themanufactured
volatility surface Equation (10) with S∗ = 100 and (b) S∗ = 300, respectively.

From Figure 14, we observe that we can construct the time-dependent volatility which covers the
generated market prices using the manufactured volatility surface. However, because we propose the
algorithm that constructs time-dependent volatility function, our model can not replicate the volatil-
ity smile and skew observed on the market in this paper. A local volatility surface of the underlying
asset and time is left for future research.

3.6. Volatility and interest rate construction using KOSPI 200 data

Here, we conduct our proposed algorithm to get piecewise linear volatility and interest rate functions
with KOSPI 200 index call option datasets on 30 December 2020. Table 4 indicates the real market
data with respect to the strikes and maturities. Table 5 represents trading volume of the call option
contract. Strikes used in these tables are Kβ = 395 + 2.5(β − 1) for β = 1, 2, . . . , 8 and the maturity

Figure 13. Manufactured volatility surface σ(S, t) = (10−5(S − S∗)2 + 0.2)e−t with (a) S∗ = 100 and (b) S∗ = 300.

Figure 14. Estimated option price using the proposed algorithm for manufactured volatility surface σ(S, t) = (10−5(S − S∗)2 +
0.2)e−t with (a) S∗ = 100 and (b) S∗ = 300.

1076 E. PARK ET AL.

Table 4. KOSPI 200 index call option price on 30 December 2020 with respect to the strike and maturity.

Kβ 395.0 397.5 400.0 402.5 405.0 407.5 410 412.5

T1 = 15�τ 3.70 2.95 2.31 1.79 1.35 1.02 0.76 0.54
T2 = 42�τ 8.06 7.03 6.11 5.33 4.75 4.02 3.49 3.01
T3 = 71�τ 10.25 9.40 8.48 7.56 7.03 6.10 4.42 3.91

Table 5. KOSPI 200 index call option volume on 30 December 2020 with respect to the strike and maturity.

Kβ 395.0 397.5 400.0 402.5 405.0 407.5 410 412.5

T1 = 15�τ 145957 148149 194886 155175 175479 110637 136867 88546
T2 = 42�τ 512 268 1310 536 983 391 566 1041
T3 = 71�τ 17 6 20 2 44 291 4 13

Table 6. Weighted KOSPI 200 index call option price on 30 December 2020 with respect to the strike and maturity.

Kβ 395.0 397.5 400.0 402.5 405.0 407.5 410 412.5

T1 = 15�τ 1.31 1.06 0.95 0.66 0.53 0.32 0.26 0.15
T2 = 42�τ 2.44 1.54 2.95 1.65 1.99 1.06 1.11 1.30
T3 = 71�τ 2.12 1.16 1.90 0.54 2.34 5.22 0.44 0.71

Figure 15. Comparison of weighted KOSPI 200 index call option price(dashed line) with numerical option prices (circle-marked
solid line) at (a) T = 15/365, (b) 42/365, and (c) 71/365. (d) Constructed volatility and interest rate function.

times are T1 = 15�τ , T2 = 42�τ , and T3 = 71�τ , where �τ = 1/365. At this time, the present
value of the KOSPI 200 index was S0 = 389.29.With Table 5, we can compute weightedmarket values
with normalized weight from the trading volume. We can check that in Table 6.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1077

Figure 16. Comparison of weighted KOSPI 200 index call option price (dashed line) with numerical option prices (circle-marked
solid line) at (a) T = 15/365, (b) 42/365, and (c) 71/365. (d) Constructed volatility and constant interest rate function.

We apply our calibration algorithm to this data with non-uniform spatial grid � = {15i | i =
0, . . . , 25} ∪ {S0} ∪ {390 + 1.25j | j = 0, . . . , 22} ∪ {420 + 15k | k = 0, . . . , 49}. Figure 15 shows the
result of our proposed algorithm. We can find that numerical values from our proposed algorithm
are quite similar with the real market values at each maturity. It can be inferred from Figure
15(a–c). That is, our method also worked well in KOSPI 200 data. Additionally, we inserted the
constructed volatility and interest rate function from the algorithm in Figure 15(d). It can be
inferred from the tests conducted so far that the volatility and interest rate functions can be found
well.

Also, we implement tests with consumption that the volatility or the interest rate is constant,
respectively. The results are presented in Figures 16 and 17.

4. Conclusions

Many studies disclosed the assumption that volatility and interest rate are all constant values in the
BS equation does not reflect well the real-world market. To overcome the vulnerability of the BS
equation, we consider an algorithm that can construct the time-dependent volatility and interest
rate function in this paper. The main goal of our paper is to find these two time-varying func-
tions from the real market data. Because of the fact that volatility and interest rate are positive
in the usual case, we use the exponential function to make the values obtained positive. Then,
we can construct the piecewise linear structures of them by interpolating some points, which is
obtained from the exponential function. When we construct the piecewise linear functions, we
use the lsqcurvefit. As shown in Section 3, we demonstrate that our proposed algorithm works

1078 E. PARK ET AL.

Figure 17. Comparison of weighted KOSPI 200 index call option price (dashed line) with numerical option prices (circle-marked
solid line) at (a) T = 15/365, (b) 42/365, and (c) 71/365. (d) Constant volatility and constructed interest rate function.

well with obtained data from manufactured time-varying functions and the real market data,
KOSPI 200.

