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Abstract: In this article, we present a Monte Carlo simulation (MCS) to estimate the total cost
required to control the spread of the COVID-19 pandemic by financial incentives. One of the greatest
difficulties in controlling the spread of the COVID-19 pandemic is that most infected people are not
identified and can transmit the virus to other people. Therefore, there is an urgent need to rapidly
identify and isolate the infected people to avoid the further spread of COVID-19. To achieve this, we
can consider providing a financial incentive for the people who voluntarily take the COVID-19 test
and test positive. To prevent the abuse of the financial incentive policy, several conditions should
be satisfied to receive the incentive. For example, an incentive is offered only if the recipients know
who infected them. Based on the data obtained from epidemiological investigations, we calculated
an estimated total cost of financial incentives for the policy by generating various possible infection
routes using the estimated parameters and MCS. These results would help public health policymakers
implement the proposed method to prevent the spread of the COVID-19 pandemic. In addition,
the incentive policy can support various preparations such as hospital bed preparation, vaccine
development, and so forth.

Keywords: COVID-19; Monte Carlo simulation; financial incentives; policymakers

1. Introduction

The outbreak of the coronavirus disease 2019 (COVID-19) pandemic is the most
formidable challenge that humanity has witnessed in this century [1]. Many preventive
measures have proven effective against the COVID-19 pandemic such as wearing masks,
self-quarantine, isolation, lockdown, travel restrictions, social distancing, school closures,
high-risk business restrictions, and vaccination. In particular, wearing face masks has a
significant protective effect against COVID-19 [2,3]. Social distancing reduces the inci-
dence of the disease by increasing the distance between people [4–6]. As a strong social
distancing measure, school closures were temporarily employed to reduce contact among
children [7]. Several countries have limited the operations of high-risk businesses such as
restaurants, bars, and gymnasiums during prior COVID-19 outbreaks [8]. If contact-tracing
systems are improved to monitor people’s daily contact information, close contacts of
COVID-19 patients can be identified. Baker et al. [9] suggested a strategy to minimize
disease transmission by studying an optimal quota of COVID-19 tests using contact in-
formation. Vaccination is one of the most effective medical interventions to significantly
decrease the spread of infectious diseases [10–13]. However, vaccination hesitancy is a
major global problem associated with COVID-19. To improve vaccine uptake, educating
people regarding the safety, effectiveness, and rigorous testing and evaluation of existing
vaccines is important [14]. More than 70% of the population must be inoculated to achieve
herd immunity. For details regarding vaccination, please refer to previous studies [15,16].
Fallucchi et al. [17] investigated and analyzed behavioral factors related to individual
willingness-to-test (WTT) using behavioral and economic insights to increase voluntary

Int. J. Environ. Res. Public Health 2023, 20, 1217. https://doi.org/10.3390/ijerph20021217 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20021217
https://doi.org/10.3390/ijerph20021217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-0484-9189
https://mathematicians.korea.ac.kr/cfdkim
https://doi.org/10.3390/ijerph20021217
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20021217?type=check_update&version=2


Int. J. Environ. Res. Public Health 2023, 20, 1217 2 of 15

participation in COVID-19 testing. In [18], the authors presented the results of a systematic
literature review on the effects of economic incentives on participation rate in prevention
management to reduce the risk of diseases such as cancer.

The main purpose of this study is to present a Monte Carlo simulation (MCS) con-
ducted to estimate the total cost required to control the spread of the COVID-19 pandemic
through financial incentives. We present various financial incentive policies and analyze
them in terms of cost to encourage voluntary COVID-19 testing of unidentified infected
people. It should be noted that the proposed method can also be applied in the future in
response to new global epidemic outbreaks by delaying the spread of an epidemic outbreak
to ensure sufficient time for vaccine development. We provide the Matalabe code for the
simulation main code in Appendix A.

