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Abstract

In this study, we present the stability analysis of a fully explicit finite difference method (FDM) for solving the Allen–Cahn
AC) equation. The AC equation is a second-order nonlinear partial differential equation (PDE), which describes the antiphase
oundaries of the binary phase separation. In the presented stability analysis, we consider the explicit Euler method for the
emporal derivative and second-order finite difference in the space direction. The explicit scheme is fast and accurate because it
ses a small time step, however, it has a temporal step constraint. We analyze and compute that the explicit time step constraint
ormula guarantees the discrete maximum principle for the numerical solutions of the AC equation. The numerical stability of
he explicit scheme automatically holds when we use the time satisfying the discrete maximum principle. The computational
umerical experiments demonstrate the stability, discrete maximum principle, and accuracy of the explicit scheme for the
onstrained time step. Furthermore, it is shown that the time step obtained is not severe restriction when we consider the
emporal accuracy.

2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

In this paper, we discuss a fully explicit finite difference scheme for numerically solving the Allen–Cahn (AC)
quation [2]:

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2 + ∆φ(x, t), x ∈ Ω , t > 0, (1)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain. We apply the homogeneous Neumann boundary condition by
n · ∇φ(x, t) = 0 on ∂Ω , where n is an outer unit normal vector on the boundary ∂Ω . Here, φ(x, t) is difference
in concentration of two mixture components, F(φ) is energy potential, and ϵ is a thickness of interface parameter.
The AC equation is derived by the L2-gradient flow of the following free energy functional:

E(φ) =

∫
Ω

(
F(φ)
ϵ2 +

1
2
|∇φ|

2
)

dx. (2)
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Fig. 1. (a) Logarithmic Flory–Huggins potential energy. (b) Polynomial double-well potential energy.

Energy potential F(φ) is originally given as the logarithmic Flory–Huggins energy potential:

F(φ) = (1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ) −
θ0

2
φ2, (3)

here θ0 is positive constant, which satisfies θ0 > 2, see [4,6]. However, the logarithmic potential energy is
ssociated with singularity as the phase variable approaches to −1 or 1. For this computational reason, it has
ypically been approximated by a fourth-order polynomial form:

F(φ) =
1
4

(
φ2

− 1
)2
. (4)

igs. 1(a) and (b) illustrate the logarithmic potential energy with θ0 = 3 and polynomial potential energy,
espectively. Here, φα and φβ are critical points of the logarithmic potential energy. In this study, we focus on the
olynomial potential energy in Eq. (4). The AC equation is one of the famous phase field models, which has been
pplied to model and solve many interesting problems such as two-phase fluid flow [7,33], image inpainting [3,19],
mage segmentation [18], fingerprint image restoration [21], volume merging [22], thermal-fluid [30,31], crystal
rowth [20], and copolymer mixtures [11,24], etc.

In general, the exact solution is not available for the AC equation, which is a nonlinear partial differential
quation. For this reason, many numerical techniques have been proposed to solve the AC equation. Montanelli
nd Bootland [25] investigated various exponential integration formulas for the high accuracy of the stiff partial
ifferential equations such as the AC equation. They considered the periodic boundary condition and used Fourier
pectral method. Also, there are many stable numerical schemes for the AC equation. Xiao and Feng [32] presented
he space–time operator splitting finite element method for the AC equation in multi-phase systems, which preserves

second-order maximum bound principle. Wang et al. [28] proposed a semi-implicit method for the AC equation
hich is linear, energy stable and maximum principle preserving with double-well potential. The proposed method
as superior to the prevalent convex-splitting stabilized scheme. Tang and Yang [26] presented that the stability of

he AC equation under the infinity norm can be established for the implicit–explicit scheme in time and space. Joshi
nd Jaiman [15] presented an adaptive variational method for the conservative and positivity preserving AC equation,
hich maintains the stable and bounded solution. In [34], an unconditionally stable Fourier-spectral method was
resented for the AC equation. The proposed scheme has practical stability, however, it is difficult to apply to the
on-uniform grid or adaptive domains as shown in Fig. 2.

