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In this study, we consider the numerical approximation of incompressible three-component fluids, in 
which the fluid interfaces are captured by ternary Cahn–Hilliard equations and the fluid flows are 
governed by Navier–Stokes equations. This system includes not only nonlinear effects but also coupling 
among phase-field variables, velocities, and pressure. The ternary Cahn–Hilliard–Navier–Stokes system 
also satisfies the energy dissipation law, which is a basic physical property. For the appropriate treatment 
of the nonlinear and coupling terms and preservation of the energy dissipation law in a discrete version, 
we develop second-order time-accurate, linearly implicit-explicit (IMEX) methods using a variation 
of the scalar auxiliary variable (SAV) method. To improve the consistency between the original and 
modified energies, a simple and effective energy relaxation technique is considered. We analytically 
proved the unique solvability and the relaxed energy dissipation law. The proposed schemes are highly 
efficient for implementation because only linear elliptic equations need to be solved separately. Extensive 
computational experiments are performed to validate the accuracy, energy stability, and performance 
of the proposed method. To facilitate further study, we provide the C codes for the typical numerical 
simulations at http://github .com /yang521.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The phase-field or diffuse-interface methods are powerful and efficient tools for modeling significant physical problems in materials 
science or fluid mechanics [1–3]. The Cahn–Hilliard (CH) equation is a typical phase-field model proposed by Cahn and Hilliard [4] for 
the mass-conserved spinodal decomposition of binary alloys. The main advantages of the CH equation for conservative problems with 
interfaces include the following: (i) The interfacial positions are easily captured by solving the governing equations; (ii) The mass con-
servation is naturally satisfied with the use of periodic or homogeneous Neumann boundary conditions. With the rise of interdisciplinary 
studies, the CH equation has been effectively applied in two-phase flow simulations [5–9], three-dimensional (3D) volume reconstruction 
[10], image inpainting [11], multiphase spinodal decomposition [12], and biological dynamics simulations [13,14], etc. In addition to mass 
conservation, the energy law is another basic property of the CH equation. Over time, the solution of the CH equation will dissipate the 
free energy of the system in the absence of an external force acting on it. This energy dissipation-property is in accordance with the sec-
ond law of thermodynamics. To preserve the discrete version of the energy dissipation law, researchers have developed practical methods 
based on nonlinear temporal discretization, (e.g., convex splitting method) [15–19], and linear temporal discretization, (e.g., stabilization 
method [20,21], energy factorization method [22], and auxiliary variables method) [23–27].

Compared with the classical binary CH equation, the three-phase model is important because in reality, most physical phenomena 
have more than two components. Examples include the double emulsion formation in a microfluid device [28], multiple cell division [14], 
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and water-oil-surfactant mixtures [29,30]. Based on the two-phase CH model, Kim [31] proposed a simple ternary CH model which is 
a straightforward extension of the binary model. The proposed model was validated via the numerical simulation of a ternary spinodal 
decomposition and three-component liquid lens. Later, Kim [32] extended this idea to an arbitrary N-component (N ≥ 3) CH fluid system 
and developed a generalized continuous surface tension formulation for incompressible multicomponent fluids. Using this multicomponent 
CH model, Lee and Kim [33] studied the dynamics of buoyancy-driven mixing in tilted channels via numerical simulations. Zhang et al. 
[34] proposed a geometric relation-based contact angle boundary condition for the ternary CH fluid model. By combining this with the 
immersed boundary method, Liu et al. [35] developed a modified ternary CH model to study the two-phase flow in complex domains. 
Li et al. [36] later developed a 3D version of the method by adopting a similar idea. For the stable simulation of the multicomponent 
CH model, Lee et al. [37] developed a temporally first-order accurate method based on the linear splitting scheme. Although a detailed 
stability analysis was not provided, the computational experiments showed the effectiveness of their proposed scheme despite the use of 
large time steps. Recently, Li et al. [38] constructed a temporally second-order accurate and unconditionally energy-stable scheme for the 
multicomponent CH systems. The energy dissipation law and unique solvability of the scheme were strictly proven.

It should be noted that the ternary and multicomponent CH models developed in [31,32] are the simplest combination of several 
binary CH equations. Although they can be successfully applied in various multiphase flow simulations, the effects of different surface 
tension coefficients were not considered. Boyer and Lapuerta [39] presented a three-component CH system that describes the effects of 
the surface tension and interactions between different components. Because the surface tension coefficients are equal, this ternary model 
and the model adopted in [31] are equivalent. Many researchers have constructed practical lattice Boltzmann algorithms to simulate 
ternary models in fluid systems [40–42]. However, it is difficult to prove the energy dissipation law using the lattice Boltzmann method. 
Based on the convex splitting method, Chen et al. [43] developed a nonlinear second-order time-accurate and energy-stable method for 
ternary CH equations [39]. To simplify the calculation and enhance the efficiency, Zhang and Yang [44] proposed a totally decoupled, 
linear, and unconditionally energy-stable time-marching scheme using the scalar auxiliary variable (SAV) technique. Owing to the coupling 
between the local and time-dependent auxiliary variables, decoupling the discrete system using the classical SAV approach increases the 
computational costs. To reduce the computation time and further simplify the algorithm, Yang and Kim [45] used a modified SAV method 
for ternary CH fluid models by following an idea similar to that in [25]. Despite the popularity of the SAV-type approaches in developing 
linear and energy-stable methods for phase-field systems, the resulting energy dissipation laws only hold with respect to a modified 
energy. In the discrete version, the relationship between the original and modified variable-based energies is unclear. To enhance the 
consistency of the classical SAV approach, Zhao [48] recently proposed a relaxation technique that satisfied the energy dissipation law, and 
significantly improved the consistency between the original and modified variable-based energies. For enhanced computational efficiency, 
Zhang and Shen [49] developed a variation of the SAV method with relaxation for general gradient flows.

Although SAV-type methods for ternary CH models were studied in [44,45], these only plotted the modified energy curves. The re-
lationship between the original and modified energies were not investigated. More precisely, the modified energy stability could not 
analytically lead to the desired dissipation law with respect to the energy consisting of the original variables. If a relatively large time step 
is considered, then the difference between the original and modified energies may be significant. The present study aims to develop a 
novel time-marching method for ternary CH fluid models. By introducing novel time-dependent auxiliary variables including the free en-
ergy and kinetic energy, the proposed time-marching method has the following advantages: (i) The algorithm is efficient, and all variables 
can be updated in a step-by-step manner because of the linear and decoupled properties; (ii) The temporally second-order accuracy is 
satisfied based on the two-step backward differentiation formula (BDF2); (iii) The consistency between the original and modified energies 
is improved using a simple correction step; and (iv) The unique solvability of each variable can be analytically proved. To the best of the 
authors’ knowledge, this is the first study focusing on linear, decoupled, and approximately original variable-based energy-stable methods 
for ternary CH systems coupled with incompressible fluid flows.

The remainder of this paper is organized as follows. In Section 2, the three-component CH model and its hydrodynamically coupled 
model are described. In Section 3, the time-marching schemes, energy relaxation techniques, and estimation of the unique solvability and 
energy dissipation properties are presented. Extensive computational tests are conducted in Section 4 to verify the proposed method. In 
Section 5, the potential applications to miscible liquid/liquid boundaries are discussed. The concluding remarks are presented in Section 6.

2. Original three-component models

2.1. Three-component CH model

The three-component CH system [39] can be deduced from the following free energy functional

E(φ1, φ2, φ3) = 3ε2

8

3∑
k=1

∫
�

�k|∇φk|2 dx + 12
∫
�

F (φ1, φ2, φ3) dx, (1)

where � is the domain and x is the spatial variable. The concentration of each component is represented by φk = φk(x, t) (k = 1, 2, 3), 
where t is the temporal variable. We set φk = 1 and 0 in the interior and exterior of k-th component, respectively. For each spatial position 
and time, the following conservative condition must be satisfied.

φ1(x, t) + φ2(x, t) + φ3(x, t) = 1. (2)

The linear gradient terms in Eq. (1) contribute to the mixing dynamics. The nonlinear term is defined as

F (φ1, φ2, φ3) = 3�φ2
1φ2

2φ2
3 +

3∑ �k

2
φ2

k (1 − φ2
k ), (3)
k=1

2
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which leads to phase separation. The thickness of the diffuse interface between the different components is related to a small positive 
constant ε; � > 0 is also a constant. The parameters �k (k = 1, 2, 3) are defined as

�1 = σ12 + σ13 − σ23, �2 = σ12 + σ23 − σ13, �3 = σ13 + σ23 − σ12, (4)

where σmn is the physical surface tension coefficient between the m-th and n-th components. From [39], the following well-posed condi-
tion should be satisfied

�1�2 + �1�3 + �2�3 > 0, and �m + �n > 0, for m �= n. (5)

The authors in [39] proved the following two lemmas for a well-posed ternary CH model.

