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In this paper, we present a numerical method for the phase-field model of anisotropic ice crystal growth on a 
spherical surface. The mathematical model includes terms related to the anisotropic interfacial energy, which is 
defined by the interface angle with respect to a reference angle. One of the natural numerical methods on curved 
surfaces is a computational technique based on a triangular mesh for the surface in a three-dimensional space. 
However, it is difficult to compute terms with the interface angle on a triangular mesh. To resolve this problem, 
we solve the governing equation in Cartesian coordinates after rotating each vertex and the 1-ring neighborhood 
of the vertex on the triangular mesh. After rotation and interpolation, we numerically solve the phase-field model 
using a standard finite difference method. We present the results of several tests to demonstrate that the proposed 
algorithm can recover anisotropic ice crystal growth on a spherical surface.
1. Introduction

In this study, it is demonstrated that a computational method for the 
phase-field model of anisotropic ice crystal growth on a spherical sur-

face. Figs. 1(a) and (b) present snapshots of the freezing of a bubble 
that is stacked on an icy substrate after 1 and 3 seconds, respectively 
[1], wherein freezing dynamics of soap bubbles are characterized using 
experiments, scaling analysis, and computational techniques. In addi-

tion, an online search for the term “frozen bubbles” reveals a lot of 
beautiful and mesmerizing photographs and videos of the freezing of 
soap bubbles. Significantly small particles of freezing ice move around 
on the surface of a soap bubble until they grow and occupy the entire 
surface.

The mechanisms of the freezing phenomenon have been studied 
both theoretically and experimentally [2–5]. Based on these investi-

gations, there have been numerous studies on computational simula-

tions of crystal growth. Langer [6] and Kobayashi [7] developed a 
phase-field model for solidification, including the relations between 
anisotropy and the shape of crystals. In [8], Karma and Rappel sim-
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ulated dendritic growth in two- and three-dimensional spaces using 
the phase-field model. Employing the above phase-field models with 
anisotropic interface, researchers have studied two specific features of 
ice crystal growth: the faceted growth and the strong aspect ratio of ice 
crystals [9–11]. In the references, the authors considered both highly 
anisotropic surface energy and kinetic effects, and validated the side 
branching. In [9], Barret et al. proposed the unconditionally stable ap-

proximation for the Stefan problem using a finite element method. De-

mange et al. [10,11] reproduced a host of three-dimensional snowflake 
morphologies with both planar and vertical growth morphologies using 
a faceted phase-field model derived from Karma and Rappel’s seminal 
work and Eggleston’s regularization algorithm with anisotropic inter-

face.

Recently, several researchers have proposed numerical methods to 
obtain better results for the dendrite growth during solidification. In 
[12], Sun et al. adopted lattice Boltzmann method based on cellular au-

tomaton approach to simulate the equiaxed crystal growth. Meng et al. 
[13] combined the lattice Boltzmann and immersed boundary meth-

ods to improve the accuracy of dendrite pattern generation against 
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Fig. 1. Freezing of a bubble stacked on an icy substrate: after (a) 1 second and (b) 3 seconds. Reprinted from Ahmadi et al. [1] with permission from Nature 
Publishing Group.
advection. In particular, accuracy is typically important because the 
collision and coalescence of dendrite patterns occur during the sim-

ulation of multiple moving dendrites. Tan et al. [14] developed and 
demonstrated the ice crystal growth based on the lattice Boltzmann 
method. They studied the branches with a faceted structure follow-

ing the symmetry of the crystal and modeled the ice crystal growth 
in a two-dimensional domain in presence of convection. Ren et al. [15]

proposed a vector-valued phase-field and two-phase flow model, which 
facilitated a flow field evaluation with a steep viscosity variation across 
the interface. The authors presented a parallel multilevel time marching 
scheme. Moreover, mathematical models for dendritic growth with fluid 
flow have been proposed [16–18]. However, these approaches involve 
a high computational cost when conducting numerical experiments in 
a three-dimensional space or when the flow fields are coupled. Vari-

ous numerical methods have been proposed to facilitate more efficient 
computation [19–21]. In [19], the authors proposed an adaptive mesh 
approach for simulating the solidification of microstructures in two-

and three-dimensional spaces. In [20], an accurate and fast adaptive 
algorithm for dendritic growth was developed without a conventional 
adaptive structure. Chen and Yang [21] proposed an unconditionally 
energy stable numerical scheme for solving a nonlinear system that rep-

resents anisotropic dendritic growth.

