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In this paper, we present a detailed derivation and numerical investigation of an indicator function for front-tracking methods.
We use the discrete Dirac delta function to construct an indicator function from a set of Lagrangian points and solve the resulting
discrete Poisson equation with the zero Dirichlet boundary condition using an iterative method. We present several compu-
tational tests to investigate the e�ect of parameters such as distance between points, uniformity of the distance, and types of the
Dirac delta functions on the indicator function.

1. Introduction

Dirac delta function plays an important role in various sci-
enti�c and industrial problems. One of them is on the nu-
merical simulations of �uid �ows including multiphase �ows
and �uid solid interaction (FSI) problems. �e immersed
boundary methods (IBM) are on the front burner for the
numerical simulations of these problems and one of the key
points lay on the methods to accurately separate the moving
multiphase or solid boundaries. �e phase �eld method
(PHM) [1–4], level set method (LSM) [5–7], and volume of
�uid methods (VOF) [8–10], express the di�erent phases
using particular scalar functions.�ese functions are designed
to be advected by �uid �ows and one phase changes to an-
other one continuously to avoid numerical stability problem.
It should be noted that the interphase is di�used and im-
plicitly captured in the three methods. However, the im-
mersed boundary method is di�erent for its explicit boundary
expression. Unlike PHM, LSM, and VOF, distinguish of
di�erent phase can be denoted directly by scalar phase

functions; in IBM, a so-called indicator function needs to be
constructed for these phase distinctions indirectly. In this
process, if a Dirac delta function is used for the construction
of the indicator function, the di�used interaction forms as
PHM, LSM, and VOF. From this point of view, these four
methods are all belonged to di�used models in simulations of
multiphase �ows. In IBM, the �uid interface is explicitly
represented by several Lagrangian points and the �uid �ow is
solved on a stationary Eulerian mesh. Furthermore, when
solving Richards’ equation [11, 12] for layered soils, the layers
of soils can be expressed using an indicator function.

Multiphase �uid �ows are important in various scienti�c
and industrial problems. �ere are many mathematical
models and numerical methods for the multiphase �uid
�ows such as the immersed boundary method (IBM)
[13–16], level set method [5–7], phase-�eld method [1–4],
volume of the �uid method [9, 10], and lattice Boltzmann
method [17–20], to name a few.

In the front-tracking method [21] such as IBM, the
�uid-�uid interface is represented by a Lagrangian grid and
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the flow is solved on a stationary Eulerian mesh. +e La-
grangian points are represented by a set of marker points
and move with the fluid flow defined at the Eulerian grid.
To represent viscosity or density difference between dif-
ferent fluids, and indicator function is calculated based on
the marker points [21–23]. +erefore, the indicator func-
tion has an important role in not only theoretical issues
coupling with the hydrodynamics equations [24], but also
in practical approaches in recent studies. +e density field
was determined by the indicator function derived from an
irrotational discrete delta vector in the droplet simulations
with a large density ratio in [25]. To incorporate the vis-
coelasticity effect of Oldroyd-B fluid, the smoothed
Heaviside indicator function was used for simulating the
dynamics of Newtonian vesicle in [26]. +e role of the
indicator function was represented by the solid fraction in
the diffuse-interface IB framework for conjugate-heat-
transfer problems proposed by [27]. Moreover, the indi-
cator function was used to identify the spatial distribution
of physical quantities to predict the structure and refractive
index profile of fiber-optic components in [28]. In [21], the
authors presented the indicator function I(x, y) based on a
continuous version as follows:

I(x, y) � 􏽚
A
δ x − x′( 􏼁δ y − y′( 􏼁da′, (1)

where A is an area.+en, symbolically, we have the following
equation:

∇I(x, y) � 􏽚
A
∇ x − x′( 􏼁δ y − y′( 􏼁da′,

� − 􏽚
A
∇′δ x − x′( 􏼁δ y − y′( 􏼁da,

� − 􏽉
zA
δ x − x′( 􏼁δ y − y′( 􏼁n′da′,

� − 􏽚
zA
δ x − x′( 􏼁δ y − y′( 􏼁n′da′,

(2)

where n′ is the outward unit normal vector at the domain
boundary zA.