2. Literature Review

In this section, we briefly review the relevant literature and highlight the novelty of
the proposed methodology compared to previous approaches. If contact-tracing data for
all populations can be obtained, a contact-tracing system will be able to end the COVID-19
pandemic. However, contact tracing data may violate an individual’s privacy. To motivate
the program users to provide more contact-tracing data, an incentive algorithm has been
developed [19]. Munzert et al. [20] showed that a financial incentive to use digital contact
tracking apps is an effective measure to contain the COVID-19 pandemic. However,
despite regular reminders and financial incentives, study participants showed low response
rates [21]. In this study, we focus on finding the links in the chain of transmission between
infected people and quickly identifying and isolating unidentified infected people rather
than requiring sensitive contact-tracing data from people. The proposed method can
motivate people to voluntarily take a COVID-19 test and receive a financial incentive by
providing information such as the person from whom they contracted the infection if they
tested positive for COVID-19. Thus, infected people are given a choice as to whether to
provide sensitive contact-tracing data, and they only have to provide a fraction of the
overall contact-tracing data collected on their movements.

In [22], the authors assessed the causes of stress for front-line healthcare professionals
and the impact of protective measures applied to counteract stress. It was also reported
that protective measures such as salary incentives, encouragement to work in teams,
and support from senior management can relieve stress, highlighting the importance
of appropriate protective measures. Our proposed method can help reduce stress for
healthcare professionals with simple tasks. For example, more financial incentives can be
provided if an individual makes an appointment with a healthcare professional in advance,
or incentives can be adjusted based on the opinion of healthcare professionals to help
reduce healthcare professional stress.

As described in [23], Israel has provided incentives for vaccination to protect the
health of all people from the COVID-19 pandemic. Laws and regulations enacted as
vaccine incentives during the pandemic include negative incentives to limit the freedom
of many people, including Green Passes. Although this can ultimately have positive
effects, many people may object to such measures. Because most vaccines require two
or more injections spaced three to four weeks apart, based on the empirical literature,
studies have recommended delivering some financial incentives after the first injection and
more financial incentive after the second injection to promote high levels of adherence to
COVID-19 vaccines [24]. The key issue is how to pay financial incentives. Recent studies
have shown that a lottery can improve COVID-19 vaccine injection more than a lump-sum
payment based on experiments in a virtual environment [25]. See the studies [25–27] for
methods to provide financial incentives in the form of a lottery during the COVID-19
pandemic. Although vaccines are highly effective, they have not been able to fully protect
people from the threat of COVID-19. It may take longer to build herd immunity because
people refuse or hesitate to get the COVID-19 vaccine for a variety of reasons [28]. Moreover,
the effectiveness of the vaccine is reduced against the COVID-19 variants [29]. Compared
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to the previous methods, the main novelty of the proposed algorithm is that it can estimate
the total cost required in controlling the spread of a new epidemic pandemic by financial
incentives under various incentive policies. It should noted that the proposed method can
be useful in the early times for combating new global epidemic outbreaks by delaying the
spread of the epidemic outbreak to ensure enough time for vaccine development.

3. Methods

Now, we present the proposed algorithm for estimating the total cost required to
control the spread of the COVID-19 pandemic through financial incentives after generating
an infection route using MCS with the given confirmed data. Table 1 lists the descriptions
of the parameters used in the proposed algorithm.

Table 1. Parameters of the proposed algorithm.

Symbol Description of Parameters

Cp
m Individual-specific information of confirmed COVID-19-positive users

m Infectee number
p The parent number of the m-th infectee

C(n) The number of the confirmed people on the n-th day
N Total number of the confirmed people during the observation day (∑ C(n))

In
known Set of numbers of confirmed people who know from whom they were infected

on the n-th day
In
unknown Set of numbers of confirmed people who do not know from whom they were infected

on the n-th day
In Set of identification numbers of confirmed people on the n-th day
Nn The number of In

known
r1 Ratio of finding someone who infected them
r2 Ratio of being the next generation’s parents in Īn

known
In
spreader Set of infection spreader number among confirmed people in In−1