Ice crystal formulations are also observed on curved surfaces and 
not only in two- or three-dimensional spaces. The authors in [22] in-

vestigated colloidal crystals growing on spherical droplets. They exam-

ined that the formation of regions with branched patterns and large 
voids, avoiding topological defects. It was demonstrated that curvature-

induced elastic energy was minimized by this morphology. Topological 
defect nucleation and boundary branching in crystal growth are ex-

amples of instabilities caused by curvature-induced stress. Therefore, 
the elucidation of their mechanisms is highly relevant. Ma et al. [23]

studied the interaction between dislocation nucleation and boundary 
instability on curved surfaces during crystal growth and demonstrated 
the growth of curved crystals using Brownian dynamics simulations. 
In [24], a two-dimensional dendritic growth simulation on curved sur-

faces was performed in spherical coordinates using a phase-field model. 
The effect of the curvature of spheres on the growth of a crystal was 
investigated. In [25], the authors presented the results of a compu-

tational simulation of isotropic crystal growth on curved surfaces in 
a three-dimensional space. As global warming progresses, research on 
the growth of ice in the sea is also becoming more prevalent. Tang [26]

proposed sea ice growth modeling using the phase-field method and 
stated a long time behavior weak solution. To the best of our knowl-

edge, there are few computational simulations of anisotropic crystal 
growth on curved surfaces using the phase-field model.

For anisotropic ice crystal growth on spherical surfaces, a phe-

nomenological total free energy is considered in a two-dimensional 
space as follows [8,27–30]:

 = ∫
[
𝜖2(𝜃) |∇𝜙|2 − 𝜙2

+ 𝜙4
+ 𝜆𝑈

(
𝜙− 2𝜙3

+ 𝜙5)]
d𝐱, (1)
2 2 4 3 5
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where 𝜙 is the order parameter [31], 𝜆 is a positive parameter, 𝑈 is the 
dimensionless temperature, and the anisotropic term is

𝜖(𝜃) = 𝜖0(1 + 𝜖6 cos(6𝜃)). (2)

Here, 𝜖0 and 𝜖6 are interfacial parameters, and 𝜃 is the angle between 
the normal vector, −∇𝜙 = (−𝜙𝑥, −𝜙𝑦), of the interface and the 𝑥-axis, 
i.e., 𝜃 = tan−1

(
𝜙𝑦∕𝜙𝑥

)
. Thus, the governing equation for anisotropic ice 

crystal growth can be derived using a variational approach:

𝜖2(𝜃) 𝜕𝜙
𝜕𝑡

= − 𝛿
𝛿𝜙

, (3)

i.e.,

𝜖2(𝜃) 𝜕𝜙
𝜕𝑡

=∇ ⋅ (𝜖2(𝜃)∇𝜙) + [𝜙− 𝜆𝑈 (1 −𝜙2)](1 −𝜙2)

+
(|∇𝜙|2𝜖(𝜃) 𝜕𝜖(𝜃)

𝜕𝜙𝑥

)
𝑥

+
(|∇𝜙|2𝜖(𝜃) 𝜕𝜖(𝜃)

𝜕𝜙𝑦

)
𝑦

, (4)

𝜕𝑈

𝜕𝑡
=𝐷Δ𝑈 + 1

2
𝜕𝜙

𝜕𝑡
, (5)

where 𝐷 is the thermal diffusivity. The following terms can be simpli-

fied to Eq. (4):(|∇𝜙|2𝜖(𝜃) 𝜕𝜖(𝜃)
𝜕𝜙𝑥

)
𝑥

=

(
(𝜙2

𝑥
+𝜙2

𝑦
)𝜖(𝜃)𝜖′(𝜃)

(
−

𝜙𝑦

𝜙2
𝑥
+𝜙2

𝑦

))
𝑥

= −
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑦

)
𝑥
,(|∇𝜙|2𝜖(𝜃) 𝜕𝜖(𝜃)

𝜕𝜙𝑦

)
𝑦

=

(
(𝜙2

𝑥
+𝜙2

𝑦
)𝜖(𝜃)𝜖′(𝜃)

𝜙𝑥

𝜙2
𝑥
+ 𝜙2

𝑦

)
𝑦

=
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑥

)
𝑦
.

Therefore, Eqs. (4) and (5) can be rewritten as

𝜖2(𝜃) 𝜕𝜙
𝜕𝑡

=∇ ⋅ (𝜖2(𝜃)∇𝜙) + [𝜙− 𝜆𝑈 (1 −𝜙2)](1 −𝜙2)

−
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑦

)
𝑥
+
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑥

)
𝑦
, (6)

𝜕𝑈

𝜕𝑡
=𝐷Δ𝑈 + 1

2
𝜕𝜙

𝜕𝑡
. (7)

It becomes very complicated and difficult to implement numerical 
simulations on curved surfaces [33,34]. One of natural computational 
methods on curved surfaces is to solve the governing equations on a 
triangular mesh for the surface in a three-dimensional space [32]. How-

ever, it is difficult to compute the terms 𝜖(𝜃) in Eq. (6) with interface 
angle on the triangular mesh.