However, it is not straightforward to connect the rela-
tionship between the numerical scheme and the continuous
version of the indicator function. +erefore, the objective of
this paper is to present a detailed derivation and numerical
investigation of the indicator function for front-tracking
methods.

+e paper is organized in the following manner. In
Section 2, we present the detailed derivation of the indicator
function. In Section 3, various numerical experiments are
performed to investigate the effect of parameters such as
distance between points, uniformity of the distance, and
types of the Dirac delta functions on the indicator function.
In Section 5, conclusions are drawn.

2. Derivation of the Indicator Function

Let δ(x) be a smoothed Dirac delta function and satisfy the
following equation:

􏽚
∞

− ∞
δ x − x0( 􏼁dx � 1 for any x0 ∈ R. (3)

For example, a 4-point delta function [29–32] is given as
follows:

δ(x) �
1
h
ϕ

x

h
􏼒 􏼓, (4)

where h is the space step size in the discrete equation and
given by the following equation:

ϕ(r) �

3 − 2|r| +

�����������

1 + 4|r| − 4r
2

􏽱

􏼒 􏼓

8
, if |r|≤ 1,

5 − 2|r| −

�������������

− 7 + 12|r| − 4r
2

􏽱

􏼒 􏼓

8
, if 1≤ |r|≤ 2,

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Now, we consider a series of the shifted delta function
δ(x − X0) for some − h<X0 < h and it is shown in Figure 1
for some X0 � 0.7 and h � 1, here we take h � 1 for better
visualization. We describe the h effect in Section 3.1.

Let xi � ih for i � ±1, ±2, . . .. From the definition (4),
we have the following equation:

􏽘

∞

i�− ∞
hδ xi − X0( 􏼁 � hδ x− 2 − X0( 􏼁 + hδ x− 1 − X0( 􏼁

+ hδ x0 − X0( 􏼁 + hδ x1 − X0( 􏼁

+ hδ x2 − X0( 􏼁 � 1.

(6)

For any X0 ∈ R, 􏽐
∞
i�− ∞ hδ(xi − X0) � 1 holds.
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Figure 1: Schematic of delta function δ(x) and shifted delta
function δ(x − X0).
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Let us consider a point x � X0 at the interface in the one-
dimensional space. We want to construct an indicator
function which increases monotonically from zero to one
across the pointX0 as x changes its position from left to right
of the point, i.e.,

I(x) � 􏽚
x

− ∞
δ t − X0( 􏼁dt . (7)

Figure 2 shows the delta function δ(x) (solid line) and
the indicator function I(x) (dashed line) with h � 1.

Taking a second derivative of equation (7) with respect to
x, then we have the following equation:

Ixx(x) � δx x − X0( 􏼁. (8)

It implies that the indicator function can be found by
solving the Poisson equation (8). Let us consider a 4-point
delta function with X0 � 0 and a discretization for equation
(8) as follows:

Ii+1 − 2Ii + Ii− 1 �
δi− 1 − δi+1( 􏼁

2
, (9)

where we have used the unit space step size h � 1 and
Ii � I(xi) � I(i), δi � δ(xi) � δ(i). Let I− 4 � 0 and I4 � I3,
then we can rewrite equation (9) for i � − 3, − 2, . . . , 3 as a
matrix vector format:

− 2 1 0 0 0 0 0

1 − 2 1 0 0 0 0

0 1 − 2 1 0 0 0

0 0 1 − 2 1 0 0

0 0 0 1 − 2 1 0

0 0 0 0 1 − 2 1

0 0 0 0 0 1 − 1
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.

(11)

From equation (11), we obtain the following results:

I− 3 �
1
2

δ− 4 + δ− 3 − δ3 − δ4( 􏼁 � 0,

Ii �
1
2
δi + 􏽘

i− 1

j�− 2
δjfori � − 2, − 1, 0, 1, 2,

I3 � δ− 2 + δ− 1 + δ0 + δ1 + δ2 � 1,

(12)

where we have used δ− 4 � δ− 3 � δ3 � δ4 � 0. Since δ(x)≥ 0,
the indicator function I(x) is a monotonically increasing