Even unconditionally stable numerical schemes should use a sufficiently small time step for the accuracy of the
umerical solution. Therefore, there have also been studies on an explicit scheme with high accuracy for the AC
quations. Li and Zhang [23] presented an explicit Runge–Kutta scheme with high accuracy and convergence for the
C equation. Aderogba and Chapwanya [1] developed an explicit nonstandard finite difference scheme for the AC
quation. The scheme splits the AC equation into the space-independent and time-independent terms, then considers
he full equation. In [12], Jeong and Kim proposed an explicit hybrid numerical scheme for the AC equation. Jeong
t al. [14] presented a practical adaptive grid method for the AC equation using a discrete narrow band domain. In

his perspective, a fully explicit scheme seems to be better. However, the explicit scheme has a time step restriction.
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Fig. 2. (a) Non-uniform mesh (refinement mesh) reprinted from [16] with permission from Springer. (b) Adaptive domain reprinted from [14]
ith permission from Elsevier.

Fully explicit scheme is a fast and accurate method from the perspective of solving the AC equation. In addition,
t is an effective method in applying the adaptive mesh refinement or adaptive domain. Therefore, the stability
nalysis of the fully explicit scheme solving the AC equation is an important problem. The primary purpose of this
aper is to analyze the stability condition and energy stability of the fully explicit scheme for the AC equation.
urthermore, we demonstrate a stability condition by showing various numerical results.

The contents of this paper are organized as follows. In Section 2, we describe the numerical scheme and
nalyze the time step restriction for the stability of the scheme for the AC equation. We present several numerical
xperiments in Section 3. Finally, we conclude in Section 4.

. Numerical scheme and stability analysis

In this section, we consider a fully explicit finite difference scheme for the AC equation. We analyze the time
tep restriction, which makes the numerical scheme preserve the maximum principle, using the boundedness of the
umerical solution. Then, by proving an energy decreasing property, we show the energy stability of the numerical
cheme under the analyzed time step.

For a simple description, we consider the AC equation in the one-dimensional (1D) space Ω = (L x , Rx ). Two-
and three-dimensional (2D and 3D) space can be discretized analogously. Let N be the number of spatial grid

oints, h = (Rx − L x )/N be the spatial uniform grid size, and discrete computational domain Ωh = {xi =

L x + (i − 0.5)h, 1 ≤ i ≤ N } be the set of cell-centered grid points. We denote the numerical approximations as
n
i := φ(xi , n∆t), where ∆t is the time step size. Time is discretized as T = Nt∆t , where Nt is the total number
f time steps and T is the final time. We define discrete operator ∇h as ∇hφ

n
i+1/2 = (φn

i+1 − φn
i )/h. In the discrete

omputational domain Ωh , the homogeneous Neumann boundary condition is defined as ∇hφ
n
1/2 = ∇hφ

n
N+1/2 = 0,

for n = 1, . . . , Nt . Then, we define a discrete Laplacian operator by ∆hφ
n
i = (∇hφ

n
i+1/2 − ∇hφ

n
i−1/2)/h = (φn

i−1 −

2φn
i + φn

i+1)/h2. We denote the discrete maximum norm by ∥φn
∥∞ = max

1≤i≤N
|φn

i |, where φn
= (φn

1 , φ
n
2 , · · · , φ

n
N ).

The AC equation (1) can be expressed with the following convergence accuracies in time and space:

φn+1
i − φn

i

∆t
+ O(∆t) = −

(φn
i )3

− φn
i

ϵ2 + ∆hφ
n
i + O(h2)

=
φn

i − (φn
i )3

+
φn

i−1 − 2φn
i + φn

i+1
+ O(h2). (5)
ϵ2 h2
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Then, the AC equation (1) is approximated by the following in a fully explicit scheme.

φn+1
i − φn

i

∆t
=
φn

i − (φn
i )3

ϵ2 +
φn

i−1 − 2φn
i + φn

i+1

h2 . (6)

heorem 1. Assume that the initial condition satisfies max
1≤i≤N

|φ0
i | ≤ 1. Then, the fully explicit scheme (6) preserves

the boundedness of the numerical solution

|φn+1
i | ≤ 1, for 1 ≤ i ≤ N , n ≥ 0, (7)

if the time step satisfies

∆t ≤
ϵ2h2

2h2 + 2ϵ2 . (8)

roof. The fully explicit scheme for the AC equation (6) can be rewritten as

φn+1
i = φn

i + ∆t
(
φn

i − (φn
i )3

ϵ2 +
φn

i−1 − 2φn
i + φn

i+1

h2

)
. (9)

e prove this theorem using the conditions that satisfy the following bounds of the numerical solution |φn+1
i | ≤ 1.