The main purpose of this paper is to resolve this problem by solving 
the governing equation in Cartesian coordinates after rotating each ver-

tex and the 1-ring neighborhood of the vertex on the triangular mesh. 
After rotation and interpolation, the governing equation is numerically 
solved by applying a standard finite difference scheme.

The remainder of this paper is organized as follows. In Section 2, the 
numerical solution algorithm is described in detail. In Section 3, vari-

ous tests are performed to demonstrate that the proposed algorithm can 



C. Lee, S. Yoon, J. Park et al. Computers and Mathematics with Applications 125 (2022) 25–33

Fig. 2. Triangular surface meshes with different levels. The refinement level is described in each figure.
Fig. 3. Schematic of the triangular surface mesh and 1-ring neighbors of 𝐱𝑝 .

recover anisotropic ice crystal growth on a spherical surface. In Sec-

tion 4, we discuss the numerical methods and results, and present the 
strengths and weaknesses of the proposed method. Finally, conclusions 
are summarized in Section 5.

2. Numerical solution algorithm

In this section, a numerical method is proposed for the phase-field 
model of anisotropic ice crystal growth on a spherical surface. Let us 
consider a sphere of radius 𝑅 centered at (𝑥, 𝑦, 𝑧) = (0, 0, 0). A trian-

gular mesh of the spherical surface  is generated by adopting the 
SphereMesh function in MATLAB [35]. Starting from the icosahedron 
(level 0), as shown in Fig. 2(a), to define higher-level surface meshes, 
the triangles are recursively refined by connecting the midpoints of each 
side and scale the newly generated points such that they lie on the 
surface of the sphere. Fig. 2(b) and (c) show the generated triangular 
surface meshes with level 2 and 4, respectively.

Given the spherical surface  , we first define a triangular surface 
mesh  with a set of 𝑀 vertices, i.e.,  = {𝐱𝑝}M

𝑝=1. Fig. 3 illustrates 
the 1-ring neighborhood of a vertex 𝐱𝑝, i.e., {𝑝1, 𝑝2, ⋯ , 𝑝𝑞} which are 
connected to 𝐱𝑝 by an edge. In this mesh generation, 𝑞 = 5 or 𝑞 = 6.

Now, we describe the numerical solution algorithm in detail. For 
𝑝 = 1, … , 𝑀 , let 𝐦 be the unit vector that is perpendicular to both 𝐱𝑝
and (0, 0, 𝑅) as the normalized cross product of the two vectors (see 
Fig. 4(a)), i.e.,

𝐦 =
𝐱𝑝 × (0,0,𝑅)|𝐱𝑝 × (0,0,𝑅)| . (8)

Let 𝜑 be the angle between the two vectors 𝐱𝑝 and (0, 0, 𝑅) (see 
Fig. 4(a)), i.e.,

𝜑 = cos−1
( 𝐱𝑝 ⋅ (0,0,𝑅)|𝐱𝑝||(0,0,𝑅)|

)
. (9)

The 1-ring neighborhood is rotated about the unit vector 𝐦 by an angle 
𝜑 using the following formula [36]:

�̃�𝑝 = (1 − cos(𝜑))(𝐱𝑝 ⋅𝐦)𝐦+ cos(𝜑)𝐱𝑝 + sin(𝜑)𝐦 × 𝐱𝑝 , 𝑖 = 1,… , 𝑞. (10)

𝑖 𝑖 𝑖 𝑖
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In addition, the center point 𝐱𝑝 of the 1-ring neighborhood moves to the 
north pole �̃�𝑝 = (0, 0, 𝑅), as shown in Fig. 4(a).

Then, the 1-ring transferred points �̃�𝑝𝑖 are projected onto the 𝑥𝑦-

plane and let the corresponding projected points be �̂�𝑝𝑖 . Through this 
process, the original arc-length connecting �̃�𝑝𝑖 and (0, 0, 𝑅) is changed. 
As shown in Fig. 4(b), the arc-length is recovered by scaling and define 
�̄�𝑝𝑖 as

�̄�𝑝𝑖 =𝑅 cos−1
(

�̃�𝑝𝑖 ⋅ (0,0,𝑅)|�̃�𝑝𝑖 ||(0,0,𝑅)|
)

�̂�𝑝𝑖|�̂�𝑝𝑖 | . (11)

Next, let ℎ𝑝 be the radius of the inscribed circle of the polygon con-

sisting of projected points for 𝑝 = 1, … , 𝑀 and then let ℎ𝑚𝑖𝑛 be the 
minimum of the radii ℎ𝑝, i.e., ℎ𝑚𝑖𝑛 = min1≤𝑝≤𝑀 ℎ𝑝. A local space step 
ℎ is defined as ℎ = 𝑠ℎ𝑚𝑖𝑛, where 0 < 𝑠 ≤ 1∕

√
2 is a safety scaling factor. 