In
known,spreader Set of infection spreader number among confirmed people in In−1

known
In
unknown,spreader Set of infection spreader number among confirmed people in In−1 \ In−1

known
Īn
known Set of confirmed people number by In−1

known,spreader
Nc The number of chains
UP Unit of reward per person for individual payments
UC Unit of reward per chain for payments by chain
R Total reward for individual payments
IC Set of the infection number belonging to the chain
nm The number of people infected directly or indirectly from the m-th infectee
Rm Reward of the m-th infectee
w Weight of control the intensity of the penalty for spreading virus
a Reward for a confirmed person who did not infect in the chain

3.1. Infection Networks

We define the individual-specific information Cp
m of infected people during the ob-

servation period. Here, C denotes the confirmed person, and p is the infectious person
identification number of a person that infected the confirmed COVID-19-positive person m.
Here, m is the number assigned to identify the infected, such as a social security number or
passport number, which is simply used as a number assigned according to the order of con-
firmation. For example, C2

7 indicates that it was identified seventh during the observation
days and was infected by the second confirmed person. Individual-specific information can
be found through epidemiological investigations. If the infection route cannot be found,
we set it to p = 0.

In the simulation, the infection route is generated by applying the MCS. Each day, r1
is the ratio of confirmed groups whose infection route is identified to the total number of
confirmed COVID-19-positive people; that is, Nn : C(n). r2 is the ratio of the group infected
from the confirmed group whose infection route was identified on the previous day to the
confirmed group whose infection route was identified. Figure 1 shows a schematic diagram
of the infection routes among the confirmed people during the observation period (7 days).
In Figure 1, the confirmed people in the blue and red boxes are a group of confirmed people
who know and do not know their parent contacts, respectively. The arrow indicates the
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route of infection, and the color of the arrow indicates different chains. Here, the ratios r1
and r2 are 7/10 and 2/3, respectively. Finally, in Figure 1, the people indicated in yellow
are those who infected someone the next day, among those whose infection route was
confirmed, In

known,spreader, and the people shown in blue are the those who are infected by
someone who knows the infection route, Īn

known.

Figure 1. Schematic illustration of the infection routes between the confirmed people. On the first
day, people shown in yellow are confirmed as being infected, who infect people the next day. Here,
r1 = 0.7, which is the ratio of people in the blue box to the total number of people on day 1, and
r2 = 0.3, which is the ratio of people in the red box to the total number of people on day 1.

The main algorithm for the infection network between confirmed cases is given
as follows:

Step (1) Generates the identification number set In using data of the number of confirmed cases on
the n-th day.

Step (2) Generates the identification number set of people who know their parents In
known by

random sampling without replacement by the ratio r1 from In.
In
known = {m : Cp

m st p 6= 0 for m ∈ In} and n(In
known) = [r1n(In)] where n(·) is the

number of elements in the set and [x] is the greatest integer not greater than x.
Step (3) Using the ratio r2, randomly sample Īn

known from In
known without replacement.

Step (4) Using n( Īn
known), randomly sample In

known,spreader from In−1
known and using

n(In
unknown \ Īn

known), randomly sample In
known,spreader from In−1

known with replacement.
Step (5) Randomly match (In

spreader and Īn
known) and (In

unknown,spreader and In
unknown \ Īn

known).

We repeated the algorithm to build an infection network with information of the
confirmed people during the observation days and tracked individual infection routes for
patients identified on the last day; see Figure 2.
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Figure 2. Diagram of the algorithm that generates the infected network.

Figure 3 shows the infection network generated using the proposed algorithm when
the observation period was 7 days and there were 10 confirmed cases every day. The
number of chains is 7, which was expressed in seven colors in Figure 3.
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Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7

Figure 3. Infection network during 7 days. Here, C(n) = 10 for n = 0, 1, · · · , 7. The superscript of
infected person C is the number of the parent who infected the patient C, and the subscript is the
unique number of the infected person C. The number of chains is 7, and one chain is expressed with
the same color.

3.2. Incentive Policies

To prevent the abuse of financial incentive policy, several conditions should be satisfied
to receive the incentive. Let us consider some possible policies:

• P1: Compensate every confirmed people equally by UP.
• P2: Compensate by UC per chain and distribute equally to those who belong to

each chain.
• P3: Compensate by UC per chain and distribute unevenly (reasonably) to those who

belong to each chain.