We divide the proof into four cases.

Case 1. φn
i = 0

The numerical solution (9) is bounded as⏐⏐φn+1
i

⏐⏐ =

⏐⏐⏐⏐∆t
φn

i−1 + φn
i+1

h2

⏐⏐⏐⏐ ≤
2∆t
h2 , (10)

hich satisfies |φn+1
i | ≤ 1 provided ∆t ≤ h2/2.

ase 2. φn
i = 1

The numerical solution (9) is rewritten as

φn+1
i = 1 + ∆t

φn
i−1 − 2 + φn

i+1

h2 . (11)

ecause φn
i−1 − 2 + φn

i+1 ≤ 0, we have φn+1
i ≤ 1. If φn

i−1 − 2 + φn
i+1 = 0, there is no constraint for the time step;

therwise, i.e., φn
i−1 − 2 + φn

i+1 < 0, then ∆t ≤ h2/2 results in φn+1
i ≥ −1. Therefore, we have |φn+1

i | ≤ 1.

Case 3. 0 < φn
i < 1

In Eq. (9), if
φn

i − (φn
i )3

ϵ2 +
φn

i−1 − 2φn
i + φn

i+1

h2 ≥ 0, then we have −1 ≤ φn+1
i . From Eq. (9), we can obtain the

following inequality.

φn+1
i ≤ φn

i + ∆t
(
φn

i − (φn
i )3

ϵ2 +
2 − 2φn

i

h2

)
. (12)

e want to find the condition of ∆t satisfying that

φn
i + ∆t

(
φn

i − (φn
i )3

ϵ2 +
2 − 2φn

i

h2

)
≤ 1. (13)

hen, it can be rewritten as

∆t(1 − φn
i )
(
φn

i (1 + φn
i )

ϵ2 +
2
h2

)
≤ 1 − φn

i . (14)

y dividing both sides of (14) by (1 − φn
i ) > 0, we have

∆t
(
φn

i (1 + φn
i )

2 +
2
2

)
≤ 1. (15)
ϵ h
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Therefore, ∆t has the following constraint.

∆t ≤
ϵ2h2

h2φn
i (1 + φn

i ) + 2ϵ2 . (16)

Here, because 0 < φn
i (1 + φn

i ) < 2, we obtain the following condition.

∆t ≤
ϵ2h2

2h2 + 2ϵ2 . (17)

ence, when ∆t ≤ ϵ2h2/(2h2
+ 2ϵ2), we have |φn+1

i | ≤ 1.

From Eq. (9), when
φn

i − (φn
i )3

ϵ2 +
φn

i−1 − 2φn
i + φn

i+1

h2 < 0, then φn+1
i ≤ 1 always holds true. From Eq. (9), we

have the following inequality.

φn
i + ∆t

(
φn

i − (φn
i )3

ϵ2 −
2 + 2φn

i

h2

)
≤ φn+1

i . (18)

From the inequality (18), to satisfy that −1 ≤ φn+1
i , we consider the following inequality.

−1 ≤ φn
i + (1 + φn

i )∆t
(
φn

i (1 − φn
i )

ϵ2 −
2
h2

)
. (19)

t can be rewritten as

−1 ≤ ∆t
(
φn

i (1 − φn
i )

ϵ2 −
2
h2

)
. (20)

hen, we have

ϵ2h2

2ϵ2 − h2φn
i (1 − φn

i )
≥ ∆t. (21)

ecause φn
i (1 − φn

i ) > 0, we obtain the following condition.

∆t ≤
h2

2
. (22)

Therefore, ∆t ≤ h2/2 results in |un+1
i | ≤ 1.

Case 4. −1 ≤ φn
i < 0

When −1 ≤ φn
i < 0, it also can be written as 0 < −φn

i ≤ 1. Multiplying both sides of Eq. (9) by −1, we get

−φn+1
i = −φn

i − ∆t
(
φn

i − (φn
i )3

ϵ2 +
φn

i−1 − 2φn
i + φn

i+1

h2

)
(23)