We then interpolate the phase-field values 𝑠𝑖 (𝑖 = 1, … , 17) and the tem-

perature field values 𝑉𝑖 (𝑖 = 1, … , 9) from the projected values using the 
scatteredInterpolant function in MATLAB [37].

Let 𝜙𝑛
𝑝
= 𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑛Δ𝑡) and 𝑈𝑛

𝑝
= 𝑈 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑛Δ𝑡), where Δ𝑡 is the 

time step size. Then, using an explicit Euler scheme, the governing equa-

tions (6)–(7) are discretized as follows:

𝜖2(𝜃𝑛
𝑝
)
𝜙𝑛+1
𝑝

−𝜙𝑛
𝑝

Δ𝑡
=
[
∇𝑑 ⋅ (𝜖2(𝜃)∇𝑑𝜙)

]𝑛
𝑝
+ [𝜙𝑛

𝑝
− 𝜆𝑈𝑛

𝑝
(1 − (𝜙𝑛

𝑝
)2)][1 − (𝜙𝑛

𝑝
)2]

−
[
𝐷𝑥

(
𝜖′(𝜃)𝜖(𝜃)𝐷𝑦𝜙

)]𝑛
𝑝
+
[
𝐷𝑦

(
𝜖′(𝜃)𝜖(𝜃)𝐷𝑥𝜙

)]𝑛
𝑝
, (12)

𝑈𝑛+1
𝑝

−𝑈𝑛
𝑝

Δ𝑡
=𝐷Δ𝑑𝑈

𝑛
𝑝
+
𝜙𝑛+1
𝑝

−𝜙𝑛
𝑝

2Δ𝑡
, (13)

where 𝜃𝑝 is the angle at 𝐱𝑝, and ∇𝑑𝜙 = (𝐷𝑥𝜙, 𝐷𝑦𝜙) is the discrete gra-

dient. The explicit Euler scheme has a limitation on the time step size, 
however, it is not a severe constraint because the governing equation 
is a second-order partial differential equation. Moreover, even with an 
implicit Euler scheme applied, small time step sizes should be used to 
obtain an accurate solution [20,38]. Equations (12) and (13) are solved 
by using the two-dimensional Cartesian local coordinate values 𝑠𝑖 and 
𝑉𝑖, as illustrated in Fig. 4(c) and (d). For simplicity of exposition, the 
superscript 𝑛 is omitted. In Eq. (12), the anisotropic function and its 
derivative are as follows:

𝜖(𝜃𝑝) = 𝜖0
(
1 + 𝜖6 cos(6(𝜃𝑝 − �̄�))

)
, (14)

𝜖′(𝜃𝑝) = −6𝜖0𝜖6 sin(6(𝜃𝑝 − �̄�)), (15)

where �̄� is the orientation angle. In this paper, �̄� = 𝜋∕6 is used because 
we consider a small square in a regular hexagon that consists of six 
regular triangles with an angle of 𝜋∕3. To compute 𝜖2(𝜃𝑝), the outward 
normal vector of the interface at (0, 0) in the local coordinate is defined 
as shown in Fig. 4(c):

−∇𝑑𝜙𝑝 = −
( 𝑠14 − 𝑠13

ℎ
,
𝑠16 − 𝑠11

ℎ

)
. (16)

Then, the angle between the normal vector and a reference axis (1, 0) is 
given as

𝜃𝑝 = tan−1
(
𝑠11 − 𝑠16

)
. (17)
𝑠13 − 𝑠14
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Fig. 4. Schematic of moving points of the 1-ring and normal vector 𝐦: (a) three-dimensional view and (b) projection of the 1-ring and normalization. Schematic of 
the two-dimensional Cartesian local coordinates for solving the governing equations: (c) 17 points 𝑠𝑖 (𝑖 = 1, 2, … , 17) in the 1-ring for the phase-field values, and (d) 
9 points 𝑉𝑖 (𝑖 = 1, 2, … , 9) in the 1-ring for the temperature field values.
Using this angle 𝜃𝑝 and Eq. (14), 𝜖2(𝜃𝑝) is computed. Next, let us define 
the discretization of the other terms as follows:

[
∇𝑑 ⋅ (𝜖2(𝜃)∇𝑑𝜙)

]
𝑝
=
𝜖2(𝜃 1

2 ,0
)
(
𝑠6 − 𝑠5

)
− 𝜖2(𝜃− 1

2 ,0
)
(
𝑠5 − 𝑠4

)
ℎ2

+
𝜖2(𝜃0, 12

)
(
𝑠8 − 𝑠5

)
− 𝜖2(𝜃0,− 1

2
)
(
𝑠5 − 𝑠2

)
ℎ2

,

[
𝐷𝑥

(
𝜖′(𝜃)𝜖(𝜃)𝐷𝑦𝜙

)]