Lemma 1. There exists � (≥ 0) that satisfies

�1|γ1|2 + �2|γ2|2 + �3|γ3|2 ≥ �(|γ1|2 + |γ2|2 + |γ3|2), for γ1 + γ2 + γ3 = 0,

if and only if the conditions (5) hold.

Lemma 2. With a sufficiently large �, the nonlinear term F (φ1, φ2, φ3) can be non-negative if the condition (2) holds.

By taking the variational derivative of Eq. (1) with respect to φk and considering the condition (2), we derive the governing equations 
of a ternary CH system as follows:

∂φk

∂t
= M

�k

μk, (6)

μk = −3ε2

4
�k
φk + 12( fk + β), for k = 1,2,3, (7)

where M is the positive mobility and fk is the derivative of F (φ1, φ2, φ3) with respect to φk . To ensure that condition (2) holds, we define 
β = −�T

∑3
k=1( fk/�k) and 1/�T = ∑3

k=1(1/�k) [39,44,45]. A periodic or zero Neumann boundary condition is considered.

∇φk · n|∂� = 0, ∇μk · n|∂� = 0, for k = 1,2,3.

From Eq. (7) and condition (2), we derive 
∑3

k=1 μk/�k = 0. Then, we recast Eqs. (6) and (7) to be the following equivalent forms:

∂φk

∂t
= M

�k

μk, (8)

μk = −3ε2

4
�k
φk + 12( fk + β), for k = 1,2, (9)

φ3 = 1 − φ1 − φ2, μ3 = −�3

(
μ1

�1
+ μ2

�2

)
. (10)

The detailed proof of equivalence is provided in [44]. A comparison with Eqs. (6) and (7) shows that Eqs. (8)–(10) are more efficient 
because only φ1 and φ2 need to be calculated at each time step, and φ3 can be directly updated.

For two functions q1 = q1(x) and q2 = q2(x), their L2-inner product is defined as (q1, q2) =
∫
�

q1q2 dx. The corresponding L2-norm is 
defined as ‖q1‖2 = (q1, q2). With the definitions of the L2-inner products and L2-norm, we take the L2-inner product of Eq. (6) with −μk , 
and of Eq. (7) with ∂φk/∂t . By applying the integrations by parts and the appropriate boundary conditions (periodic or zero Neumann), 
and then combining the results for k = 1, 2, 3, the following energy dissipation law is obtained.

d

dt
E(φ1, φ2, φ3) = −M

3∑
k=1

(
�k‖∇ μk

�k
‖2

)
≤ −M�

3∑
k=1

(
‖∇ μk

�k
‖2

)
≤ 0. (11)

The above inequality shows that the ternary CH system dissipates the free energy over time.

2.2. Three-component CH model with incompressible fluids

By adding the convection term into Eq. (6) and coupling the incompressible Navier–Stokes (NS) equations, a dimensionless version of 
the incompressible three-component CH fluid model can be expressed as

∂u

∂t
+ u · ∇u = −∇p + 1

Re

u −

3∑
k=1

φk∇μk, (12)

∇ · u = 0, (13)
∂φk

∂t
+ ∇ · (φku) = M


μk

�k
, (14)

μk = −3ε2

�k
ck + 12( fk + β), for k = 1,2,3, (15)

4

3
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where u is the velocity field. In two-dimensional (2D) and 3D spaces, u = (u, v) and u = (u, v, w), respectively. Here, u, v , and w are 
the velocity components along the x-, y-, and z-directions, respectively; and p is the pressure. The last term in Eq. (12) is the effect of 
surface tension [47]. The incompressible condition is expressed by Eq. (13). Re > 0 is related to the viscosity of fluid. For all variables, the 
periodic or following boundary conditions are considered.

u|∂� = 0, ∇p · n|∂� = 0, ∇φk · n|∂� = 0, ∇μk · n|∂� = 0, for k = 1,2,3.

To reduce the computational time, the governing equations are transformed into the following equivalent forms:

∂u

∂t
+ u · ∇u = −∇p + 1

Re

u −

3∑
k=1

φk∇μk, (16)

∇ · u = 0, (17)
∂φk

∂t
+ ∇ · (φku) = M


μk

�k
, (18)

μk = −3ε2

4
�k
φk + 12( fk + β), for k = 1,2, (19)

φ3 = 1 − φ1 − φ2, μ3 = −�3

(
μ1

�1
+ μ2

�2

)
. (20)

By taking the L2-inner products of Eq. (12) with u, of Eq. (14) with −μk , and of Eq. (15) with ∂φk/∂t; using the integration by parts and 
appropriate boundary conditions, and then combining the results for k = 1, 2, 3, the following energy dissipation law is derived.

d

dt
E(u, φ1, φ2, φ3) = − 1

Re
‖∇u‖2 − M

3∑
k=1

�k‖∇μk

�k
‖2 ≤ − 1

Re
‖∇u‖2

−�M
3∑

k=1

‖∇μk

�k
‖2 ≤ 0. (21)

The total energy functional is defined as

E(u, φ1, φ2, φ3) =
∫
�

1

2
|u|2 x +

∫
�

(
3ε2

8

3∑
k=1

�k|∇φk|2 + 12F (φ1, φ2, φ3)

)
dx, (22)

where the first and second integral terms correspond to the kinetic energy of the NS equations and the free energy of ternary CH model, 
respectively. The above inequality indicates that the incompressible three-component CH fluid system dissipates the total energy over 
time.

3. Numerical methods, analysis, and implementations

In this section, we construct temporally second-order, linearly implicit-explicit, and energy-stable schemes for ternary CH fluid models 
using a variation of the SAV technique. From [39], we know that Lemma 1, Lemma 2, and condition (2) ensure that the free energy of the 
ternary CH model is bounded from below. Two time-dependent auxiliary variables are defined as follows

R = R(t) = E(φ1, φ2, φ3) + B1, (23)

Q = Q (t) = E(u, φ1, φ2, φ3) + B2, (24)

where E(φ1, φ2, φ3) and E(u, φ1, φ2, φ3) are the energy functionals defined by Eqs. (1) and (22), respectively. The positive constants B1 and 
B2 are used to ensure that R > 0 and Q > 0. Let r = R − B1 and q = Q − B2, it is observed that r = E(φ1, φ2, φ3) and q = E(u, φ1, φ2, φ3).

3.1. Numerical scheme for the ternary CH model

We define U = R/(E(φ1, φ2, φ3) + B1) and V = U (2 − U ). In the continuous version, U = 1 and V = 1 hold true. Equations (6) and (7)
can be recast as

∂φk

∂t
= M

�k

μk, (25)

μk = 3ε2

4
�k
φk + 12( fk + β)V , (26)

V = U (2 − U ), (27)

U = R

E(φ1, φ2, φ3) + B1
, (28)

dR

dt
= − R

E(φ1, φ2, φ3) + B1
M

3∑(
�k‖∇ μk

�k
‖2

)
, for k = 1,2,3. (29)
k=1

4
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Because R/(E(φ1, φ2, φ3) + B1) = 1, R equals to the summation of the free energy and a constant, and the energy dissipation law in Eq. 
(11) leads to Eq. (29). We find that Eqs. (25) and (26) are equivalent to Eqs. (6) and (7) because V = 1 in continuous version. Based on 
Eqs. (25)–(29), the linear and second-order time-accurate method is constructed as

3φn+1
k − 4φn

k + φn−1
k

2
t
= M


μn+1
k

�k
, (30)

μn+1
k = −3ε2

4
�k
φn+1

k + 12( f ∗
k + β∗)V n+1 + S�k(φ

n+1
k − φ∗

k ), (31)

V n+1 = Un+1(2 − Un+1), (32)

Un+1 = Rn+1

E(φ∗
1 , φ∗

2 , φ∗
3) + B1

, (33)

Rn+1 − Rn


t
= − Rn+1

E(φ∗
1 , φ∗

2 , φ∗
3) + B1

M
3∑

k=1

(
�k‖∇

μ∗
k

�k
‖2

)
, for k = 1,2,3, (34)

where 
t is the uniform time step, φn+1 is the approximation of φ((n +1)
t), and φ∗ = 2φn −φn−1 is the linear extrapolation. To develop 
linear and totally decoupled scheme, all nonlinear terms are explicitly treated. For enhanced stability, the stabilization term (last term) in 
Eq. (31) is adopted. We consider the periodic or zero Neumann boundary conditions:

∇φn+1
k · n|∂� = 0, ∇μn+1

k · n|∂� = 0, for k = 1,2,3.