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

x

delta function
indicator function

Figure 2: Delta function δ(x) (solid line) and indicator function
I(x) (dashed line) with h � 1.
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function, i.e., 0 � I− 4 � I− 3 ≤ I− 2 ≤ . . . ≤ I3 � I4 � 1.
Figure 3(a) shows discrete delta function δ− 4 � δ− 3 � δ− 2 �

δ2 � δ3 � δ4 � 0, δ− 1 � δ1 � 0.25, δ0 � 0.5 and discrete in-
dicator function I− 4 � I− 3 � I− 2 � 0, I− 1 � 0.125, I0 � 0.5,
I1 � 0.975, I2 � I3 � I4 � 1 obtained from equation (12).
Figure 3(b) shows discrete delta and indicator functions with
various point positions, − 1<X0 < 1.

Next, let us consider a hat shaped indicator function as
shown in Figure 4 and the sum of the corresponding Dirac
delta functions is δ(x + 4) − δ(x − 4). If we solve the fol-
lowing equation for the indication function with zero
Dirichlet boundary condition, then we have the result in
Figure 4.

Ixx(x) � δx(x + 4) − δx(x − 4). (13)

Now, we consider this in the two-dimensional space. Let
a computational domain Ω � (a, b) × (c, d) be partitioned
in Cartesian geometry. Let Nx and Ny be the number of cells
in the x- and y-directions, respectively. We assume a
uniform mesh with mesh spacing h � (b − a)/Nx �

(d − c)/Ny. Let xij � (xi, yj) � (a + ih, c + jh) for
i � 0, . . . , Nx and j � 0, . . . , Ny. Let Xl � (Xl, Yl) for l �

1, . . . , M be a set of M Lagrangian points, see Figure 5.
Because I(x) is an indicator function, the following

equation holds at the transition layer of the function:

−3−4 −2 −1 0 1 2 3 4
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0.4

0.6

0.8

1

x

delta function
indicator function

(a)

−3−4 −2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

x

delta function
indicator function

(b)

Figure 3: (a) Delta function δ(x) (solid line) and indicator function I(x) (dashed line) with X0 � 0. (b) Discrete delta and indicator
functions with various point positions, − 1<X0 < 1.

−5 0 5
−0.5

0

0.5

1

delta function
indicator function

Figure 4: Sum of the Dirac delta functions δ(x + 4) − δ(x − 4) and
the associated indicator function I(x).

Xij

Xl

n

a b
C

d

Ω

Figure 5: Eulerian points xij, Lagrangian points Xl , and normal
vector n for Lagrangian points in the computational domain
Ω � (a, b) × (c, d).
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∇I(x)

|∇I(x)|
� − n(x), (14)

where n(x) is the outward normal vector at x. Next, let us
rewrite equation (14) as follows:

∇I(x) � − n(x)|∇I(x)|. (15)

We replace n(x)|∇I(x)| in equation(14). by 􏽐
M
l�1 n(Xl)δ

(x − Xl)Δsl, then we have the following equation:

∇I(x) � − 􏽘
M

l�1
n Xl( 􏼁δ x − Xl( 􏼁Δsl, (16)

where δ(x − Xl) � δ(x − Xl)δ(y − Yl) and Δsl � 0.5
(|Xl+1 − Xl| + |Xl− 1 − Xl|). After taking the divergence op-
erator to equation (16), we have the following Poisson’s
equation:

ΔI(x) � ∇ · ∇I(x) � − ∇ · 􏽘
M

l�1
n Xl( 􏼁δ x − Xl( 􏼁Δsl

⎛⎝ ⎞⎠. (17)

We solve equation (17). with appropriate Dirichlet
boundary condition. In this study, we use the Gauss–Seidel
method.