𝑝

28
=
𝜖′(𝜃 1

2 ,0
)𝜖(𝜃 1

2 ,0
)
(
𝑠17 − 𝑠12

)
− 𝜖′(𝜃− 1

2 ,0
)𝜖(𝜃− 1

2 ,0
)
(
𝑠15 − 𝑠10

)
ℎ2

,

[
𝐷𝑦

(
𝜖′(𝜃)𝜖(𝜃)𝐷𝑥𝜙

)]
𝑝

=
𝜖′(𝜃0, 12

)𝜖(𝜃0, 12
)
(
𝑠17 − 𝑠15

)
− 𝜖′(𝜃0,− 1

2
)𝜖(𝜃0,− 1

2
)
(
𝑠12 − 𝑠10

)
ℎ2

,

where 𝜃𝑖,𝑗 is the angle between the normal vector of the interface and 
(1, 0) at a point (ℎ𝑖, ℎ𝑗), i.e.,



C. Lee, S. Yoon, J. Park et al. Computers and Mathematics with Applications 125 (2022) 25–33

Fig. 5. Crystal growth on a sphere with different initial radii 𝑅0 at (a) 𝑡 = 1200Δ𝑡, (b) 𝑡 = 1000Δ𝑡, and (c) 𝑡 = 800Δ𝑡. From left to right, 𝑟 = 10,15 and 20.
𝜃− 1
2 ,0

= tan−1
(
𝑠10 − 𝑠15
𝑠4 − 𝑠5

)
, 𝜃 1

2 ,0
= tan−1

(
𝑠12 − 𝑠17
𝑠5 − 𝑠6

)
, (18)

𝜃0,− 1
2
= tan−1

(
𝑠2 − 𝑠5
𝑠10 − 𝑠12

)
, 𝜃0, 12

= tan−1
(

𝑠5 − 𝑠8
𝑠15 − 𝑠17

)
. (19)

Finally, the discretization of the Laplacian operator [39] for tempera-

ture is

Δ𝑑𝑈𝑝 =
4(𝑉2 + 𝑉4 + 𝑉6 + 𝑉8) + 𝑉1 + 𝑉3 + 𝑉7 + 𝑉9 − 20𝑉5

6ℎ2
. (20)

A brief summary of the algorithm presented in this section is as 
follows: We first move the object which we need to compute on the 
sphere such as the hexagonal part shown in Fig. 4(a) toward the north 
pole; project it on the two-dimensional plane as shown in Fig. 4(b) and 
create the square mesh grid on the flat domain as shown in Fig. 4(c), 
keeping the distance between the center point and other points fixed 
and expanding other inter-point distances as necessary; and then inter-

polate the phase-field values as shown in Fig. 4(d). We finally solve the 
discrete governing equations (12)–(13).

3. Numerical results

In this section, various numerical experiments are performed to 
demonstrate the efficiency of the proposed scheme on spherical surfaces 
in a three-dimensional space. Unless otherwise indicated, for triangular 
surface meshes with level 6 and a spherical radius 𝑅 = 120, the follow-

ing parameters are used: 𝜆 = 3.1913, 𝜖0 = 1, 𝜖6 = 0.05, 𝑠 = 0.5∕
√
2, 𝐷 = 1, 

and Δ𝑡 = 0.1ℎ2∕𝐷. The initial condition is set to, for 𝑝 = 1, … , 𝑀 ,

𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0) = tanh

(
𝑟−𝑅𝜃

0.01
√
2𝑅

)
,

𝑈 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0) =
1 −𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0)

2
Δ,

(21)

where 𝜃 = cos−1
(
(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) ⋅ (0,0,𝑅)

)
, undercooling Δ = −0.65, and the 

initial radius 𝑟 = 10.

3.1. Effect of initial radius 𝑟

We investigate the effect of the initial radius by choosing different 
values of 𝑟 = 10, 15, and 20 in Eq. (25). The first row in Fig. 5 shows 
the initial states on the given sphere. The initial radii are 𝑟 = 10, 15, 
and 20 from left to right. The second row of Fig. 5 shows the temporal 
evolution of the crystal growth at 𝑡 = 1200Δ𝑡, 1000Δ𝑡, and 800Δ𝑡 from 
left to right. We observe the numerical results when the size of the three 
crystals becomes similar. Based on this test, 𝑟 = 10 is chosen as the initial 
condition for all subsequent tests.
29
3.2. Effect of safety scaling factor 𝑠

We consider the safety scaling factor 𝑠 of the local space step ℎ. 
In this case, the time step is fixed as Δ𝑡 = 0.025ℎ2

𝑚𝑖𝑛
. Fig. 6 shows the 

sequences of the crystal growth at 𝑡 = 5000Δ𝑡 with the different scaling 
factors 𝑠 = 0.25∕

√
2, 0.5∕

√
2, and 1∕

√
2. It is observed that a smaller 

scaling factor causes the crystal to grow faster. Since the safety scaling 
factor is related to the mesh grid size ℎ, we choose 𝑠 = 0.5∕

√
2 for setting 

the mesh grid size between 0.4 and 0.8, compared with that in previous 
works [8,40,41].