To reduce computational costs, Eqs. (30)–(34) can be recast as

3φn+1
k − 4φn

k + φn−1
k

2
t
= M


μn+1
k

�k
, (35)

μn+1
k = −3ε2

4
�k
φn+1

k + 12( f ∗
k + β∗)V n+1 + S�k(φ

n+1
k − φ∗

k ), (36)

V n+1 = Un+1(2 − Un+1), (37)

Un+1 = Rn+1

E(φ∗
1 , φ∗

2 , φ∗
3) + B1

, (38)

Rn+1 − Rn


t
= − Rn+1

E(φ∗
1 , φ∗

2 , φ∗
3) + B1

M
3∑

k=1

(
�k‖∇

μ∗
k

�k
‖2

)
, for k = 1,2 (39)

φn+1
3 = 1 − φn+1

1 − φn+1
2 , μn+1

3 = −�3

(
μn+1

1

�1
+ μn+1

2

�2

)
. (40)

Here, the conditions 
∑3

k=1 φk = 1 and 
∑3

k=1 μk/�k = 0 are used. In fact, Eq. (39) is a temporally first-order scheme, i.e., Rn+1 = R(tn+1) +
O (
t). Thus, we get

Un+1 = U (tn+1) + C
t = 1 + C
t,

where C is a constant that is independent of 
t . We can derive

V n+1 = Un+1(2 − Un+1) = (1 + C
t)(1 − C
t) = 1 − C2
t2.

It can be observed that V n+1 is a temporally second-order numerical solution of 1. This implies that V n+1 does not affect the second-order 
accuracy of Eqs. (35) and (36).

Theorem 3.1. With the previous information, Eqs. (35)–(40) have unique solutions Rn+1 and φn+1
k for k = 1, 2, 3.

Proof. First, we recast Eq. (39) as

Rn+1 = Rn

1 + 
tM
3∑

k=1

(
�k‖∇ μ∗

k
�k

‖2
)

/(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)

. (41)

The non-negativity of (E(φ∗
1 , φ∗

2 , φ∗
3) + B1) is straightforward. Furthermore, we have

3∑
k=1

(
�k‖∇

μ∗
k

�k
‖2

)
≥ �

3∑
k=1

(
‖∇ μ∗

k

�k
‖2

)
> 0.

The denominator of Eq. (41) is larger than zero. Therefore, the unique solvability of Rn+1 is proved. With the computed Rn+1, Un+1 and 
V n+1 can be directly updated from Eqs. (38) and (37), successively. By substituting μn+1 in Eq. (35) with Eq. (36), we get
k

5
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3φn+1
k − 4φn

k + φn−1
k

2
t
= −3Mε2

4

2φn+1

k + 12M V n+1

�k

( f ∗

k + β∗)

+S M
(φn+1
k − φ∗

k ). (42)

Here, k = 1, 2, 3. Now, we estimate the unique solvability of the above equation. We introduce the following convex functional

G(φk) =
∫
�

[
3

4
t
|φk|2 + S M

2
|∇φk|2 + 3Mε2

8
|
φk|2 + gn,n−1φk

]
dx, (43)

where

gn,n−1 = −4φn
k + φn−1

k

2
t
− 12M V n+1

�k

( f ∗

k + β∗) + S M
φ∗
k .

By applying the variational derivative of G(φk) with respect to φn+1
k , we have

ϑG
ϑφk

∣∣∣
φk=φn+1

k

= 3

2
t
φn+1

k − S M
φn+1
k + 3Mε2

4

2φn+1

k + gn,n−1, (44)

where ϑ is the variational operator. Because ϑG/ϑφk = 0, the minimum value of a convex functional G(φk) uniquely exists. In this sense, 
the minimization of G(φk) is equivalent to obtaining φn+1

k from Eq. (42). Thus, the unique solvability is proved. �
Theorem 3.2. The numerical solutions of Eqs. (35)–(40) unconditionally dissipate the time-discretized modified energy.

Proof. With the initial condition R0 > 0, we conclude that the computed R1 from Eq. (41) is non-negative because the denominator of 
Eq. (41) is positive. It is evident that Rn+1 ≥ 0 holds by the induction. From Eq. (39), the following inequality can be derived

Rn+1 − Rn = −
tM
3∑

k=1

(
�k‖∇

μ∗
k

�k
‖2

)
Rn+1

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)

≤ −
tM�

3∑
k=1

(
‖∇ μ∗

k

�k
‖2

)
Rn+1

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)

≤ 0. (45)

Let r̂n+1 = Rn+1 − B1, then the above inequality indicates that r̂n+1 ≤ r̂n holds. Here, r̂n+1 is a modified version of the energy. Thus the 
time-discretized modified energy dissipation law is proved. �
Energy relaxation technique. From Theorem 3.2, we conclude that the numerical solutions unconditionally dissipate the modified energy 
rn+1. Although the modified energy r equals to the original energy E(φ1, φ2, φ3) in a continuous version, there is no constraint to en-
sure that the numerical solution of r̂n+1 equals to E(φn+1

1 , φn+1
2 , φn+1

3 ) in the time-discretized version. The difference between r̂n+1 and 
E(φn+1

1 , φn+1
2 , φn+1

3 ) may become more obvious when the time step is increased. This indicates that the computed modified energy r̂n+1

is not the desired original variable-based energy. To resolve this problem, we refer to the idea of [49] and present the following energy 
relaxation step

Rn+1
o = ξ0 Rn+1 + (1 − ξ0)(E(φn+1

1 , φn+1
2 , φn+1

2 ) + B1), ξ0 ∈ χ, (46)

where

χ =
{
ξ0 ∈ [0,1] s.t.

Rn+1
o − Rn+1


t
≤ −θn+1�n+1 + Rn+1

E(φ∗
1 , φ∗

2 , φ∗
3) + B1

�∗
}

, (47)

and � = M
3∑

k=1

(
�k‖∇ μk

�k
‖2

)
. As ξ = 1 belongs to χ , χ is not empty. θn+1 is non-negative and will be determined. By substituting Rn+1

o

in Eq. (47) with Eq. (46), we obtain the following inequality

(Rn+1 − (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1))ξ0 ≤ Rn+1 − (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1)

−
tθn+1�n+1 + 
t
Rn+1

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)

�∗. (48)

The selection of ξ0 and θn+1 is described by the following theorem.

Theorem 3.3. The possible choices of ξ0 and θn+1 are given as follows:

Case 1. If Rn+1 = (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1), then let ξ0 = 0 and θn+1 = Rn+1�∗

∗ ∗ ∗ n+1 ;

(E(φ1 ,φ2 ,φ3 )+B1)�

6
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Case 2. If Rn+1 > (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1), then let ξ0 = 0 and

θn+1 = Rn+1 − (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1)


t�n+1 + Rn+1�∗

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)�n+1 ;

Case 3. If Rn+1 < (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1) and Rn+1 − (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1) + 
t Rn+1

(E(φ∗
1 ,φ∗

2 ,φ∗
3 )+B1)

�∗ ≥ 0, then let ξ0 = 0 and

θn+1 = Rn+1 − (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1)


t�n+1 + Rn+1�∗

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)�n+1 ;

Case 4. If Rn+1 < (E(φn+1
1 , φn+1

2 , φn+1
3 ) + B1) and Rn+1 − (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1) + 
t Rn+1

(E(φ∗
1 ,φ∗

2 ,φ∗
3 )+B1)

�∗ < 0, we let θn+1 = 0 and

ξ0 = 1 − 
t Rn+1�∗

(E(φ∗
1 , φ∗

2 , φ∗
3) + B1)(E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1 − Rn+1)
.

For Cases 1–4, ξ0 ∈ χ and inequality (48) holds. When Rn
o ≥ 0 and Rn+1

0 ≥ 0, the following inequality is satisfied

Rn+1
o − Rn

o ≤ −
tθn+1�n+1 ≤ 0, (49)

which indicates that the corrected energy (i.e., Rn+1
o ) still satisfies the dissipation law. Moreover, Rn+1 ≤ (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1).

Proof. With ξ0 and θn+1 defined in all four cases, we have ξ0 ∈ χ , i.e., ξ0 ∈ [0, 1]. As mentioned in Theorem 3.2, Rn+1 ≥ 0 holds true. 
Moreover, E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1 ≥ 0 also holds. From Eq. (46), we have Rn+1
o ≥ 0. By combining equalities (39) and (47), we obtain 

inequality (49). In Cases 1–3, we have Rn+1
o = (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1) because ξ0 = 0. In Case 4, because Rn+1 ≤ (E(φn+1
1 , φn+1

2 , φn+1
3 ) +

B1) and ξ0 ∈ [0, 1] are known, Rn+1
o ≤ (E(φn+1

1 , φn+1
2 , φn+1

3 ) + B1) can be derived from Eq. (46). Thus, the proof is completed. �
In each time iteration, the numerical implementation is summarized as follows:

Step 1. Compute Rn+1 using Eq. (41);
Step 2. Update Un+1 and V n+1 from Eqs. (38) and (37), respectively;
Step 3. Calculate φn+1

k and μn+1
k (k = 1, 2) from Eqs. (35) and (36), respectively;

Step 4. Update φn+1
3 and μn+1

3 using Eq. (40);
Step 5. Update Rn+1

o using Eq. (46);
Step 6. Replace Rn+1 with Rn+1

o and then enter the next time step.