In the case of P1, the government can provide economic help to confirmed people
by simply paying the same compensation to all confirmed people. Then, the government
needs R = UP × N to realize the P1 policy, where UP is a unit of reward per person for
individual payments, and N is the total number of confirmed infected people during the
observation days. The P2 and P3 policies may not only help economically but also support
the government’s efforts to encourage suspected people who had symptoms to voluntarily
take the COVID-19 test. These policies can help control the transmission of coronavirus by
improving the quality of epidemiological investigations.

As shown in Figure 4, there are two types of chains: a fully ordered set and a partially
ordered set. This is an independent chain because the sources of infection in the two chains
are different. The fully ordered set can compare priorities with any two nodes selected;
however, the partially ordered set cannot. For example, it is not possible to compare the
order of confirmed patients on the same day in the yellow chain shown in Figure 4.

Therefore, if compensation is distributed based on the branches of each node without
evenly distributing it within the chain, different compensation may be paid to the confirmed
patients on the same day in the case of the partially ordered set. The P2 policy assumes
that rewards are evenly distributed within each chain for simplicity of exposure. The com-
pensation for each chain is the same; however, the higher the number of confirmed infected
people constituting the chain, the lower the compensation paid to one confirmed person.
Voluntary tests of previously unidentified infected people rather than passive large-scale
tests involving large-scale medical staff can help reduce the spread of COVID-19 by quickly
identifying and isolating the confirmed patients and filtering out the confirmed patients
early, which eventually reduces economic losses. The P3 policy is proposed to prevent
moral hazards such as intentional infection for rewards. We analyze the compensation paid
for each chain for P2 and P3 based on the total compensation R of P1. As a simple result,
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Table 2 presents the compensation that is equally distributed to people in each chain for the
infection network shown in Figure 3.

Figure 4. Red chain is a fully ordered set, and the yellow chain is a partially ordered set. Each chain
is independent. (For example, it is not possible to compare the order of confirmed patients on the
same day in the yellow chain.)

Table 2. Compensation equally distributed to people in each chain in the infection network as
shown in Figure 3. The compensation is rounded off to the first decimal place, and the numbers in
parentheses are the number of people in each chain.

Policy Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7

P1 100 100 100 100 100 100 100
P2 71 (14) 250 (4) 67 (15) 200 (5) 333 (3) 83 (12) 200 (5)

Next, we present a simple example of unevenly paying compensation to people in
the chain. During the observation day, the reward Rm of the m-th infectee is defined as
follows, depending on nm, which is the number of people infected directly or indirectly by
the m-th infectee.

Rm =
a

wnm + 1
, (1)

where m is the number of the infectees and the positive constant w is the weight that
controls the penalty for further spreading the virus. The sum of the reward for confirmed
individuals in one chain must be UC. Here, we use the following constraint.

UC = ∑
m∈IC

Rm = ∑
m∈IC

a
wnm + 1

, (2)

where IC is a set of infection numbers belonging to the chain, and a is a parameter that sat-
isfies the constraint Equation (2). For a chain with a fully ordered set as shown in Figure 5a,
C3

4 is paid R4 = a because no one became infected from it, C2
3 is paid R3 = a/(w + 1)

because it infected C3
4 , and C1

2 and C0
1 are paid R2 = a/(2w + 1) and R1 = a/(3w + 1),

respectively. Figure 5b illustrates the case of a chain with a complex partially ordered set.
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(a) (b)

Figure 5. Example of P3: (a) Fully ordered set (simple) with IC = {1, 2, 3, 4} and (b) Partially ordered
set (complex) with IC = {1, 2, · · · , 13}. The size and color of the node mean the size of the reward.
The larger the size and darker the color of the node, the larger the reward to be paid. The rewards for
each node that make the sum of the rewards of each chain (a,b) become UC are expressed using a
and w.

4. Results

In this section, we present the computational results of estimating the total reward
required to control COVID-19 outbreaks using a financial incentive policy.