3. Numerical Experiments

Let us consider two-dimensional indicators on the com-
putational domain, Ω � (− 4, 4) × (− 4, 4) with h � 1. In
Figures 6 and 7, we consider uniform distance change of

y-direction, Δs for fixed X0 � 0. In the immersed boundary
method, there are many types of delta functions. Most
commonly used delta functions are 2-point [31–33], 3-point
[31, 32, 34], 4-point [29–32], 4-point cosine [30, 32], and 6-
point [29, 31, 35, 36] functions. +ese functions are defined
as follows:

(i) 2-point delta function [31–33]:

ϕ(r) �
1 − |r|, if |r|≤ 1,

0, otherwise.
􏼨 (18)

(ii) 3-point delta function [31, 32, 34]:

ϕ(r) �

1
3

1 +

�������

− 3r
2

+ 1
􏽱

􏼠 􏼡, if |r|≤ 0.5,

1
6

5 − 3|r| −

�������������

− 3(1 − |r|)
2

+ 1
􏽱

􏼒 􏼓, if 0.5<|r|≤ 1.5,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

(iii) 4-point cosine delta function [30, 32]:

ϕ(r) �

1
4

1 + cos
πr

2
􏼒 􏼓􏼒 􏼓 if |r|≤ 2,

0 otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

(iv) 6-point delta function [29, 31, 35, 36]:

ϕ(r) �

61
112

−
11
42

|r| −
11
56

|r|
2

+
1
12

|r|
3

+

�
3

√

336
243 + 1584|r| − 748|r|

2
− 1560|r|

3
+ 500|r|

4
+ 336|r|

5
− 112|r|

6
􏼐 􏼑 if |r|≤ 1,

21
16

+
7
12

|r| −
7
8
|r|

2
+
1
6
|r|

3
−
3
2
ϕ(|r| − 1)

1/2 if 1<|r|≤ 2,

9
8

−
23
12

|r| +
3
4
|r|

2
−

1
12

|r|
3

+
1
2
ϕ(|r|) if 2<|r|≤ 3,

0 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Figure 6 shows 2-point, 3-point, 4-point, 4-point cosine,
and 6-point delta functions from top to bottom row with
Δs � 1. Figures 6(a)–6(d) are 2D delta function δ(x − X0) �

δ(x − X0)δ(y − Y0) with X0 � 0 and Y0 � 0; 2D delta
functions δ(x − Xl) � δ(x − Xl)δ(y − Yl) with Xl � 0 and
various point positions with one distance; sum of 2D delta
functions 􏽐lδ(x − Xl); and 2D indicator function I(x),

respectively. We obtain very similar results of indicator
functions I(x) for all cases except the 2-point delta function.
Figure 7 shows the result of delta functions, the sum of delta
functions, and indicator functions according to different
Δs � h, 2h, 3h, respectively. As shown in Figure 7, in cases of
Δs � h and Δs � 2h, the indicator functions are similar. On
the other hand, when Δs � 3h, the indicator function seems
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unstable compared to Figures 7(a) and 7(b). For this reason,
it is recommended to use Δs which is at least smaller than 2h

for a stable indicator function construction.
Let us consider an indicator on the computational

domain, Ω � (− 15, 15) × (− 15, 15) with h � 1 using the 4-
point delta function. Figure 8 shows immersed boundary
positions as a circle with different uniform distance Δs, 2D
delta functions δ(x − Xl) � δ(x − Xl)δ(y − Yl), l � 1, 2,

. . . , M, the sum of 2D delta functions 􏽐lδ(x − Xl), and 2D
indicator function I(x) from top to bottom row. We can
observe that if Δs is too large, then the result of the indicator
function is not good.

+e first and second columns in Figure 9 show the
construction of the indicator functions with randomly

distributed points ranging 0.5h<Δsl < 1.5h and
2.5h<Δsl < 4h, respectively. We can observe that the indi-
cator function is well reconstructed from randomly dis-
tributed points ranging 0.5h<Δsl < 1.5h.

3.1. Effects of h. In this section, we describe the effects of
spatial grid size h. Figure 10 shows 4-point delta functions
and corresponding indicator functions for different spatial
step h � 1, 0.5, and 0.25. We observe that as h is smaller, the
delta function becomes sharper and the interface transition
layer of the indicator function becomes shorter.