Remark 3.1. By defining the relaxed energy as rn+1 = Rn+1
o − B1, we can verify that rn+1 is bounded from below because Rn+1

o ≥ 0. 
Furthermore, we find that rn+1 equals to the time-discretized original energy E(φn+1

1 , φn+1
2 , φn+1

3 ) in most cases (Cases 1–3). There-
fore, the energy dissipation law with respect to the relaxed energy rn+1 is equivalent to that with respect to the original vari-
able energy E(φn+1

1 , φn+1
2 , φn+1

3 ). In Case 4, the relaxed energy rn+1 is an approximation of E(φn+1
1 , φn+1

2 , φn+1
3 ), and is located in 

(r̂n+1, E(φn+1
1 , φn+1

2 , φn+1
3 )), where r̂n+1 is the modified energy defined above. Therefore, the energy relaxation technique leads to the 

appropriate dissipation law based on original variables.

3.2. Numerical scheme for the ternary fluid model

Let U = R/(E(u, φ1, φ2, φ3) + B2) and V = U (2 − U ). In the time-continuous version, U = V = 1. The original ternary CH fluid system 
(12)–(15) is recast as

∂u

∂t
+ V u · ∇u = −∇p + 1

Re

u − V

3∑
k=1

φk∇μk, (50)

∇ · u = 0, (51)
∂φk

∂t
+ V ∇ · (φku) = M


μk

�k
, (52)

μk = −3ε2

4
�k
φk + 12( fk + β)V , (53)

V = U (2 − U ), (54)

U = R

E(u, φ1, φ2, φ3) + B2
, (55)

∂ R

∂t
= −

(
R

E(u, φ1, φ2, φ3) + B2

)[
1

Re
‖∇u‖2 + M

3∑
k=1

�k‖∇μk

�k
‖2

]
, for k = 1,2,3. (56)

The linearly implicit-explicit, second-order time-accurate scheme is constructed as
7
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3ũn+1 − 4un + un−1

2
t
+ V n+1u∗ · ∇u∗ = −∇pn + 1

Re

ũn+1 − V n+1

3∑
k=1

φ∗
k ∇μ∗

k , (57)

3un+1 − 3ũn+1

2
t
= −∇(pn+1 − pn), (58)

∇ · un+1 = 0, (59)

3φn+1
k − 4φn

k + φn−1
k

2
t
+ V n+1∇ · (u∗φ∗

k ) = M

μn+1

k

�k
, (60)

μn+1
k = −3ε2

4
�k
φn+1

k + 12( f ∗
k + β∗)V n+1 + S�k(φ

n+1
k − φ∗

k ), (61)

V n+1 = Un+1(2 − Un+1), (62)

Un+1 = Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

, (63)

Rn+1 − Rn


t
= −

(
Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

)[
1

Re
‖∇u∗‖2 + M

3∑
k=1

�k‖
∇μ∗

k

�k
‖2

]
,

for k = 1,2,3, (64)

where a projection method is used to treat the momentum equation and ũn+1 is the intermediate velocity. We consider the periodic or 
following time-discretized boundary conditions:

un+1 · n|∂� = 0, ũn+1|∂� = 0, ∇pn+1 · n|∂� = 0,

∇cn+1
k · n|∂� = 0,∇μn+1

k · n|∂� = 0, for k = 1,2,3.

For an efficient computation, we simplify the governing equations as

3ũn+1 − 4un + un−1

2
t
+ V n+1u∗ · ∇u∗ = −∇pn + 1

Re

ũn+1 − V n+1

3∑
k=1

φ∗
k ∇μ∗

k , (65)

3un+1 − 3ũn+1

2
t
= −∇(pn+1 − pn), (66)

∇ · un+1 = 0, (67)

3φn+1
k − 4φn

k + φn−1
k

2
t
+ V n+1∇ · (u∗φ∗

k ) = M

μn+1

k

�k
, (68)

μn+1
k = −3ε2

4
�k
φn+1

k + 12( f ∗
k + β∗)V n+1 + S�k(φ

n+1
k − φ∗

k ), for k = 1,2, (69)

V n+1 = Un+1(2 − Un+1), (70)

Un+1 = Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

, (71)

Rn+1 − Rn


t
= −

(
Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

)[
1

Re
‖∇u∗‖2 + M

3∑
k=1

�k‖
∇μ∗

k

�k
‖2

]
, (72)

φn+1
3 = 1 − φn+1

1 − φn+1
2 , μn+1

3 = −�3

(
μn+1

1

�1
+ μn+1

2

�2

)
. (73)

Because V n+1 is a second-order approximation of 1, the second-order accuracy of Eqs. (65)–(69) is not affected.

Theorem 3.4. With previous information, Eqs. (65)–(73) have unique solutions Rn+1, φn+1
k for k = 1, 2, 3, un+1 , and pn+1 .

Proof. First, we reformulate Eq. (39) as

Rn+1 = Rn

1 + 
t

[
1

Re ‖∇u∗‖2 + M
3∑

k=1

(
�k‖∇ μ∗

k
�k

‖2
)]/

(E(u, φ∗
1 , φ∗

2 , φ∗
3) + B2)

. (74)

From the previous analysis, we find that the denominator of Eq. (74) is greater than zero. The unique solvability of Rn+1 is straightforward. 
Next, Un+1 and V n+1 are directly updated from Eqs. (71) and (70), respectively. To validate the unique solvability of cn+1

k , we combine 
Eqs. (68) and (69) and obtain
8
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3φn+1
k − 4φn

k + φn−1
k

2
t
+ V n+1∇ · (u∗φ∗

k ) = −3Mε2

4

2φn+1

k + 12M V n+1

�k

( f ∗

k + β∗)

+S M
(φn+1
k − φ∗

k ). (75)

We introduce the following convex functional

Q(φk) =
∫
�

[
3

4
t
|φk|2 + S M

2
|∇φk|2 + 3Mε2

8
|
φk|2 + qn,n−1φk

]
dx, (76)

where

qn,n−1 = −4φn
k + φn−1

k

2
t
+ V n+1∇ · (u∗φ∗

k ) − 12M V n+1

�k

( f ∗

k + β∗) + S M
φ∗
k .

By applying the variational derivative of Q(φk) with respect to φn+1
k , we obtain

ϑQ
ϑφk

∣∣∣
φk=φn+1

k

= 3

2
t
φn+1

k − S M
φn+1
k + 3Mε2

4

2φn+1

k + qn,n−1. (77)

Because ϑQ/ϑφk = 0, the minimum value of the convex functional Q(ck) exists uniquely. Therefore, the minimization of Q(φk) is equiva-
lent to obtaining φn+1

k from Eq. (75). The unique solvability of Eqs. (68) and (69) is proved. For φn+1, it is explicitly updated from Eq. (73). 
The unique solvability of Eq. (65) is easily proved by the processes mentioned above. We herein omit these similar steps and recommend 
that interested readers refer to [45,46] for more details. With computed ũn+1, we can update pn+1 by solving a Poisson equation derived 
by applying the divergence operator to Eq. (66) and adopting Eq. (67). In general, the Poisson equation with zero Neumann or periodic 
boundary conditions does not have a unique solution. However, the unique solution can be defined by forcing the summation of the 
solution to be zero [50]. With the computed pn+1 and ũn+1, we can update un+1 using Eq. (66). The proof of the unique solvability in one 
time step is proved. �
Theorem 3.5. The solutions of Eqs. (65)–(73) dissipate the time-discretized modified total energy.

Proof. With the initial condition R0 > 0, we have R1 ≥ 0 because the denominator of Eq. (74) is greater than zero. By induction, Rn+1 ≥ 0
holds true. From Eq. (72), we derive

Rn+1 − Rn = −
t

(
Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

)[
1

Re
‖∇u∗‖2 + M

3∑
k=1

�k‖
∇μ∗

k

�1
‖2

]

≤ −
t

(
Rn+1

E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2

)[
1

Re
‖∇u∗‖2 + M�

3∑
k=1

‖∇μ∗
k

�k
‖2

]
≤ 0. (78)

Let r̂n+1 = Rn+1 − B2, the above inequality indicates that r̂n+1 ≤ r̂n holds. Here, r̂n+1 is a modified version of the total energy. The time-
discretized modified total energy dissipation law is proved. �
Energy relaxation technique. From Theorem 3.5, we proved the modified energy dissipation law with respect to the modified energy rn+1. 
To enhance the consistency between the original and modified energies, the following energy relaxation step is adopted:

Rn+1
o = ξ0 Rn+1 + (1 − ξ0)(E(un+1, φn+1

1 , φn+1
2 , φn+1

2 ) + B2), ξ0 ∈ χ, (79)

where

χ =
{
ξ0 ∈ [0,1] s.t.