First, to determine the change in the number of chains according to the ratios r1 and r2,
the average number of chains Nc corresponding to the combinations (r1, r2) is calculated
by increasing the two ratios by 0.1 from 0.1 to 0.9. At this time, 100 simulations were
performed for each combination and the number of confirmed people on the n-th day
C(n) = 100 for n = 0, 1, · · · , 7. Figure 6a shows the average number of chains based on
the combination of the two ratios r1 and r2. The number of cells in each cell is presented
in Figure 6a, and the mean is Nc. In a situation where the number of confirmed patients
is fixed, the change in the number of chains over a certain period can be interpreted as a
change in the number of confirmed cases constituting each chain in a different sense. In
each cell of Figure 6b, a number is an average number of confirmed patients constituting a
chain, and as r2 decreases, the number of members of the chain decreases. This is expected
to prevent the spread of the virus.
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Figure 6. Effect of ratios r1 and r2: (a,b) visualize the average number of chains and the average
number of confirmed patients that make up the chain according to the combination of r1 and
r2, respectively.
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Second, in order to find out the complexity of the presented MCS, the CPU time was
measured by different observation periods and the number of simulations of the MCS.
The simulation setting is the same as the first test condition except for the observation
period and the number of simulations. We calculated the average CPU times of 10 cases
for the observation periods 10, 20, · · · , and 60 days, and the numbers of simulations are
10, 102, · · · , and 104. Here, because of C(n) = 100, the longer the observation period is, the
higher the total number of confirmed cases. Table 3 and Figure 7 show the computational
test results. In parentheses in Table 3, the ratio based on the observation period of 10 days is
indicated. As the observation period increases, the number of confirmed cases constituting
the infected network increases linearly; however, the CPU time increases relatively quickly.
Furthermore, from Figure 7a, we can see that the increase in CPU time according to the
number of simulations shows linearity.

Table 3. CPU times (in seconds) for the presented algorithm with the observation periods are
10, 20, · · · , and 60 days, and the numbers of simulations are 10, 102, · · · , and 104.

10 20 30 40 50 60

101 0.0561 (1.0) 0.1163 (2.1) 0.2154 (3.8) 0.3163 (5.6) 0.4371 (7.8) 0.5717 (10.2)
102 0.5295 (1.0) 1.1656 (2.2) 2.1411 (4.0) 3.1617 (6.0) 4.3713 (8.3) 5.6781 (10.7)
103 5.2617 (1.0) 11.6098 (2.2) 21.3773 (4.1) 31.6089 (6.0) 43.7265 (8.3) 56.7887 (10.8)
104 52.2478 (1.0) 116.1130 (2.2) 213.6878 (4.1) 316.8556 (6.1) 437.5807 (8.4) 569.1442 (10.9)
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Figure 7. (a) Measured CPU time for the observation periods 10, 20, · · · , 60 and (b) for the number of
simulations 10, 102, · · · , 104, the ratio of CPU time based on a 10-day observation period.

Next, if UC = 1000 and w = 1, then a = 480 and a = 110 for the simple and complex
cases, respectively, as shown in Figure 5a,b, respectively. Refer to Figure 8 for a detailed
reward at each node.

Incentive Rm increases as nm decreases. This can be expected to slow the spread of
the virus by giving larger rewards to confirmed patients who have directly or indirectly
infected a small number. In addition, the effect on weight w that adjusts the intensity of the
penalty as can be seen in Figure 9 shows the reward a of the confirmed people who did not
infect a single person for weight w with UC = 1000. Here, w = 0 indicates the P2 policy,
which is the case of distributing equally to those who belong to each chain. In both chains,
the reward a converges to a constant value as w increases.
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(a) (b)

Figure 8. Example of P3: (a) the fully ordered set and (b) the partially ordered set. The number
next to each node is reward Rm. As a detailed example of Fig. 5, when UC = 1000 and w = 1, (a) is
a = 480, and (b) is a = 110.