= −φn
i + ∆t

(
(−φn

i ) − (−φn
i )3

ϵ2 +
−φn

i−1 − (−2φn
i ) − φn

i+1

h2

)
. (24)

onsidering the right side of Eq. (24) for −φn
i , we can apply the proofs of Cases 2 and 3. By the results of

ases 2 and 3, it can be proved that ∆t ≤ ϵ2h2/(2h2
+ 2ϵ2) guarantees |φn+1

i | = | − φn+1
i | ≤ 1. Because

2h2/(2h2
+ 2ϵ2) < h2/2 for h > 0, the proof of this theorem is ended. □

In the same way, Theorem 1 can be extended to higher-dimensional spaces. Table 1 lists the time step restrictions
f the fully explicit scheme for the AC equation in one-, two-, and three-dimensional (1D, 2D, and 3D) spaces for
ach case. We can derive the time step restriction ∆t(h, ϵ, d) for each dimension (d = 1, 2, and 3) as

∆t(h, ϵ, d) =
ϵ2h2

2h2 + 2dϵ2 . (25)

From the result of stability analysis (25), Fig. 3 illustrates the time step constraint of the explicit scheme to the
C equation for ϵ in 1D, 2D, and 3D spaces, here h = 1/64 is used. The explicit scheme for the heat equation has

he time step constraint as ∆t ≤ 0.5h2/d for dimension d = 1, 2, 3. Fig. 3 shows that for the explicit scheme, the

time step restriction of the AC equation is smaller than that of the heat equation. We note that ϵ ≈ h has been used
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Table 1
Time step restrictions for one-, two-, and three-dimensional spaces.

1D 2D 3D

Case 1 h2/2 h2/4 h2/6
Case 2 h2/2 h2/4 h2/6
Case 3 ϵ2h2/(2h2

+ 2ϵ2) ϵ2h2/(2h2
+ 4ϵ2) ϵ2h2/(2h2

+ 6ϵ2)
Case 4 ϵ2h2/(2h2

+ 2ϵ2) ϵ2h2/(2h2
+ 4ϵ2) ϵ2h2/(2h2

+ 6ϵ2)
Minimum ϵ2h2/(2h2

+ 2ϵ2) ϵ2h2/(2h2
+ 4ϵ2) ϵ2h2/(2h2

+ 6ϵ2)

Fig. 3. Time step constraint for ϵ, here h = 1/64 is used.

n most of numerical simulations. As shown in Fig. 3, the time step restriction is practically ∆t ≤ 0.5h2/(d + 1)
or dimension d = 1, 2, 3.

emark 1. When the double-well energy potential is replaced by the Flory–Huggins logarithmic potential, for
α ≤ φ ≤ φβ , the bound estimate can be made with the positive boundedness of the time step restriction as in

he case of the polynomial double-well potential. Here, −1 < φα < 0 and 0 < φβ < 1 are critical points of the
lory–Huggins logarithmic potential.

.1. Energy stability analysis

In this section, we analyze the energy stability of the fully explicit scheme for the AC equation under the proposed
ime step constraint (25) on 1D space (d = 1). The analysis below follows the similar process in [13]. First, we
efine a discrete l2-inner product by

⟨φ,ψ⟩h = h
N∑

i=1

φiψi . (26)

rom the free energy functional (2), we define a discrete energy functional,

Eh(φn) =
h

4ϵ2

N∑
i=1

((φn
i )2

− 1)2
+

h
2

N−1∑
i=1

⏐⏐⏐⏐∇hφ
n
i+ 1

2

⏐⏐⏐⏐2 . (27)

We decompose the discrete energy functional Eh(φn) into two parts as

Eh(φn) = E (1)(φn) + E (2)(φn), (28)

here

E (1)(φn) =
h

4ϵ2

N∑
((φn

i )2
− 1)2 and E (2)(φn) =

h
2

N−1∑⏐⏐⏐⏐∇hφ
n
i+ 1

2

⏐⏐⏐⏐2 . (29)

i=1 i=1
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w

Then, the fully explicit scheme for the AC equation can be formed as a gradient of discrete total energy as follows:

φn+1
i − φn

i

∆t
= −

1
h

∇Eh(φn)i , for i = 1, . . . , N . (30)

Given the discrete energy functionals E (1)(φ) and E (2)(φ), we define the Hessian matrix H(1) and H(2) as the
Jacobian of the ∇E (1)(φ) and ∇E (2)(φ), respectively. Then, the Hessian matrix is defined as{

H(1),H(2)}
=
{
∇

2E (1)(φ),∇2E (2)(φ)
}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h
ϵ2

⎛⎜⎜⎜⎝
3φ2

1 − 1 0

3φ2
2 − 1

.
.
.