Rn+1
o − Rn+1


t
≤ −θn+1�n+1 + Rn+1

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)

�∗
}

, (80)

and � = ‖∇u‖2/Re + M
3∑

k=1

(
�k‖∇ μk

�k
‖2

)
. We note that χ is not empty because ξ = 1 in χ and θn+1 ≥ 0. By substituting Rn+1

o in Eq. (80)

with Eq. (79), we have

(Rn+1 − (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2))ξ0 ≤ Rn+1 − (E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2)

− 
tθn+1�n+1 + 
t
Rn+1

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)

�∗. (81)

The choices of ξ0 and θn+1 will be described in the following theorem.

Theorem 3.6. The possible choices of ξ0 and θn+1 are given as follows:

Case 1. If Rn+1 = (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2), then let ξ0 = 0 and θn+1 = Rn+1�∗

∗ ∗ ∗ n+1 ;

(E(φ1 ,φ2 ,φ3 )+B2)�

9
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Case 2. If Rn+1 > (E(u∗, φn+1
1 , φn+1

2 , φn+1
3 ) + B2), then let ξ0 = 0 and

θn+1 = Rn+1 − (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2)


t�n+1 + Rn+1�∗

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)�n+1 ;

Case 3. If Rn+1 < (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2) and

Rn+1 − (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2) + 
t

Rn+1

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)

�∗ ≥ 0,

then let ξ0 = 0 and

θn+1 = Rn+1 − (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2)


t�n+1 + Rn+1�∗

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)�n+1 ;

Case 4. If Rn+1 < (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2) and

Rn+1 − (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2) + 
t

Rn+1

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)

�∗ < 0,

then let θn+1 = 0 and

ξ0 = 1 − 
t Rn+1�∗

(E(u∗, φ∗
1 , φ∗

2 , φ∗
3) + B2)(E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2 − Rn+1)
.

For Cases 1–4, ξ0 ∈ χ and the inequality (81) hold. With Rn
o ≥ 0 and Rn+1

0 ≥ 0, the following inequality is satisfied

Rn+1
o − Rn

o ≤ −
tθn+1�n+1 ≤ 0, (82)

which indicates the corrected energy dissipation law. Moreover, Rn+1 ≤ (E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ) + B2).

Proof. With ξ0 and θn+1 defined in all four cases, we have ξ0 ∈ χ , i.e., ξ0 ∈ [0, 1]. As we mentioned in Theorem 3.5, Rn+1 ≥ 0 holds 
true. Moreover, E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2 ≥ 0 also holds. From Eq. (79), we have Rn+1
o ≥ 0. By combining equalities (72) and (80), 

we obtain the inequality (82). In Cases 1–3, we have Rn+1
o = (E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2) because ξ0 = 0. In Case 4, we know 
Rn+1 ≤ (E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2) and ξ0 ∈ [0, 1], we can derive Rn+1
o ≤ (E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ) + B2) from Eq. (79). The proof 
is completed. �

In each time iteration, we summarize the numerical implementations as follows

Step 1. Compute Rn+1 from Eq. (74);
Step 2. Update Un+1 and V n+1 from Eqs. (71) and (70), respectively;
Step 3. Calculate the intermediate velocity ũn+1 from Eq. (65);
Step 4. Calculate pn+1 by solving the Poisson equation;
Step 5. Update un+1 from Eq. (66);
Step 6. Calculate φn+1

k and μn+1
k (k = 1, 2) from Eqs. (68) and (69);

Step 7. Update φn+1
3 and μn+1

3 from Eq. (73);
Step 8. Update Rn+1

o from Eq. (79);
Step 9. Replace Rn+1 with Rn+1

o and then enter the next time step.

Remark 3.2. By defining the relaxed energy as rn+1 = Rn+1
o − B2, it is easy to confirm that rn+1 is bounded from below because 

Rn+1
o ≥ 0. In most cases (Cases 1–3), rn+1 equals to the time-discretized original energy E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ). Therefore, the en-
ergy dissipation law with respect to the relaxed energy rn+1 is equivalent to that with respect to the original variable-based energy 
E(un+1, φn+1

1 , φn+1
2 , φn+1

3 ). For Case 4, the relaxed energy rn+1 is an approximation of E(un+1, φn+1
1 , φn+1

2 , φn+1
3 ), and is located in 

(r̂n+1, E(un+1, φn+1
1 , φn+1

2 , φn+1
3 )), where r̂n+1 is the modified energy defined above. Therefore, the energy relaxation technique leads 

to the appropriate original variable-based energy dissipation law. Compared with the modified energy dissipation law without relaxation, 
the consistency is enhanced.

Remark 3.3. The error and convergence analysis of the hydrodynamically coupled phase-field model is an interesting and important 
problem. Based on the finite difference and finite element methods in space, detailed estimations for the Cahn–Hilliard–Hele–Shaw 
(CHHS) model were established in [51–53]. An analysis of the second-order accurate finite element scheme on the incompressible Cahn–
Hilliard–Navier–Stokes (CHNS) system was developed in [54]. For the ternary CH-type system, Yuan et al. [55] proposed a second-order 
accurate method and presented a convergence estimation in detail. Recently, error estimations based on SAV-type methods [56,57] were 
also obtained, especially for the square phase-field crystal model [58] and thin film epitaxial model [59], etc. The present work attempts 
to design an efficient, linear, and consistently stable time-marching algorithm for the fluid flow-coupled ternary CH system, and validate 
its capability via extensive simulations. According to a similar idea in [49], the convergence analysis of our proposed scheme will be 
considered in a separate work.
10
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Table 1
L2-errors and convergence rates of φ1, φ2, and φ3 with different time steps.


t 32δt 16δt 8δt 4δt 2δt

φ1: 2.81e-5 7.05e-6 1.73e-6 4.12e-7 8.24e-8

rate 1.99 2.03 2.07 2.32

φ2: 2.81e-5 7.05e-6 1.73e-6 4.12e-7 8.24e-8

rate 1.99 2.03 2.07 2.32

φ3: 4.02e-5 1.01e-5 2.47e-6 5.87e-7 1.17e-7

rate 1.99 2.03 2.07 2.32

Remark 3.4. In [44], Zhang and Yang developed an energy-stable method for the ternary CH model based on the original SAV scheme. 
Although the original SAV technique leads to a linear time-marching scheme, the phase-field and time-dependent auxiliary variables are 
coupled in time. In each time step, a splitting technique is required to achieve a totally decoupled computation. Please refer to [44]
for a detailed description of the implementation. However, the original SAV method generally has higher computational costs because 
it splits one original equation into two subproblems. By applying the original SAV method to the hydrodynamically coupled ternary CH 
system [60], the computational costs further increase because additional splitting is required for the velocities. By introducing a time-
dependent auxiliary variable related to the free and kinetic energies, we recast the original system into a novel equivalent form. Based 
on the equivalent equations, the resulting scheme is more efficient because all the variables (phase-field function, velocity, and auxiliary 
variable) are completely decoupled. Therefore, there is no need to apply the splitting technique, and the computational cost is similar to 
that of the classical linear semi-implicit scheme. In terms of robustness, the original SAV method [44] and the proposed method multiply 
the nonlinear terms with the appropriate variable. With the refinement of the time step, this variable converges to 1. Thus, the behaviors
of the original and proposed SAV methods are similar to that of the classical linear semi-implicit scheme. The computational stability is 
mainly affected by the intensity of the stabilization term. Therefore, the robustness of the proposed scheme is analogous to that of the 
original SAV method.

4. Numerical experiments

Extensive numerical simulations are conducted to verify the accuracy, stability, and performance of the proposed scheme. Spatial dis-
cretization is conducted using the finite difference method (FDM). The resulting elliptic equations are solved by a fast multigrid algorithm 
[61]. In 2D space, the zero Neumann boundary condition is used for φk , μk (k = 1, 2, 3), and p along the y-direction. The no-slip boundary 
condition is considered for u at the upper and bottom boundaries. Along the x-direction, the periodic boundary condition is used for all 
variables. In 3D space, a periodic boundary condition is used for all variables along the x- and y-directions. At the upper and bottom 
boundaries, the zero Neumann boundary condition is applied for φk , μk (k = 1, 2, 3), and p; and the no-slip boundary condition is applied 
for u.