0 2 4 6 8 10

70

250

500

750

1000

Figure 9. In the case of Figure 8, reward a for w = [0, 10] with UC = 1000. When w = 0, it implies
policy P2. In both chains, when w increases, a converges to a constant value.

5. Conclusions

In this study, we present an MCS method for estimating the total cost required to
control the spread of the COVID-19 pandemic through financial incentives. One of the
greatest difficulties in controlling the spread of the COVID-19 pandemic is that there are
infected people who are not yet identified and can transmit the virus to other people.
Therefore, it is extremely urgent to rapidly identify and isolate the unidentified infected to
avoid further spreading COVID-19. To achieve this purpose, we can consider providing
a financial incentive for the confirmed people who voluntarily took the COVID-19 test
and tested positive. MCS is used to generate infection network information, which can be
found through epidemiological investigations in the simulation. In addition, to prevent the
abuse of the financial incentive policy, several conditions should be satisfied in order to
receive the incentive. For example, the incentive is offered only if the confirmed people
should know from whom they became infected. Thus, we compared and analyzed three
policies: a policy (P1) that pays equal compensation to everyone and policies that distribute
compensation equally (P2) or unevenly (P3) to people who make up each chain of infection
routes. The P2 and P3 policies can be expected to encourage voluntary COVID-19 testing of
suspected patients who experience the symptoms and to help control coronavirus transmis-
sion. When distributing compensation unevenly, we proposed a policy to allocate smaller
compensation by imposing penalties based on the number of people infected directly or
indirectly by an infectee and the weight that adjusts the intensity of the penalty. The finan-
cial incentive considered for positive patients is financial support for cash types, e.g., gift
certificates, etc. To estimate the total cost of incentives, the computational results using MCS
based on real epidemiological data, instead of using a mathematical epidemic model for the
COVID-19 pandemic disease, can help public health policymakers to implement and use
the proposed method to prevent the spread of the COVID-19 pandemic. In addition, the
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incentive policy is expected to prevent the spread of COVID-19, help prepare for various
preparations, e.g., hospital bed preparation, vaccine development, compensate for the gap
in economic activities caused by quarantine, and help recover from the economic recession
caused by restrictions on business hours and group activities such as social distancing, etc.
There are many studies on a mathematical diffusion model that considers vaccination and
vaccine effects. Therefore, we will expand our research on policies that encourage vaccine
effectiveness or vaccination in the proposed method in future work.
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Appendix A. MATLAB Code of Incentive

Table A1 presents the reward for nm for each chain with w = 1 for the infection network
shown in Figure 3. We provide the MATLAB code for the simulation of Table A1 from the
website of the corresponding author: https://mathematicians.korea.ac.kr/cfdkim/open-
source-codes/ (accessed on 27 November 2022).

Table A1. In the infection network shown in Figure 3, the reward for nm of each chain was presented
rounding off to the first decimal place with w = 1, and the numbers in parentheses are the number of
people receiving the corresponding reward.

nm Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7

0 143 (4) 480 (1) 107 (7) 270 (3) 429 (2) 113 (8) 270 (3)
1 71 (3) 240 (1) 54 (3) 135 (1) 0 (0) 56 (1) 135 (1)
2 48 (3) 160 (1) 36 (1) 0 (0) 143 (1) 0 (0) 0 (0)
3 0 (0) 120 (1) 27 (1) 0 (0) 0 (0) 0 (0) 0 (0)
4 29 (1) 0 (0) 0 (0) 54 (1) 0 (0) 0 (0) 54 (1)
5 24 (1) 0 (0) 0 (0) 0 (0) 0 (0) 19 (1) 0 (0)
6 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
7 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
8 0 (0) 0 (0) 12 (1) 0 (0) 0 (0) 0 (0) 0 (0)
9 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 11 (1) 0 (0)
10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
11 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 9 (1) 0 (0)
12 11 (1) 0 (0) 8 (1) 0 (0) 0 (0) 0 (0) 0 (0)
13 10 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
14 0 (0) 0 (0) 7 (1) 0 (0) 0 (0) 0 (0) 0 (0)