3φ2
N−1 − 1

0 3φ2
N − 1

⎞⎟⎟⎟⎠ , h

⎛⎜⎜⎝
1 −1 0

−1 2 −1

.
.
.

.
.
.

.
.
.

− 1 2 −1
0 −1 1

⎞⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

where we use the homogeneous Neumann boundary condition. Here, the eigenvalues of H(1) and H(2) are

λ
(1)
k =

h
ϵ2 (3φ2

k − 1), λ
(2)
k =

4
h

sin2 (k − 1)π
2N

, (31)

or k = 1, 2, . . . , N , respectively. Let vk = wk/|wk | be the orthonormal eigenvector corresponding to the eigenvalues
(2)
k , where

wk =

(
cos

(k − 1)π
2N

, cos
3(k − 1)π

2N
, . . . ,

(2N − 1)(k − 1)π
2N

)
.

hen, we can express φn+1
− φn with terms of vk as

φn+1
− φn

=

N∑
k=1

ckvk . (32)

Theorem 2. Let us consider the AC equation with homogeneous Neumann boundary condition. If the initial
condition is bounded by 1, i.e., max

1≤i≤N
|φ0

i | ≤ 1, then the numerical solutions obtained by the fully explicit scheme

(6) satisfy the discrete energy decreasing property:

Eh(φn+1) ≤ Eh(φn), (33)

provided that the time step satisfies

∆t ≤
ϵ2h2

2h2 + 2ϵ2 . (34)

roof. Eh(φn+1) can be expressed by the Taylor expansion at φn up to second order as

Eh(φn+1) = Eh(φn) +

⟨
1
h

∇Eh(φn),φn+1
− φn

⟩
h

(35)

+

⟨
1

2h
∇

2Eh(ξ )(φn+1
− φn),φn+1

− φn
⟩

h
, (36)

here ξ = αφn
+ (1 − α)φn+1 and 0 ≤ α ≤ 1. Then, we have the following equation,

Eh(φn+1) − Eh(φn) =

⟨
1
h

∇Eh(φn),φn+1
− φn

⟩
h

+

⟨
1

2h
∇

2Eh(ξ )(φn+1
− φn),φn+1

− φn
⟩
. (37)
h
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By using Eq. (30) and the Hessian matrix, Eq. (37) can be converted to

Eh(φn+1) − Eh(φn)

= −

⟨
φn+1

− φn

∆t
,φn+1

− φn
⟩

h
+

⟨
1

2h

(
H(1)

+ H(2))(φn+1
− φn),φn+1

− φn
⟩

h

=

⟨[
1

2h

(
H(1)

+ H(2))
−

1
∆t

]
(φn+1

− φn),φn+1
− φn

⟩
h

=

N∑
k,l=1

⟨[
1

2h
λ

(1)
k +

1
2h
λ

(2)
k −

1
∆t

]
ckvk, clvl

⟩
h

=

N∑
k,l=1

⟨[
1

2ϵ2 (3η2
k − 1) +

2
h2 sin2 (k − 1)π

2N
−

1
∆t

]
ckvk, clvl

⟩
h

=

N∑
k=1

[
1

2ϵ2 (3η2
k − 1) +

2
h2 sin2 (k − 1)π

2N
−

1
∆t

]
ck

2, (38)

here ηk = αφn
k + (1 −α)φn+1

k and 0 ≤ α ≤ 1. By Theorem 1, we note that |ηk | ≤ 1 with time step condition (34),
or 1 ≤ k ≤ N . If ∆t ≤ ϵ2h2/(2h2

+ 2ϵ2), then we can derive the following inequality from Eq. (38):

Eh(φn+1) − Eh(φn) ≤

N∑
k=1

ck
2
[

1
ϵ2 +

2
h2 −

2h2
+ 2ϵ2

ϵ2h2

]
= −

ck
2 N
ϵ2 < 0.

he proof of this theorem is ended. □

We note that there is a time step restriction, ∆t ≤ ϵ2h2/(2h2
+ 2ϵ2), for the energy stability unlike an

nconditionally stable implicit scheme [30].

. Computational tests

We conduct computational experiments to demonstrate the stability of the explicit scheme for the AC equation.
n 1D space, the homogeneous Neumann boundary condition is implemented as

φ0 = φ1 and φN+1 = φN . (39)

It applies to 2D and 3D space, similarly. We use the interfacial transition thickness parameter
ϵm = mh/[2

√
2 tanh−1(0.9)], which makes the thickness of the interfacial transition layer approximately mh for

ome positive integer m, see [5]. For the following tests, we use ϵ = ϵm for appropriate m.