4.1. Temporal accuracy in the absence of fluid

First, we study the temporal accuracy of our proposed scheme for the three-component CH in the absence of fluid flows. The compu-
tational domain is set as � = (0, 2) × (0, 2). The mesh size of 256 × 256 is fixed. We consider the following initial conditions:

φ1(x, y,0) = 1

2
+ 1

2
tanh

(
0.23 − √

(x − 1.25)2 + (y − 1)2

ε

)
, (83)

φ2(x, y,0) = 1

2
+ 1

2
tanh

(
0.23 − √

(x − 0.75)2 + (y − 1)2

ε

)
, (84)

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0). (85)

The parameters are set as ε = 0.018, σ12 = σ13 = σ23 = 1, � = 1.5, and M = 0.01. The stabilization parameter S = 30 is adopted. In the 
next subsection, we will investigate the selection of the appropriate S through comparison studies. A sufficient time step δt = 0.01h2

is considered to calculate the numerical reference solutions. Here, h = 1/128 is the space step. The convergent numerical solutions of 
φk (k = 1, 2, 3) are computed using different time steps: 
t = 32δt , 16δt , 8δt , 4δt , and 2δt . By comparison with the reference solutions, 
Table 1 lists the L2-errors and corresponding convergence rates with respect to φ1, φ2, and φ3. The results confirm that the proposed 
method achieves temporally second-order accuracy.

4.2. Effect of stabilization parameter

To suppress the effect of explicit nonlinear terms and enhance the numerical stability, the stabilization term, i.e., S�k(φ
n+1
k − φ∗

k ) is 
added. Here, S is an empirical positive constant that should be properly chosen. In this subsection, we investigate an appropriate value of 
S by considering the evolution of the energy curves at different time steps because the energy dissipation is a basic property. We set the 
domain and mesh size as � = (0, 2) × (0, 2) and 256 × 256, respectively. The initial conditions are set as

φ1(x, y,0) = 1 + 0.01rand(x, y), (86)

3
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Fig. 1. Relaxed, original, and modified energy curves with respect to S = 10 (left), S = 20 (middle), and S = 30 (right). The top and bottom rows correspond to 
t = 0.1 and 

t = 0.01, respectively.

Fig. 2. Snapshots of ternary phase separation with 
t = 0.01. The black, gray, and white regions are occupied by φ1, φ2, and φ3, respectively.

φ2(x, y,0) = 1

3
+ 0.01rand(x, y), (87)

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0), (88)

where rand(x, y) is a random number between −1 and 1. The parameters ε = 0.018, σ12 = σ13 = σ23 = 1, � = 1.5, and M = 0.01 are 
used. The top and bottom rows in Fig. 1 correspond to the results with respect to 
t = 0.1 and 0.01. From left to right in each row, the 
12
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Fig. 3. Energy curves with respect to different time steps. (a) Evolution of V for different time steps. (b) Evolutions of average concentrations with respect to (c) 
t = 1, (d) 

t = 0.1, and (e) 
t = 0.01.

evolution of the relaxed energy rn , original energy E(φn
1, φn

2, φn
3), and modified energy r̂n are plotted. When S = 10, the original energy 

does not dissipate monotonically despite the use of the small time step 
t = 0.01. When S = 20 and 
t = 0.1, the energy dissipation 
property of the original energy is not satisfied. When a smaller time step 
t = 0.01 is used, the relaxed, original, and modified energies 
decrease over time. When S = 30, the relaxed, original, and modified energies dissipate monotonically despite the use of a larger time 
step. The numerical results indicate that small stabilization parameters could not suppress the stiffness caused by the explicit nonlinear 
terms. In the following simulations, we will adopt S = 30 without any specific needs. The monotonically dissipative energy curves also 
indicate that the original and relaxed energies are in good agreement. The relaxation technique enhances the consistency.

4.3. Energy dissipation property

In the previous section, we proved that the proposed scheme, equipped with the appropriate stabilization term, satisfies the uncon-
ditional energy dissipation laws with respect to the modified and relaxed energies. To confirm this result via numerical simulations, we 
consider three different time steps: 
t = 1, 0.1, and 0.01. The computational domain, mesh size, initial conditions, and other parameters 
remain unchanged. Fig. 2 displays snapshots of the ternary phase separation obtained using 
t = 0.01. Here, the same surface tension 
coefficients, i.e., σ12 = σ13 = σ23 = 1 are considered. The black, gray, and white regions are occupied by φ1, φ2, and φ3, respectively. With 
time evolution, we find that the same materials merge with each other. These three components occupy approximately the same pro-
portion of the domain. Fig. 3(a) plots the evolution of the relaxed, original, and modified energies with respect to different time steps. It 
can be observed that the energy curves do not increase with time. With the refinement of the time step, the energy evolutions converge. 
This indicates that a fine time step is necessary to obtain accurate numerical results. Moreover, the results also indicate that the energy 
relaxation technique increases the consistency between the original and relaxed energies. In Fig. 3(b), the evolutions of V at different time 
steps are plotted. We find that V is close to the exact value 1. In particular, the values of V and 1 are consistent when a fine time step is 
13
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Fig. 4. The top and bottom rows show the snapshots of ternary phase separation with (σ12, σ13, σ23) = (1, 0.8, 1.4). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

used. In Figs. 3(c)–(e), the evolutions of the average concentrations with respect to 
t = 1, 0.1, and 0.01 are plotted. It can be seen that 
the mass conservation is satisfied at each time step.

4.4. Ternary phase separation without fluid

For a homogeneously distributed three-component system, the initial perturbations lead to the spontaneous growth of the concentra-
tions. With time evolution, three-component states are formed. This process is called the ternary phase separation. It should be noted 
that this process generally dissipates the free energy owing to the decrease in the total interfacial length. Furthermore, the surface tension 
also affects the evolution dynamics. In this subsection, we study the effects of surface tension on the evolution of ternary patterns and 
the corresponding energy dissipation properties. The domain and mesh size are set as � = (0, 2) × (0, 2) and 256 × 256, respectively. 
The random initial conditions in subsection 4.2 are used. We consider 
t = 0.01, ε = 0.018, M = 0.01, � = 1.5, and S = 30. The top 
and middle rows in Fig. 4 show snapshots of the ternary phase separation with (σ12, σ13, σ23) = (1, 0.8, 1.4), where the black, gray, and 
white regions are occupied by φ1, φ2, and φ3, respectively. It can be seen that φ1 and φ2 are linked to each other to form the chain 
pattern; the remaining regions are occupied by φ3. The bottom row in Fig. 4 displays the evolutions of the energy curves, relative er-
rors between the original energy and relaxed/modified energy, and average concentrations. It should be noted that En

o = E(φn
1, φn

2, φn
3)

is the time-discretized original energy; we use En
o to simplify the notation. The time-discretized modified and relaxed energies are 

En
m = r̂n and En

r = rn , respectively. The results indicate that the energy curves do not increase with time. The relaxed and original en-
ergies are in good agreement. The average concentrations are conserved. The top and middle rows in Fig. 5 show snapshots of the ternary 
phase separation with (σ12, σ13, σ23) = (1, 1, 3). The top and middle rows in Fig. 6 show snapshots of the ternary phase separation with 
(σ12, σ13, σ23) = (3, 1, 1). In these two cases, the three components evolve over time to form separate droplet patterns. From the results 
plotted in the bottom rows in Figs. 5 and 6, it can be seen that the energy curves decrease with time, the original and relaxed energies are 
in good agreement, and the average concentrations are conserved. These simulations not only show that the surface tension coefficients 
have significant effect on the evolutionary dynamics of ternary phase separation, but also indicate that the proposed method can preserve 
the energy dissipation law and mass of each component. In Figs. 4–6, the phase separations are simulated until a steady state is achieved. 
In early stage, phase transition rapidly occurs, leading to an obvious change in the energy functional. Bulk phases appear when the ternary 
materials evolve past the transition state. Afterwards, the coarsening dynamics becomes dominant, and the same fluids merge with each 
14
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Fig. 5. The top and middle rows show the snapshots of ternary phase separation with (σ12, σ13, σ23) = (1, 1, 3). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

other to occupy most of the regions. Although this process generally takes a long time to achieve the steady state, the energy tends to be 
flat. This explains why the energy curves approximately converge over time. The same phenomena have been widely reported in previous 
studies [18–21,44].