3.3. Effect of interfacial parameter 𝜖6

To consider the effect of 𝜖6 on the sphere, the following three dif-

ferent values are selected: 𝜖6 = 0.01, 0.03, and 0.05. Fig. 7(a), (b), and 
(c) show the crystal growth at 𝑡 = 1200Δ𝑡 with 𝜖6 = 0.01, 0.03, and 0.05, 
respectively. A larger 𝜖6 causes the dendrites to grow faster.

3.4. Effect of thermal diffusivity 𝐷

Next, we investigate the effect of thermal diffusivity 𝐷 and fix the 
time step with Δ𝑡 = 0.1ℎ2∕2. Fig. 8 shows the sequences of the crystal 
growth at 𝑡 = 2500Δ𝑡 for the different thermal diffusivity 𝐷 = 0.5, 1, and 
2. The results indicate that a smaller thermal diffusivity causes dendrites 
to grow faster.

3.5. Effect of undercooling Δ

To investigate the effect of undercooling Δ, the same test is con-

ducted with different Δ values. Fig. 9 shows the sequences of the 
evolution of crystal growth at 𝑡 = 1200Δ𝑡 with different undercooling 
Δ = −0.35, − 0.45, − 0.55, and −0.65. It is observed that a large initial 
undercooling causes the dendrites to grow faster.

3.6. Growth of multiple crystals

Crystal growth on sphere is implemented by setting multiple circles 
as an initial condition. The initial condition is set to

𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0) = 𝑘− 1 +
𝑘∑
𝑖=1

tanh

(
𝑟−𝑅𝜃𝑖

0.01
√
2𝑅

)
, (22)

where 𝑘 is the number of initial circles, 𝜃𝑖 = cos−1(𝐍𝑖 ⋅ 𝐱𝑝) is the angle 
of the 𝑖-th circle for 𝑝 = 1, … , 𝑀 , and 𝐍𝑖 is the vector from the center of 
the sphere to the center of the isolated circles.

Crystal growth simulations are performed for different mesh levels 
and different numbers of initial circles. Fig. 10(a)–(c) show the crys-

tal growth results for level 6 mesh and five initial circles at 𝑡 = 0, 350, 
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Fig. 6. Crystal growth on a sphere with scaling factor 𝑠 at 𝑡 = 5000Δ𝑡. From left to right, (a) 𝑠 = 0.25∕
√
2, (b) 𝑠 = 0.5∕

√
2, and (c) 𝑠 = 1∕

√
2.

Fig. 7. Crystal growth on a sphere with anisotropic diffusion (a) 𝜖6 = 0.01, (b) 𝜖6 = 0.03, and (c) 𝜖6 = 0.05.

Fig. 8. Crystal growth on a sphere with isotropic diffusion 𝐷 at 𝑡 = 2500Δ𝑡. From left to right, (a) 𝐷 = 0.5, (b) 𝐷 = 1, and (c) 𝐷 = 2.

Fig. 9. Crystal growth on a sphere with undercooling Δ at 𝑡 = 1200Δ𝑡. From left to right, (a) Δ= −0.35, (b) Δ= −0.45, (c) Δ= −0.55, and (d) Δ= −0.65.
and 700, respectively. The parameters used are 𝑟 = 10, 𝑅 = 120, 𝑠 =
0.5∕

√
2, and the other parameters are the same as those used above. 

Fig. 10(d)–(f) show the crystal growth with level 7 mesh and 20 cir-

cles at 𝑡 = 600, 1200, and 3000, respectively. The parameters used are 
𝑟 = 10, 𝑅 = 240, 𝑠 = 0.25∕

√
2, and other parameters are the same as used 

above. To match the actual results in a real-world situation, five circles 
are added at random positions after every 200 iterations from the be-

ginning until 𝑡 = 600. It is observed that the interfaces of the crystals 
become convex inward over time.

3.7. Convergence tests

We verify the rate of convergence of the proposed method both in 
space and time. First, we investigate the convergence rates as the space 
step size ℎ is refined. The time step size Δ𝑡 is fixed to 1.0𝑒-6 and the 
final time is 15Δ𝑡. In addition, 𝑟 = 0.25 and 𝑅 = 1 are used and the other 
parameters are the same as described in the beginning of Section 3. The 
𝑙2-norm error between the numerical solution and the reference solution 
𝜙𝑟𝑒𝑓 with ℎ is defined as ||𝑒ℎ|| =√∑𝑀 (𝜙𝑝 −𝜙

𝑟𝑒𝑓
𝑝 )2∕𝑀 . The numerical 
𝑝=1

30
Table 1

Rates of convergence in space.