.1. Convergence of numerical solutions

In this test, we use the traveling wave benchmark solution, which is one of the exact solutions of the AC
quation [5,29]:

φexact (x, t) =
1
2

[
1 − tanh

(
x − 3t/(

√
2ϵ)

2
√

2ϵ

)]
. (40)

e investigate the convergence of the solution using the stable condition of time step ∆t(h, ϵ, 1) = ϵ2h2/(2h2
+

ϵ2). In Fig. 4, we use four different time step sizes ∆t = ∆t(h, ϵ, 1), 0.5∆t(h, ϵ, 1), 0.25∆t(h, ϵ, 1), and
.125∆t(h, ϵ, 1) on computational domain Ω = (−0.5, 1.5). Here, the other parameters are used as N = 400,

h = 0.005, ϵ = ϵ10, and T = 500∆t(h, ϵ, 1).
To estimate the temporal convergence rate of the explicit scheme for the AC equation, we refine recursively

he time step in half. We define a discrete error of numerical solution as eNt = (eNt
1 , eNt

2 , . . . , eNt
N ), where eNt

i =

Nt
i − φexact (xi , Nt∆t). We define l2-error as ∥eNt ∥2 =

√
h
∑N

i=1(eNt
i )2 and max-error as ∥eNt ∥max = max

1≤i≤N
|eNt

i |.

Let log2(∥eNt ∥/∥e2Nt ∥) be a time convergence rate. Table 2 lists errors and temporal convergence rates for l2- and

ax-error. It confirms that the scheme is stable with the analyzed time steps and has first-order accuracy in time.
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Fig. 4. Numerical solution of traveling wave for the AC equation at t = T with initial and analytic profiles, φexact (x, 0) and φexact (x, T ),
espectively. Here ϵ = ϵ10.

Table 2
Time errors and convergence rates at t = T .

∆t ∆t(h, ϵ, 1) ∆t(h, ϵ, 1)/2 ∆t(h, ϵ, 1)/4 ∆t(h, ϵ, 1)/8

l2-error 0.1531 0.0801 0.0382 0.0162
rate 0.9349 1.0692 1.2395

max-error 0.6527 0.3687 0.1788 0.0762
rate 0.8239 1.0442 1.2302

3.2. Accuracy comparison with Fourier-spectral method

In [34], an unconditionally stable Fourier-spectral method (FSM) was presented for the AC equation using
iscrete Fourier transform with periodic boundary condition. In this section, we compare the accuracy of the fully
xplicit scheme and unconditionally stable FSM. We use discrete cosine transform (DCT) and inverse discrete cosine
ransform (IDCT) to apply the homogeneous Neumann boundary condition. For the given data φn

i for i = 1, . . . , N
nd some n, the DCT and IDCT are defined as follows:

φ̂n
p = αp

N∑
i=1

φn
i cos(ξpπxi ), (41)

φn
i =

N∑
p=1

αpφ̂
n
p cos(ξpπxi ), (42)

respectively, where α1 =
√

1/N , αp =
√

2/N for p ≥ 2, and ξp = (p − 1)/L for p = 1, . . . , N . In [34], the
uthors applied the linearly stabilized splitting scheme to solve the AC equation (1). In 1D space, the numerical
cheme is as follows.

φn+1
i − φn

i

∆t
= −

2φn+1
i + f (φn

i )
ϵ2 + ∆φn+1

i , (43)

here f (φ) = φ3
− 3φ. In the discrete Fourier space, Eq. (43) can be transformed as follows:

φ̂n+1
p − φ̂i pn

∆t
= −

2φ̂n+1
p + f̂ n

p

ϵ2 − π2ξ 2φ̂n+1
p . (44)

Then, we obtain the following solution in discrete Fourier space

φ̂n+1
p =

ϵ2φ̂n
p − ∆t f̂ n

p
. (45)
ϵ2 + ∆t(2 + π2ξ 2ϵ2)
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Fig. 5. Comparison of numerical traveling wave solutions using the fully explicit scheme and FSM at t = T . Here, ϵ = ϵ6 is used.

Table 3
l2-errors for fully explicit scheme and FSM.