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
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The main code is as follows:

c l e a r a l l ; c l c
g loba l Number_parent tempChain P
% Fixed random seed
rand ( ' seed ' , 7 )
% Observation period
Period =8;
% Number of new cases per day
C=zeros ( 1 , Period ) +10;
% Rat io of f inding someone who i n f e c t e d t h a t person
r1 = 0 . 7 ;
% Rat io of being the next generat ion ' s parents in I_k^n
r2 =1/3;
% Personal information ( parent i d e n t i f i c a t i o n number ,
% s e l f i d e n t i f i c a t i o n number )
P=[ zeros (C( 1 ) , 1 ) , ( 1 :C( 1 ) ) ' ] ;
% The numbers of confirmed people who know from whom they
% were i n f e c t e d on the 0 - th day
Nb_known_parent=round (C( 1 ) * r1 ) ;
% Set of i d e n t i f i c a t i o n numbers of confirmed people who know
% from whom they were i n f e c t e d on the 0 - th day
Idx_known_parent_C_previous= s o r t ( randperm (C( 1 ) , Nb_known_parent ) ) ;
Idx_unknown_parent_C_previous =1:C( 1 ) ;
% Set of i d e n t i f i c a t i o n numbers of confirmed people who unknow
% from whom they were i n f e c t e d on the 0 - th day
Idx_unknown_parent_C_previous ( Idx_known_parent_C_previous ) = [ ] ;
% Observe on the ( n - 1 ) - th day
f o r n=2: Period

% The numbers of confirmed people who know
% from whom they were i n f e c t e d on the 0 - th day
Nb_known_parent=round (C( n ) * r1 ) ;
% Set of i d e n t i f i c a t i o n numbers of confirmed people who know
% from whom they were i n f e c t e d on the n - th day , n = 1 , . . . , 7
Idx_known_parent_C= s o r t ( randperm (C( n ) , Nb_known_parent ) ) ;
Idx_unknown_parent_C =1:C( n ) ;
% Set of i d e n t i f i c a t i o n numbers of confirmed people who unknow
% from whom they were i n f e c t e d on the n - th day , n = 1 , . . . , 7
Idx_unknown_parent_C ( Idx_known_parent_C ) = [ ] ;
% The number of being the next generat ion ' s parents in I_k^n
N=sum( rand ( Nb_known_parent , 1 ) ≤ r2 ) ;
% Randomly r e s t o r e d parent i d e n t i f i c a t i o n number
Idx_parent=Idx_known_parent_C_previous ( randi ( . . .

length ( Idx_known_parent_C_previous ) ,N, 1 ) ) ;
Idx_parent =[ Idx_parent , Idx_unknown_parent_C ( randi ( . . .