ℎ 0.028 Rate 0.014 Rate 0.007

𝑙2-norm error 3.237-3 2.143 7.328𝑒-4 2.103 1.706𝑒-4

solution is considered with the level 8 surface mesh (i.e., ℎ = 0.0035) 
which is a sufficiently fine mesh size for the reference solution. The 
rate of convergence is defined as log2

(||𝑒ℎ||∕||𝑒ℎ∕2||) [42].

Table 1 shows the 𝑙2-norm errors and convergence rates as the space 
step size refines from level 5 to level 7. The proposed method is almost 
second-order accurate in space.

Next, the rates of convergence is examined as the time step size 
Δ𝑡 is refined. The space step size ℎ is fixed to 0.007 (i.e., level 7 
surface mesh) and the final time 3.0𝑒-5. The 𝑙2-norm error with Δ𝑡
is defined as ||𝑒Δ𝑡|| = √∑𝑀

𝑝=1(𝜙𝑝 − 𝜙
𝑟𝑒𝑓
𝑝 )2∕𝑀 . The reference solution 

𝜙𝑟𝑒𝑓 is considered as the numerical solution with a sufficiently small 
time step size Δ𝑡 = 3.125𝑒-8. The rate of convergence is defined as 
log2

(||𝑒Δ𝑡||∕||𝑒Δ𝑡∕2||).
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Fig. 10. Crystal growth on a sphere with anisotropic diffusion with (a)–(c) level 6 and (d)–(f) level 7 meshes.
Table 2

Rates of convergence in time.

Δ𝑡 1.0𝑒-6 Rate 5.0𝑒-7 Rate 2.5𝑒-7

𝑙2-norm error 9.168𝑒-4 1.057 4.406𝑒-5 1.104 2.049𝑒-5

Table 2 shows the 𝑙2-norm errors and convergence rates as the time 
step size is refined. It is found that the proposed method is nearly first-

order accurate in time.

From the two tables above, the accuracy of the proposed numer-

ical method is the second-order accurate in space and the first-order 
accurate in time. The focus of this study is modeling for anisotropic ice 
crystal growth on a spherical surface. In the future work, there is a plan 
to develop the higher-order temporal scheme.

3.8. Comparison of the tip velocities

In this section, the tip velocity of the numerical solution is compared 
with a previous study [24] to validate the accuracy of the proposed 
method. Ortellado and Gómez studied crystallization on the sphere 
within the framework of the phase-field model and a finite difference 
method. However, they solved the governing equations in spherical co-

ordinates and employed the Laplace–Beltrami operator for the diffusion 
term on surface. The total free energy  introduced in [24] is

 = ∫
[
𝜖2(𝜃)
2

|∇𝜙|2 + 𝜙4

4
− 𝜙3

2
+ 𝜙2

4
+𝑚(𝑈 )

(
𝜙3

3
− 𝜙2

2

)]
d𝐱,

where 𝜙 is the order parameter that is the liquid when 𝜙 = 0 and the 
crystal phase when 𝜙 = 1; 𝑈 is the dimensionless temperature, 𝑈 = 0
is the subcooling temperature, and 𝑈𝑒 = 1 is the two-phase equilibrium 
temperature; and 𝑚(𝑈 ) = (𝐾1∕𝜋) tan−1

(
𝐾2(𝑈𝑒 −𝑈 )

)
. Here, 𝐾1 and 𝐾2

are parameters such that 𝐾1 < 1. The governing equation for 𝜙 is de-

rived from the functional derivative of  :

𝜕𝜙

𝜕𝑡
= −𝜇𝜙

𝛿𝐹

𝛿𝜙
,

where 𝜇𝜙 is the mobility. That is,
𝜕𝜙

𝜕𝑡
=∇ ⋅ (𝜖2(𝜃)∇𝜙) + [(𝜙− 0.5) +𝑚(𝑈 )]𝜙(1 − 𝜙)

−
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑦

)
𝑥
+
(
𝜖′(𝜃)𝜖(𝜃)𝜙𝑥

)
𝑦
. (23)

The governing equation for the temperature field 𝑈 is
31
Fig. 11. Comparison of the tip velocities according to the radius of sphere.

𝜕𝑈

𝜕𝑡
=Δ𝑈 +𝐾

𝜕𝜙

𝜕𝑡
, (24)

where 𝐾 is a positive constant. We compare the steady-state veloci-

ties of the tips of crystals obtained from our proposed method with 
the results in the reference [24]. For the comparison test, the param-

eters are determined as follows: the level 6 triangular surface, 𝐾 = 1, 
𝜖0 = 𝜖6 = 0.029, 𝐾1 = 0.9, 𝐾2 = 10, 𝑈0 = 1, Δ𝑡 = 0.01ℎ2, and the final time 
0.1. The initial condition is defined as

𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0) =
1
2

[
1 + tanh

(
0.25 −𝑅𝜃

0.01
√
2𝑅

)]
,

𝑈 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0) = 𝜙(𝑥𝑝, 𝑦𝑝, 𝑧𝑝,0)Δ,

(25)

with Δ = 1. By changing the radius 𝑅 of sphere from 4 to 10, the veloc-

ities of tips is computed. Fig. 11 represents that our results for the tip 
velocities correspond with the reference values.