In computational domain Ω � (− 15, 15) × (− 15, 15), we
consider uniform immersed boundary points for a circle
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Figure 6: From top to the bottom row, 2-point, 3-point, 4-point, 4-point cosine, and 6-point delta functions: (a) 2D delta function
δ(x − X0) � δ(x − X0)δ(y − Y0) with X0 � 0 and Y0 � 0, (b) 2D delta functions δ(x − Xl) � δ(x − Xl)δ(y − Yl) with Xl � 0 and various
point positions with one distance, (c) sum of 2D delta functions 􏽐lδ(x − Xl), and (d) 2D indicator function I(x).
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radius of 10 with different h � 1, 0.5, and 0.25 as shown in
Figure 11(a). In Figure 11(b), we solve the indicator func-
tion, accordingly the points in Figure 11(a). It has a more
stiff interface as h is smaller. Figure 11(c) shows
||I(k) − I(k− 1)||2 for the Gauss–Seidel iteration with a tol-
erance tol � 1.0e − 6, where k is the number of iterations and
I(0) is a zero vector. We can observe that the number of
iterations is getting larger as h approaches zero.

4. Fluid Application

In this section, we give two examples for the applications of
indicator function in multiphase flows and fluid-structure
interaction (FSI) problem. First, we consider the two-phase
flows problem as the dynamics of a droplet suspended in the
simple shear flow. +e droplet is between two parallel plates
as shown in Figure 12. Let u(x, t) � (u(x, t), v(x, t)) be fluid
velocity at x � (x, y) and time t. +e Lagrangian variable,
denoted asX(s, t), where s is arc length parameter, expresses
the immersed boundary. +e governing equations on the
domain Ω are as follows:

zu(x, t)

zt
+ u(x, t) · ∇u(x, t) � − ∇p(x, t)

+
1

Re
Δu(x, t) +

1
We

f(x, t),

(22)

∇ · u(x, t) � 0,

f(x, t) � 􏽚
T
F(X(s, t))δ2(x − X(t))ds,

F(s, t) �
z
2X(s, t)

zs
2 ,

zX(t)

zt
� U(x(t)),

U(X(s, t)) � 􏽚
Ω
u(x, t)δ2(x − X(s, t))dx,

(23)

where Γ is the interface between the two fluids.We define the
Reynolds number in equation (22) as Re � ρ2R2 _c,
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Figure 7: From top to bottom row, 2D delta functions δ(x − Xl) � δ(x − Xl)δ(y − Yl) with Xl � 0 and Yl � ±Δs, ±2Δs, . . ., sum of 2D
delta functions 􏽐lδ(x − Xl), and 2D indicator function I(x): (a) Δs � h, (b) Δs � 2h, and (c) Δs � 3h.
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Figure 8: (a) Immersed boundary positions with different distance Δs, (b) 2D delta functions of at the boundary positions, (c) sum of 2D
delta functions, and (d) 2D indicator function I(x) with different uniform distance Δs.
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Figure 9: (a) Randomly distributed boundary positions, (b) 2D delta functions of boundary positions, (c) sum of 2D delta functions, and (d)
2D indicator function I(x) with different nonuniform distance Δsl.
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We � Re · Ca, and Ca � ηR _c/σ, where ρ is fluid density, η
fluid viscosity, R droplet radius, _c the shear rate, and σ the
surface tension coefficient. We define a gradient field,

∇I(x, t) � 􏽚
Γ
n(X(s, t))δ2(x − X(s, t))ds . (24)

To compute the indicator function, the following
equation is solved:

ΔI(x, t) � ∇ · 􏽚
Γ
n(X(s, t))δ2(x − X(s, t))ds . (25)

+en, the variable density ρ and viscosity μ are defined as
follows:

ρ(I(x, t)) � ρ2 + ρ1 − ρ2( 􏼁I(x, t),

μ(I(x, t)) � μ2 + μ1 − μ2( 􏼁I(x, t),
(26)

where ρi and μi for i � 1, 2 are density and viscosity of fluid i,
respectively.

For simplicity, the viscosity and density of the droplet is
set equal to that of the matrix phase. Our focus is on the
generations of indicator functions from the unit normal of
the interface in the drop deformation process. We refer to
[37] for the details of numerical algorithms. We consider the
simulations of drop deformation on Ω � [0, 2] × [0, 2] with
a space mesh size 128 × 128. A droplet with a radius 0.5 is
put into the center of the domain with initially three sets of
different Lagrangian points for comparisons. Delta function
(5), Reynolds number Re � 1 , and capillary number Ca �

0.3 are used in simulations. We compared three different Δs
settings to investigate the effect of Δs on the formation of
indicator function at the end time t � 2.5. +e initial Δsini

values are set to 1.0 h, 5.0 h and 10.0 h with the number of
boundary points 201, 38, and 20, separately, see the first
column of Figure 13.While the drop deforms, the interface is
remeshed by adding and deleting points with the condition
Δsmax/Δsmin ≤ 2.0 for different Δsini leading to the boundary
points being more evenly distributed. As the time evolves,

the indicator function could be well resolved for Δsini � 1.0 h
as shown in the second row of Figure 13. However, in-
creasing Δs will lead the indicator function a slightly serrated
border as shown in the second and sixth rows of Figure 13
(case Δsini � 5.0 h and 10.0 h), which is unacceptable to
separate two immiscible fluids. Moreover, we could see the
drop interface shrink in the normal direction quickly by
setting the Δs larger while drop deforms in the shear flow, as
shown in the odd row of Figure 13. Table 1 lists the area
losses as the drop evolves at the time t � 2.5. It shows that the
larger Δs, the more the drop area loss.

Next, we take the direct-forcing immersed boundary
method as an example application in the FSI problem of the
indicator function. +e nondimensional governing
equations are similar to the multiphase flows and read as
follows:

zu(x, t)

zt
+ u(x, t) · ∇u(x, t) � − ∇p(x, t)

+
1

Re
Δu(x, t) + f(x, t),

∇ · u(x, t) � 0,

f(x, t) � 􏽚
T
F(X(s))δ2(x − X(t))ds ,

zX(s)

zt
� U(X(s)),

U(X(s)) � 􏽚
Ω
u(x, t)δ2(x − X(t))dx,

(27)

where u is the velocity, p is the pressure, u is the body force,
and Re is the Reynolds number. From equation (27), we can
get the following equation:

0
–4 –3

delta function (h = 1)
delta function (h = 0.5)
delta function (h = 0.25)

indicator function (h = 1)
indicator function (h = 0.5)
indicator function (h = 0.25)

–2 –1 0
x

1 2 3 4

0.5

1

1.5

2

Figure 10: Delta and indicator functions with different spatial steps h � 1, 0.5, and 0.25.
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f �
zu
zt

+ u · ∇u + ∇p −
1

Re
Δu �

zu
zt

− rhs,

zu
zt

− rhs �
un+1

− un

Δt
− rhs,

(28)

where n and n + 1 are time steps, and rhs �

− (u · ∇u + ∇p − 1/ReΔu). +e forcing exerted on the

Lagrangian points at the immersed boundary can be written
as follows:

F(X(s)) �
Un+1

(X(t)) − U∗(X(s))

Δt
, (29)

where Un+1(X(s)) is the desired velocity and U∗(X(s)) is a
temporary velocity of the boundary. +e algorithm in detail
can be found in [38]. +e difference of immersed boundary
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Figure 11: (a)-(b) From left to right column, different spatial steps h � 0.25, 0.5, and 1: (a) Lagrangian point Xl and (b) indicator functions.
(c) l2-error of I(k) and I(k− 1) for the number of iterations k using the gauss–seidel method with different spatial steps h � 1, 0.5, and 0.25.
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to handle the multiphase flows and FSI lies on the how to
evaluate the boundary force.

For a moving rigid body immersed on the fluid, the
imposed force term, the authors in [39] pointed out it

consists of two parts that can be written as the following
equations (30) and (31):

fx � 􏽉
zΩ

Fx(X(s))ds − B
Ω

zu

zt
dV ≈ 􏽘

m

j�1
Fx Xj􏼐 􏼑ΔVj − 􏽘

Nx

i�1
􏽘

Ny

j�1

u
n+1
ij − u

n
ij

Δt
IijΔVij, (30)

fy � 􏽉
zΩ

Fy(X(s))ds − B
Ω

zv

zt
dV ≈ 􏽘

m

j�1
Fy Xj􏼐 􏼑ΔVj − 􏽘

Nx

i�1
􏽘

Ny

j�1

v
n+1
ij − v

n
ij

Δt
IijΔVij, (31)

where zΩ is the solid boundary, Ω the solid phase, Δt the
time step, Iij the indicator function, uij, vij the velocity in
Eulerian gird, Nx, Ny the mesh grid numbers, and Vij the
mesh volume in ij grid point.