4.5. Two adjacent droplets with different sizes

Previous studies tested the effects of surface tension on the dynamics of two droplets with the same size. The total and partial 
spreading phenomena were observed by adjusting the surface tension coefficients. In this subsection, we conduct similar simulations of 
two adjacent droplets with different sizes. We consider the computational domain � = (0, 2) × (0, 2) with the mesh size 256 × 256. The 
initial states are defined as follows:

φ1(x, y,0) = 1

2
+ 1

2
tanh

(
0.34 − √

(x − 0.85)2 + (y − 0.85)2

ε

)
, (89)

φ2(x, y,0) = 1

2
+ 1

2
tanh

(
0.2 − √

(x − 1.25)2 + (y − 1.25)2

ε

)
, (90)

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0). (91)

The parameters used in the previous subsection are adopted. The top and middle rows in Fig. 7 show the snapshots with respect to 
(σ12, σ13, σ23) = (1, 1, 1). The top and middle rows in Fig. 8 show the snapshots with respect to (σ12, σ13, σ23) = (1, 0.8, 1.4). The top and 
middle rows in Fig. 9 show the snapshots with respect to (σ12, σ13, σ23) = (1, 1, 3). In all the figures, the white, black, and gray regions are 
occupied by φ1, φ2, and φ3, respectively. For (σ12, σ13, σ23) = (1, 1, 1) and (1, 0.8, 1.4), the spreading is partial. Their evolutionary shapes 
are slightly different owing to the equal and unequal distributions of the surface tension. For (σ12, σ13, σ23) = (1, 1, 3), the spreading is 
total. With the time evolution, we observe that φ2 moves into φ1 because φ1 totally spreads out. At the bottom rows in Figs. 7, 8, and 
9, the evolutions of the energy curves, relative errors, and average concentrations are plotted. For each case, we can observe that the 
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Fig. 6. The top and middle rows show the snapshots of ternary phase separation with (σ12, σ13, σ23) = (3, 1, 1). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

energy curves are decreasing with time, the relaxed energy and original energy are in better agreement, and the average concentrations 
are conserved.

4.6. Temporal accuracy with fluid

In this subsection, we investigate the temporal accuracy of the numerical method for the flow-coupled ternary CH system. The initial 
conditions [45] are as follows:

φ1(x, y,0) = 0.5 + 0.5 tanh

(
0.3 − √

(x − 1)2 + (y − 0.5)2

ε

)
,

φ2(x, y,0) = (1 − φ1(x, y,0))

(
0.5 + 0.5 tanh

(
y − 0.5

ε

))
,

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0),

u(x, y,0) = v(x, y,0) = 0, p(x, y,0) = 0.

The domain is set as � = (0, 2) × (0, 1). The parameters M = 0.001, σ12 = σ13 = σ23 = 1, ε = 0.018, � = 1.5, S = 30, and Re = 1 are used. 
The numerical reference solutions are obtained using the fine time step δt = 0.01h2, where h = 1/128 is the space step. The comparisons 
are computed by increasing the reference time step by a factor of two until 
t = 32δt . The L2-errors and convergence rates for all variables 
are listed in Table 2. The computational results show that our proposed time-marching method achieves temporally second-order accuracy.

4.7. Hydrodynamically coupled phase separation

The simulations in subsection 4.4 show that the surface tension significantly affects the phase separation dynamics. The existence 
of fluid flows also leads to different evolutionary processes. In this subsection, we study the effects of surface tension by considering 
the ternary phase separation with (σ12, σ13, σ23) = (1, 1, 1), (1, 0.8, 1.4), and (3, 1, 1). The computational domain, mesh size, and random 
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Fig. 7. The top and middle rows show the snapshots of two adjacent droplets with (σ12, σ13, σ23) = (1, 1, 1). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

Table 2
L2-errors and convergence rates for φk , (k = 1, 2, 3), u, and v with different time steps.


t 32δt 16δt 8δt 4δt 2δt

φ1: 6.11e-7 1.54e-7 3.82e-8 9.09e-9 1.82e-9

rate 1.98 2.02 2.07 2.32

φ2: 6.02e-7 1.52e-7 3.77e-8 8.97e-9 1.79e-9

rate 1.98 2.02 2.07 2.32

φ3: 6.02e-7 1.52e-7 3.77e-8 8.97e-9 1.79e-9

rate 1.98 2.02 2.07 2.32

u: 8.55e-8 1.91e-8 4.64e-9 1.08e-9 2.15e-10

rate 2.17 2.04 2.10 2.34

v: 6.63e-8 1.47e-8 3.55e-9 8.28e-10 1.64e-10

rate 2.17 2.05 2.10 2.34

initial conditions of φk (k = 1, 2, 3) in subsection 4.2 are used. The initial velocity field and pressure are set to zero. The parameters are set 
as 
t = 0.01, ε = 0.018, M = 0.01, Re = 1, � = 1.5, and S = 30. Figs. 10, 11, and 12 show snapshots of hydrodynamically coupled three-
component phase separation with respect to (σ12, σ13, σ23) = (1, 1, 1), (1, 0.8, 1.4), and (3, 1, 1), respectively. The black, gray, and white 
regions are occupied by φ1, φ2, and φ3. The velocity field is represented by the blue arrows. The results in Figs. 10 and 11 correspond to 
the partially spreading phenomena. Owing to the equal and unequal distributions of the surface tension, the contact angles in the triple 
junctions are different. At the initial stage, the velocities are zero and these evolve over time owing to the driving effect of the surface 
tension. As the coarsening process reaches an equilibrium state, the velocity field dissipates its energy. This is reflected in the figures 
showing the decreasing size of the velocity arrows. In the totally spreading case, i.e., (σ12, σ13, σ23) = (3, 1, 1), the three components 
evolve to form some separately distributed droplets. The triple junctions do not appear because the phase is totally spread out. Similarly, 
the velocities evolve over time and gradually dissipate as the system reaches the equilibrium state. The top and bottom rows in Fig. 13
17
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Fig. 8. The top and middle rows show the snapshots of two adjacent droplets with (σ12, σ13, σ23) = (1, 0.8, 1.4). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

show the evolutions of the energy curves and average concentrations. The figures from left to right correspond to (σ12, σ13, σ23) = (1, 1, 1), 
(1, 0.8, 1.4), and (3, 1, 1), respectively. It can be observed that the energy curves decrease with time, and the average concentrations are 
conserved.

4.8. Two droplets in shear flow

In simple shear flow, the droplets deform under the combined effects of the velocity field and surface tension. Many researchers 
have used the droplet deformation in simple shear flow as a benchmark; please refer to [45,62,63] for simulations using the phase-field 
method. To simulate the droplet dynamics in a simple shear flow under different surface tension coefficients, we set the domain as 
� = (0, 2) × (0, 1). The mesh size of 256 × 128 is considered. The initial states are defined as follows:

φ1(x, y,0) = 1

2
+ 1

2
tanh

(
0.25 − √

(x − 1.26)2 + (y − 0.4)2

ε

)
, (92)

φ2(x, y,0) = 1

2
+ 1

2
tanh

(
0.25 − √

(x − 0.74)2 + (y − 0.6)2

ε

)
, (93)

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0), (94)

u(x, y,0) = (y − 0.5)/2, v(x, y,0) = 0, p(x, y,0) = 0. (95)

The initial profiles are shown in Fig. 14(a). The gray, black, and white regions are occupied by φ1, φ2, and φ3, respectively. We set 

t = 0.001, ε = 0.018, � = 1.5, M = 0.01, Re = 1, and S = 30. The velocities are represented by the blue arrows. Under the driving 
effect of the initial velocity field, the initially separated droplets deform over time. The deformation is affected by different surface 
tensions. Fig. 15 shows the snapshots with respect to (σ12, σ13, σ23) = (4, 4, 4). We find that the two droplets are bound together with 
identical shapes owing to the equal surface tension effect. Fig. 16 shows the snapshots with respect to (σ12, σ13, σ23) = (4, 3.2, 5.6). 
Because of the unequal surface tension effect, we observe that the droplet occupied by φ1 is stretched. The evolutions with respect to 
18



J. Yang, J. Wang, Z. Tan et al. Computer Physics Communications 282 (2023) 108558
Fig. 9. The top and middle rows show the snapshots of two adjacent droplets with (σ12, σ13, σ23) = (1, 1, 3). The bottom row plots the evolutions of the energy curves, 
relative errors, and average concentrations.

(σ12, σ13, σ23) = (12, 4, 4) are shown in Fig. 17. In the totally spreading case, the two droplets remain separated. The numerical results 
indicate that the surface tension generally has an obvious effect on the droplet dynamics in shear flow.