4. Discussion

The present results are important for the phase transformation pro-

cesses occurring in physics, chemistry, biology, and similar research 
areas where the nucleation and crystal growth phenomena take place. 
Through the numerical results, we observed the evolution of one or 
multiple initial seeds and demonstrated the effects of parameters. As 
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Fig. 12. Side branch formation on a sphere at 𝑡 = 0, 9000Δ𝑡, 22000Δ𝑡, and 30000Δ𝑡.
Fig. 13. Schematic of the narrow band domain on a surface 𝑆.

mentioned, it is difficult to calculate the anisotropic term on a triangu-

lar mesh of the curved surfaces in a three-dimensional space. Most of 
the previous studies for anisotropic ice crystal growth simulation, which 
are discussed in the introduction, have been performed in Cartesian co-

ordinates, two- and three-dimensional spaces. Therefore, the novelty of 
the proposed method is that we presented the numerical method for 
implementing the anisotropic ice crystal growth on a spherical surface.

In reference [1], which motivated us to propose the current nu-

merical method, the authors considered two conditions: isothermal and 
room-temperature experiments. Here, icy substrates are commonly used 
for the bottom. Compared to the results in [1], our results are consistent 
with the dynamics under the isothermal conditions. In room tempera-

ture conditions where the ambient was warmer than the melting point 
and freezing was accomplished with a chilled substrate, it differs from 
our results.

There are two limitations because this study focuses on developing 
the numerical method in this paper. There are two plans to improve 
the mathematical model and numerical method in the subsequent re-

searches. First, we will perform the analysis and theoretical comparison 
in the future work. However, it is nontrivial to solve the partial differ-

ential equations on a curved surface, and it is complicated to consider 
the Laplace–Beltrami operator [43]. In [44,45], phase-field simulations 
in two-and three-dimensional geometries of ice crystal growth were 
presented. The complete set of non-linear equations, consisting of the 
undercooling balance condition and the stability criterion, were com-

pared with phase-field simulations. Referring to those references, we 
will try to compare the numerical method theoretically.

Second, we need parallel computing to fully resolve the resolution. 
We used level 6 and 7 surface meshes that are not fine enough for the 
secondary branching instability of the multiple crystals. We simulate 
a side branch formation on the triangular surface meshes with level 
8. To perform the numerical simulation for the side branching of ice 
crystal, the parameters are set to 𝜆 = 3.1913, 𝜖0 = 1, 𝜖6 = 0.05, 𝑅 = 120, 
𝑟 = 10, 𝑠 = 0.5∕

√
2, Δ = −0.65, 𝐷 = 1, and Δ𝑡 = 0.1ℎ2∕𝐷. Fig. 12 shows 

temporal evolution of the crystal growth at 𝑡 = 0, 9000Δ𝑡, 22000Δ𝑡, and 
30000Δ𝑡 from left to right. We can observe that the side branches of the 
crystal. In future work, we shall present a large scale numerical results 
by combining our proposed method with adaptive mesh refinement or 
parallel computation for efficient computation [46,47].

Next, let us discuss three future potential developments. First, the 
present work is a two-dimensional simulation projected on a given 
spherical surface. It will be interesting future research if we consider 
32
the interaction between ice crystal and the lipid substrate of the bubble. 
Moreover, for a three-dimensional nature of crystal growth on a curved 
surface, we can extend the proposed method for a three-dimensional 
simulation on a narrow band domain [48], as shown in Fig. 13. Given 
surface 𝑆, we can define a narrow band domain with a small thickness, 
and numerically simulate a crystal growth in the domain.

Second, the proposed method can be extended to model rapid so-

lidification of deeply supercooled ice. In high-speed solidification, a 
high driving force must be reached, which violates the local thermo-

dynamic equilibrium in both the phase interface and the bulk phase, 
causing phase deformation [49,50]. Referring to [50], we will simulate 
the rapid solidification using the phase-field model numerically.

5. Conclusions

In this study, a computational technique for the phase-field model 
of anisotropic ice crystal growth on a spherical surface is developed. 
By employing the proposed numerical scheme, the terms related to the 
anisotropic interfacial energy can be calculated, which are difficult to 
compute on a triangular mesh. To resolve this problem, the governing 
equation was solved in Cartesian coordinates after rotating each vertex 
and the 1-ring neighborhood of the vertex on the triangular mesh. Var-

ious tests were conducted to demonstrate that the proposed algorithm 
can recover anisotropic ice crystal growth on a spherical surface.
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