Case Fully explicit FSM

∆t = ∆t(h, ϵ, 1) 0.2330 0.4451
∆t = ∆t(h, ϵ, 1)/2 0.1343 0.3218

Finally, we can obtain the numerical solution φn+1
i using IDCT (42):

φn+1
i =

N∑
p=1

αpφ̂
n+1
p cos(ξpπxi ). (46)

In Fig. 5, we compare the numerical traveling wave solutions of the AC equation using the fully explicit scheme
and FSM. We use an initial profile φ(x, 0) = 0.5

[
1 − tanh

(
x/(2

√
2ϵ)
)]

in Ω = (−0.5, 1.5), where ϵ = ϵ6. Here,
he numerical parameters are used as N = 256, h = 2/N , and T = 0.004. From the result in Fig. 5, l2-errors for
ully explicit scheme and FSM are listed in Table 3.

FSM is stable even with large time steps, however, it is less accurate. From the result in Fig. 5, for the same
ime step, it can be seen that the fully explicit scheme is more accurate than the FSM.

.3. Motion by mean curvature

The zero level interface of solution to the AC equation follows the mean curvature flow, as ϵ → 0 [17]. In this
ection, we investigate the mean curvature flow of the numerical solution to the AC equation obtained by the fully
xplicit scheme with the restricted time step ∆t = ∆td , where ∆td is defined in Eq. (25). To demonstrate that the
cheme is stable using the analyzed time steps, we observe the temporal evolution of the solutions and confirm
roperties of the AC equation. In the following tests, we use the thickness of interface parameter ϵ = ϵ10.

In 2D computational domain Ω = (−1, 1) × (−1, 1), we use an 128 × 128 mesh grid, h = 1/64, and time step
t(h, ϵ, 2) = ϵ2h2/(2h2

+ 4ϵ2). The initial condition is given as

φ(x, y, 0) = tanh

(
R0 −

√
x2 + y2

√
2ϵ

)
, (47)

where R0 = 0.7, as shown in Fig. 6(a). The analytic radius is given as R(t) =

√
R2

0 − 2t [12]. Figs. 6(a)–(c) show
the temporal evolution of the numerical solutions and Fig. 6(d) illustrates analytic and numerical radii over time t .

We conduct a similar computational experiment in 3D domain Ω = (−1, 1) × (−1, 1) × (−1, 1). We use an
28 × 128 × 128 mesh, h = 1/64, and time step ∆t(h, ϵ, 3) = ϵ2h2/

(
2h2

+ 6ϵ2
)
. The initial condition is given

s

φ(x, y, z, 0) = tanh

(
R0 −

√
x2 + y2 + z2
√

2ϵ

)
, (48)

here we use R0 = 0.7. The analytic radius is R(t) =
√

R0 − 4t in 3D space [12]. Figs. 7(a)–(c) show the temporal
evolution of zero level isosurface of solution for the AC equation and Fig. 7(d) illustrates analytic and numerical
462
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Fig. 6. (a)–(c) Temporal evolution of numerical solutions. (d) Analytic and numerical radius changes over time.

Fig. 7. (a)–(c) Temporal evolution of zero level isosurface of the numerical solutions. (d) Analytic and numerical radius changes over time.

radii over time t . From the results in Figs. 6 and 7, for the explicit scheme, the analyzed time step makes the scheme
stable and the solutions follow the motion by mean curvature well.
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4. Conclusions

A fully explicit finite difference scheme for the AC equation has a time step restriction, however, the numerical
cheme is fast and accurate. In this study, we discussed the stability of a fully explicit finite difference scheme
or solving the AC equation. We analyzed the stability of the fully explicit scheme for the AC equation and found
ptimal time step restrictions for the stability of the scheme in 1D, 2D, and 3D spaces. We confirmed the stability
f the scheme with the analyzed time step restriction through the numerical experiments. In 1D space, using the
raveling wave solution, we performed the convergence test and compared the accuracy with FSM. In 2D and 3D
pace, we investigated the mean curvature flow of the numerical solutions with the proposed time step restriction. In
his paper, we focused on the polynomial free energy potential for the AC equation, however there exists a stability
nergy approach for the Flory–Huggins logarithmic potential on AC equation [27]. Furthermore, there are interesting
uture extensions of positivity-preserving property numerical analysis and applications with the Flory–Huggins free
nergy [8–10,35].
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