4.9. Ternary liquid lens in simple shear flow

When an initially circular droplet is located at the interface between two immiscible fluids, the surface tension causes the droplet to 
deform. This process is affected by different surface tension coefficients and the velocity field. In this subsection, we study the evolutionary 
dynamics of liquid lenses with different surface tension coefficients in simple shear flow. The initial states are shown in Fig. 14(b). The 
white, gray, and black regions are occupied by φ1, φ2, and φ3, respectively. The other parameters remain unchanged. The left and right 
columns in Fig. 18 display the snapshots of the liquid lens with respect to (σ12, σ13, σ23) = (4, 4, 4) and (4, 3.2, 5.6), respectively. With the 
equal surface tension effect (i.e., (σ12, σ13, σ23) = (4, 4, 4)), it can be observed that the liquids occupied by φ2 and φ3 share the identical 
interfacial shapes. With the equal surface tension effect (i.e., (σ12, σ13, σ23) = (4, 3.2, 5.6)), most parts of the droplet are covered by the 
liquid occupied by φ2. This phenomenon is attributed to the unequal surface tension effect. The left column in Fig. 19 shows the snapshots 
of the liquid lens with respect to (σ12, σ13, σ23) = (4, 4, 12). We find that the droplet completely moves into the liquid phase occupied 
by φ2 and then deforms owing to the shear flow. The right column in Fig. 19 shows the snapshots of the liquid lens with respect to 
(σ12, σ13, σ23) = (12, 4, 4). It can be observed that the initial droplet is totally stretched. The different surface tension coefficients also 
have a significant effect on the velocity evolutions.

4.10. Falling droplet in a ternary fluid system

Finally, we consider the ternary fluid system under the combined effects of gravity and surface tension. A heavy droplet (φ1) is initially 
located at the upper position of the interface between lighter liquids φ2 and φ3. Under the driving effect of gravity, the droplet falls and 
penetrates the interface. By considering the Boussinesq approximation [64], the momentum equation is expressed as

ρ̃

(
∂u

∂t
+ u · ∇u

)
= −∇p + 1

Re

u −

3∑
φk∇μk + (ρ(φ1, φ2, φ3) − ρ̃)g, (96)
k=1
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Fig. 10. Snapshots of flow-coupled ternary phase separation with respect to (σ12, σ13, σ23) = (1, 1, 1). (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 11. Snapshots of flow-coupled ternary phase separation with respect to (σ12, σ13, σ23) = (1,0.8,1.4).

where ρ(φ1, φ2, φ3) = ∑3
k=1 ρkφk and ρk are the densities of k-th component. Here, ρ̃ is the reference value and ρ̃ = ρ1. The gravity is 

g = (0, −g) and g = (0, 0, −g) in 2D and 3D spaces, respectively. For the 2D simulation, we consider the domain � = (0, 2) × (0, 4), mesh 
size 128 × 256, and the following initial conditions:

φ1(x, y,0) = 1

2
+ 1

2
tanh

(
0.25 − √

(x − 1)2 + (y − 3.4)2

ε

)
, (97)
J. Yang, J. Wang, Z. Tan et al. Computer Physics Communications 282 (2023) 108558
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Fig. 12. Snapshots of flow-coupled ternary phase separation with respect to (σ12, σ13, σ23) = (3,1,1).

Fig. 13. Top and bottom rows show the evolutions of energy curves and average concentrations.

Fig. 14. Initial conditions of (a) two adjacent droplets and (b) liquid lens in simple shear flow.
21



J. Yang, J. Wang, Z. Tan et al. Computer Physics Communications 282 (2023) 108558

Fig. 15. Snapshots of two droplets in shear flow with respect to (σ12, σ13, σ23) = (4,4,4).

Fig. 16. Snapshots of two droplets in shear flow with respect to (σ12, σ13, σ23) = (4,3.2,5.6).

Fig. 17. Snapshots of two droplets in shear flow with respect to (σ12, σ13, σ23) = (12,4,4).
22
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Fig. 18. Snapshots of the liquid lens in shear flow with respect to (σ12, σ13, σ23) = (4, 4, 4) (left) and (4, 3.2, 5.6) (right). From top to bottom, the computational moments 
are 
t = 0.6, 3, 8, 16.

φ2(x, y,0) = 1

2
+ 1

2
tanh

(
y − 3

ε

)
, (98)

φ3(x, y,0) = 1 − φ1(x, y,0) − φ2(x, y,0), (99)

u(x, y,0) = v(x, y,0) = 0, p(x, y,0) = 0. (100)

Here, the parameters are set as 
t = 0.001, ε = 0.018, M = 0.1, Re = 30, g = 10, S = 30, and (σ12, σ13, σ23) = (1, 1, 1). The density ratio 
is ρ1 : ρ2 : ρ3 = 3 : 1 : 2 is used. Fig. 20 displays the snapshots of a 2D falling droplet in a ternary fluid system. The white, gray, and black 
regions are occupied by φ1, φ2, and φ3, respectively. The velocities are represented by the blue arrows. We find that under the influence 
of gravity, the droplet deforms and falls. Owing to the impact of the droplet, the cavity appears. After the droplet completely penetrates 
the interface, the cavity phenomenon generally vanishes because of the effect of the surface tension.

Next, we perform the corresponding 3D simulation in the domain � = (0, 2) × (0, 2) × (0, 4). The mesh size 128 × 128 × 256 is used. 
The initial conditions are defined as follows:

φ1(x, y, z,0) = 1

2
+ 1

2
tanh

(
0.25 − √

(x − 1)2 + (y − 1)2 + (z − 3.4)2

ε

)
, (101)

φ2(x, y, z,0) = 1

2
+ 1

2
tanh

(
z − 3

ε

)
, (102)

φ3(x, y, z,0) = 1 − φ1(x, y, z,0) − φ2(x, y, z,0), (103)

u(x, y, z,0) = v(x, y, z,0) = 0, p(x, y, z,0) = 0. (104)

The other parameters remain unchanged. Fig. 21 displays the snapshots of a 3D falling droplet in a ternary fluid system. The black region 
is occupied by φ1. We find that the droplet deforms and eventually penetrates the interface. The simulations indicate that the proposed 
time-marching method can be effectively applied to the three-component fluid system under the combined effects of gravity and surface 
tension.

5. Discussions

In this study, we developed linear, second-order accurate, and consistently stable schemes for an immiscible fluid flow-coupled ternary 
CH system. It should be noted that the mixing of miscible fluids is common in industrial fields. Through the liquid/liquid interface, the 
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Fig. 19. Snapshots of the liquid lens in shear flow with respect to (σ12, σ13, σ23) = (4, 4, 12) (left) and (12, 4, 4) (right). From top to bottom, the computational moments are 

t = 0.6, 3, 8, 16.

interpenetration of different fluids reflect the miscible property. Xie and Vorobev [65] developed a phase-field model to describe multi-
phase miscible fluids by adopting a modified CH-type equation. In their work, the mass concentration was represented by a phase-field 
function C ∈ [0, 1]. By considering the case with equal surface tension for each component, the evolutionary equation derived from a Fick’s 
law can be expressed as

∂C

∂t
+ ∇ · (Cu) = M
μ, (105)

where μ = μ0 + Gry − Ca
C . Here, μ0 = df0/dC , Gr is the Grashof number, Ca is the capillary number, and y is the vertical coordinate 
in 2D space [65]. The free energy functional is

f0 = 3

4

[(
1

2
+ C

)
ln

(
1

2
+ C

)
+

(
1

2
− C

)
ln

(
1

2
− C

)]
−

(
3

2
− A

)
C2,

where A is a thermodynamic parameter [65]. The term Gry represents the barodiffusion. If we consider Gr = 0, then the pure diffusion 
state is recovered. For Eq. (105) that describes the miscible fluid boundary, our proposed scheme can be directly applied by defining the 
appropriate auxiliary variable related to the free energy. In the actual computation, the nonlinear term was treated in an explicit manner, 
and a similar stabilization parameter was introduced to suppress the stiffness. The present study focused on an efficient time-marching 
method for ternary immiscible fluids. The extension to multi-phase miscible fluids will be investigated in future research.

6. Conclusions

For the purposes of the discrete energy dissipation law and efficient numerical implementation, we proposed second-order time-
accurate, linearly implicit-explicit methods for a ternary CH fluid system based on a modified version of the SAV approach. An efficient 
and effective energy relaxation method was used to enhance the consistency between the original and modified energies. At each time 
step, only the totally decoupled elliptic equations with constant coefficients needed to be solved. The unique solvability and discrete 
energy stability of the proposed methods were strictly estimated. The numerical experiments showed that the proposed schemes satisfied 
the expected accuracy and unconditional energy dissipation properties. The relaxed and original energy curves were in good agreement. 
Furthermore, the proposed method effectively simulated hydrodynamically coupled phase separation, droplet dynamics in shear flow, 
liquid lenses, and falling droplets. In future studies, the proposed schemes will be extended to simulate incompressible multi-component 
fluid flows with heat conductivity [66]. The C codes of typical numerical examples can be found at http://github .com /yang521.
J. Yang, J. Wang, Z. Tan et al. Computer Physics Communications 282 (2023) 108558
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Fig. 20. Snapshots of 2D falling droplet in a ternary fluid system. The computational moments are shown under each figure.

Fig. 21. Snapshots of 3D falling droplet in a ternary fluid system. The computational moments are shown under each figure.
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