Acknowledgments
The corresponding author (J.S. Kim) was supported by the Brain Korea 21 FOUR through the National Research Foun-
dation of Korea funded by the Ministry of Education of Korea. The authors thank the reviewers for their constructive
and helpful comments on the revision of this article.

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Junseok Kim http://orcid.org/0000-0002-0484-9189

References
[1] I. Arregui and J. Ráfales, A stochastic local volatility technique for TARN options, Int. J. Comput. Math. 97 (2020),

pp. 1133–1149.
[2] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), pp. 637–654.
[3] H.M. Chen and C.H. Huang, An inverse European option problem in estimating the time-dependent volatility

function with statistical analysis, Int. J. Syst. Sci. 36 (2005), pp. 103–111.
[4] J. Daněk and J. Pospíšil, Numerical aspects of integration in semi-closed option pricing formulas for stochastic

volatility jump diffusion models, Int. J. Comput. Math. 97 (2020), pp. 1268–1292.

http://orcid.org/0000-0002-0484-9189

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1079

[5] A. Elettra and A. Rossella, A generalization of the Geske formula for compound options, Math. Soc. Sci. 45 (2013),
pp. 75–82.

[6] L.A. Grzelak, The collocating local volatility framework – a fresh look at efficient pricing with smile, Int. J. Comput.
Math. 96 (2019), pp. 2209–2228.

[7] L.A.Grzelak andC.W.Oosterlee,On theHestonmodel with stochastic interest rates, SIAM J. Financ.Math. 2 (2011),
pp. 255–286.

[8] C. Guardasoni, Semi-analytical method for the pricing of barrier options in case of time-dependent parameters (with
matlab@@@ codes), Comun. Appl. Ind. Math. 9 (2018), pp. 42–67.

[9] X.J. He and W. Chen, A closed-form pricing formula for European options under a new stochastic volatility model
with a stochastic long-term mean, Math. Financial Econ. 15 (2021), pp. 381–396.

[10] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency
options, Rev. Financ. Stud. 6 (1993), pp. 327–343.

[11] F.A. Ko and R.J.A. David, A numerical scheme for the Black–Scholes equation with variable interest rate using spec-
tral collocation and backward-differences, in Proceedings of the International MultiConference of Engineers and
Computer Scientists 1, 2015, pp. 401–403.

[12] Y. Liang andC.Xu,An efficient conditionalMonteCarlomethod for European option pricingwith stochastic volatility
and stochastic interest rate, Int. J. Comput. Math. 97 (2020), pp. 638–655.

[13] S. Lin and X.J. He, A closed-form pricing formula for forward start options under a regime-switching stochastic
volatility model, Chaos Solitons Fractals 144 (2021), pp. 110644.

[14] C.F. Lo and C.H. Hui, Valuing double barrier options with time-dependent parameters by Fourier series expansion,
IAENG Int. J. Appl. Math. Comput. Sci. 36 (2007), pp. 1–5.

[15] The MathWorks Inc.,MATLAB, Natick, MA, 1994, Software available at http://www.mathworks.com/.
[16] R.C Merton, Theory of rational option pricing, Int. J. Appl. Math. Comput. Sci. 4 (1973), pp. 141–183.
[17] R.Naz and I. Naeem,Exact solutions of a Black–Scholesmodel with time-dependent parameters by utilizing potential

symmetries, Discret. Contin. Dyn. Syst.-Ser. S. 13 (2020), pp. 2841–2851.
[18] M.R. Rodrigo and R.S. Mamon, An alternative approach to solving the Black–Scholes equation with time-varying

parameters, Appl. Math. Lett. 19 (2006), pp. 398–402.
[19] M.R. Rodrigo and R.S. Mamon,An application of mellin transform techniques to a Black–Scholes equation problem,

Anal. Appl. 5 (2007), pp. 51–66.
[20] D. Tavella and C. Randall, Pricing Financial Instruments: the Finite Difference Method, Vol. 13, Jone Wiely and

Sons, New York, 2000.
[21] L. Thomas, Elliptic Problems in Linear Differential Equations Over a Network: Watson Scientific Computing

Laboratory, Columbia University, New York, 1949.
[22] H. Windfcliff, P.A. Forsuth and K.R. Vetzal, Analysis of the stability of the linear boundary condition for the

Black–Scholes equation, J. Comput. Financ. 8 (2004), pp. 65–92.
[23] S.H.I. Yunxia and Z.H.A.O. Xiping, A novel method for prediction of option pricing for a market model, Econ.

Comput. Econ. Cybern. Stud. 47 (2013), pp. 1–14.

http://www.mathworks.com/

	1. Introduction
	2. Numerical algorithm
	3. Computational tests
	3.1. Manufactured data 1
	3.2. Manufactured data 2
	3.3. Stability test
	3.4. Effective test
	3.5. Manufactured data 3
	3.6. Volatility and interest rate construction using KOSPI 200 data

	4. Conclusions
	Acknowledgments
	Disclosure statement
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