length ( Idx_unknown_parent_C_previous ) , Nb_known_parent -N, 1 ) ) ] ;
Idx_parent=Idx_parent ( randperm ( length ( Idx_parent ) ) ) ' ;
Parent=zeros (C( n ) , 1 ) ;
% Set of confirmed pat ient ' s parent number a t n - day
Parent ( Idx_known_parent_C ) =Idx_parent+P ( end , 2 ) -C( n - 1 ) ;
P=[P ; Parent , ( P ( end , 2 ) +1:P ( end , 2 ) +C( n ) ) ' ] ;
% Update s e t of i d e n t i f i c a t i o n numbers of confirmed people
% who know from whom they were i n f e c t e d on the n - th day ,
% n = 1 , . . . , 7
Idx_known_parent_C_previous=Idx_known_parent_C ;
% Update s e t of i d e n t i f i c a t i o n numbers of confirmed people
% who unknow from whom they were i n f e c t e d on the n - th day ,
% n = 1 , . . . , 7
Idx_unknown_parent_C_previous=Idx_unknown_parent_C ;
end
% P3 : Compensate by UC per chain and d i s t r i b u t e unevenly
% ( reasonably ) to those who belong to each chain .
P ( : , 3 ) =0;P ( 2 5 , 1 ) =15;P ( 3 7 , 1 ) =25;
% Set of p a t i e n t numbers s e l e c t e d as parents
Number_parent= s o r t ( P ( P ( : , 1 ) 6= 0 , 1 ) ) ' ;
% Number of chains
Nb_chain =0;
while ¬isempty ( Number_parent )
Nb_chain=Nb_chain +1;
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i =Number_parent ( 1 ) ;
Number_parent ( Number_parent== i ) = [ ] ;
% Chains spread from one parent ( c e l l format ,
% columns are the number of confirmed cases f o r each day )
tempChain= c e l l ( 1 , 1 0 0 ) ;
Tracking ( i , 1 ) ;
tempChain { 1 } = i ;
tempChain=tempChain (¬c e l l f u n ( ' isempty ' , tempChain ) ) ;
% Set of chains ( c e l l format , each row i s a chain spread
% from one parent )
Chain { Nb_chain , 1 } = tempChain ;
end
% Compensation to pay the same amount to a l l confirmed p a t i e n t s
Reward_person =100;
% Tota l compensation when the same amount i s
% paid to a l l confirmed p a t i e n t s
Total_reward_person=Reward_person *sum(C(2:end ) ) ;
% Compensation t h a t pays the same amount per chain
Reward_chain=Total_reward_person/Nb_chain ;
f o r i =1: Nb_chain
j =1; I =Chain { i } { j } ;
f o r j =2 : length ( Chain { i } )
I =[ I , Chain { i } { j } ] ;
end
I c { i }= I ;
end
P ( : , 4 ) =0;
f o r i =1: Nb_chain
f o r j =length ( Chain { i } ) : - 1 : 2
f o r k=length ( Chain { i } { j } ) : - 1 : 1
P ( P ( Chain { i } { j } ( k ) , 1 ) , 4 ) = P ( P ( Chain { i } { j } ( k ) , 1 ) , 4 ) +1+P ( P ( Chain { i } { j } ( k ) , 2 ) , 4 ) ;
end
end
end
Number_parent=unique ( s o r t ( P ( P ( : , 1 ) 6= 0 , 1 ) ) ' ) ; idx0 = [ ] ;
f o r i =1 : length ( Number_parent )
temp=P ( P ( : , 1 ) ==Number_parent ( i ) , 2 ) ;
f o r j =1 : length ( temp )
i f sum( Number_parent==temp ( j ) ) ==0
idx0 =[ idx0 , temp ( j ) ] ;
end
end
end
Max = max( P ( : , 4 ) ) ; P ( P ( : , 4 ) ==0 ,4) = - i n f ; P ( idx0 , 4 ) =0;
W=1;
f o r i =1: Nb_chain
a=Reward_chain/sum ( 1 . / (W. * P ( I c { i } , 4 ) +1) ) ;
P ( I c { i } , 3 ) =a . / (W. * P ( I c { i } , 4 ) +1) ;
end
% Resul t
f o r j =0 :Max
f p r i n t f ( s p r i n t f ( ' \n %d ' , j ) ) ;
f o r i =1 : Nb_chain
nm = sum( P ( I c { i } , 4 ) == j ) ;
i f nm == 0
f p r i n t f ( s p r i n t f ( ' | 0 ( 0 ) ' ) ) ;
e l s e
i i = I c { i } ( f ind ( P ( I c { i } , 4 ) == j , 1 ) ) ;
f p r i n t f ( s p r i n t f ( ' | %.0 f (%d ) ' ,P ( i i , 3 ) ,nm) ) ;
end
end
end
% Recursive funct ion to f ind descendants
funct ion Tracking (num, l e v e l )
g loba l Number_parent tempChain P
num_descendent=P ( P ( : , 1 ) ==num, 2 ) ;
tempChain { l e v e l +1}=[ tempChain { l e v e l +1} , num_descendent ' ] ;
nb=length ( num_descendent ) ;
f o r i =1 : nb
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Number_parent ( Number_parent==num_descendent ( i ) ) = [ ] ;
Tracking ( num_descendent ( i ) , l e v e l +1) ;
end
end
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