One force in the first terms of right hand sides of
equations (30) and (31) is that of a submersed body acting on
the external fluid, which can be determined simply by in-
tegrating the immersed boundary force densities by equation
(29) on the solid boundary that is already evaluated by the
direct forcing. Another one that contributes to the unsteady
flow inside the solid phase, is the so-called internal or virtual
flow force [39] in the second terms of the right hand side of
equations (30) and (31). Usually, if the object is fixed in the
fluid, we impose the f � (fx, fy) term to satisfy the no-slip
boundary condition on the solid surface leading to the
second term equals zero. However, when the solid boundary
is moving, we should not neglect the effect of the virtual flow,
even though its contribution is small [39]. For a complexly
enclosed geometry, the indicator function can be used to
calculate to its inside virtual flow by letting its value 1, and
outside 0 of the moving solid object.

For this moving solid problem in fluid, we consider a 2D
NACA0012 airfoil as the representative of a fish body

periodically undulating in the incoming flow. +e study of
this kind of fish kinematics can be found in [40, 41]. Our
focus is on the fish shape expressed by the indicator function.
As in the first example of drop deformation in the shear flow,
we investigate the effect of ds on the indicator function. +e
computational domain is [0, 4] × [0, 2], with mesh size 256
for y direction.+e airfoil is initially represented by 202, 102,
and 42 Lagrangian points leading to the point distance Δs is
about 0.918h, 2.117h, and 6.134h, where h is the Eulerian
grid size. +e odd rows of Figure 14 shows the fish undu-
lations with outer normal vectors attached on the boundary
points for different Δs settings. Because the boundary de-
forms not too much, we do not need to remesh it. As shown
in Figure 14, by increasing Δs, the indicator functions get
zigzag distribution on their boundaries between 0 and 1,
which could lead to the calculations of fx and fy in
equations (30) and (31) a little oscillations. However, the
Δs ≈ 1.0h is good enough to resolve the smooth distribution
of indicator function as in the first drop deformation ex-
ample. It should be noted that the diffused fish interface is
not well resolved at the high curvature section of the fishtail
for larger Δs as shown in the third case of Figure 14. Letting
Δs ≈ 1.0h resolves it quite well.

y

x

L

u = –γ H, v = 0

u =γ H, v = 0

ρ2, η2
Ω2

ρ1, η1
Ω1

2H

Figure 12: Schematic illustration of a liquid droplet.
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Figure 13: From top to bottom, the first, third, and fifth rows are the boundary interfaces with different initial Δsini � 1.0h, 5.0h and 10.0h

(attached with normal vectors).+e even rows are corresponding to theirs’ indicator functions. Column (a)–(c), drop evolutions at different
times.
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5. Conclusion

In this article, we presented a detailed derivation and nu-
merical investigation of an indicator function together with
its fluid applications in the immersed boundary method. We
used the discrete Dirac delta function to construct an in-
dicator function from a set of Lagrangian points. We solved
the resulting discrete Poisson equation with the zero
Dirichlet boundary condition using an iterative method. We

presented several computational tests to study the effect of
parameters such as distance between points, uniformity of
the distance, and types of the Dirac delta functions on the
indicator function. Two applications indicate that the
construction of the indicator function are effective, multi-
purpose, and easy-to-use in separating the changing phases.
We note that the indicator function can be extended directly
and readily to the three-dimensional space. Based on the
above-given numerical investigations, as future works, we
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Figure 14: From top to bottom, the first, third, and fifth rows are fish boundaries with different initial Δs � 0.918h, 2.117h and 6.134h

(attached with normal vectors), corresponding to 202, 102, and 42 boundary points. +e even rows are corresponding to theirs’ indicator
functions. Column (a)–(d), fish undulates at different times in a period. (a) t� 0. (b) t� 0.15. (c) t� 0.3. (d) t� 0.45.

Table 1: Drop area loss for the different Δsini at time t � 2.5.

Δsini 1.0 h 5.0 h 10.0 h

Initial area 0.7852 0.7822 0.7725
Final area 0.7852 0.6856 0.2070
Area loss (%) 0.0 12.35 73.20
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believe that investigation of the 3D indicator function has
more practical values.
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