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Abstract. In this paper, we review and investigate isotropic finite difference discretizations
of the two-dimensional (2D) and three-dimensional (3D) Laplacian operators. In particular, we
propose benchmark functions to quantitatively evaluate the isotropy of the discrete Laplacian
operators in 2D and 3D spaces. The benchmark functions have analytic 2D and 3D Lapla-
cian solutions so that we can exactly compute the errors between the numerical and analytic
solutions.
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1. Introduction

The Laplacian operator is extensively used in many mathematical modeling equations of
various important scientific problems such as biological and physical pattern formations. The
Laplacian operators in two-dimensional (2D) and three-dimensional (3D) spaces are respectively
given by

∆u(x, y) =
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
,

∆u(x, y, z) =
∂2u(x, y, z)

∂x2
+

∂2u(x, y, z)

∂y2
+

∂2u(x, y, z)

∂z2
.

The Laplacian operator has been used in many governing equations. For example, a 2D
Poisson equation [7]:

∆u(x, y) = f(x, y).

The diffusion equation [4, 6, 22,24]:

∂u(x, y, t)

∂t
= ∆u(x, y, t),

where u(x, y, t) is the density of the diffusing material at location (x, y) and time t. The 3D
acoustic wave equation [23]:

∂2p(x, y, z, t)

∂t2
= v2∆p(x, y, z, t),

where p(x, y, z, t) is a scalar wave-field and v is the velocity. The 3D Allen–Cahn (AC) equation
[16]:

∂ϕ(x, y, z, t)

∂t
= −ϕ3(x, y, z, t)− ϕ(x, y, z, t)

ϵ2
+∆ϕ(x, y, z, t),
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where ϕ(x, y, z, t) is an order parameter and ϵ is an interfacial parameter. Isotropic finite dif-
ference methods for phase-field simulations of polycrystalline alloy solidification was applied for
phase-field simulation of polycrystalline alloy solidification in [10]. The Cahn–Hilliard (CH)
equation [15]:

∂ϕ(x, y, z, t)

∂t
= ∆

[
ϕ3(x, y, z, t)− ϕ(x, y, z, t)− ϵ2∆ϕ(x, y, z, t)

]
.

The incompressible Naiver–Stokes (NS) equations [9]:

∂u(x, y, z, t)

∂t
+ u(x, y, z, t) · ∇u(x, y, z, t) = −1

ρ
∇p(x, y, z, t) + ν∆u(x, y, z, t),

∇ · u(x, y, z, t) = 0,

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the fluid velocity, p(x, y, z, t) is the
pressure field, ρ is density, and ν is kinematic viscosity.

An accurate and parallel method to solve the anisotropic phase-field dendritic crystal growth
model was proposed in [21]. The authors used first-order operator splitting method for the
second derivative. In [18], the authors researched the dynamics of dislocations block copolymer
system carried out by two-dimensional CH model. For the numerical results, the cell dynamics
method was used with isotropic Laplacian operator.

In general, it is difficult and in many cases not known to find closed-form analytic solutions of
the above-mentioned equations with nontrivial initial and boundary conditions. Therefore, we
need to use numerical methods to approximate the solutions of the equations. The numerical
methods are recalled as finite volume method (FVM), finite element method (FEM) [19], spectral
methods, and finite difference method (FDM) [13]. The AC and CH equations have been
extensively used in modeling and simulating pattern formations. However, if there is anisotropic
pattern during evolution of the numerical solutions, then it is difficult to conclude whether the
pattern is due to the governing equation or numerical anisotropic problem. Fig.1 shows the
numerical results of a tumor growth model, which is an example of a real-world mathematical
model problem. In Fig.1, (a) is an elliptical initial condition. (b) and (c) are the computational
results from the anisotropic and isotropic schemes, respectively, at later time. (e) is 45 ◦ rotated
elliptical initial condition. (f) and (g) are the computational results from the anisotropic and
isotropic schemes, respectively, at later time. (d) and (h) are the overlapped contours of the
results ((b) and (f); (c) and (g)) for the anisotropic and isotropic schemes, respectively, after
being rotated. As shown in Fig.1, the isotropic Laplacian stencil has superiorities over anisotropic
ones when applied to some real life mathematical problems.

The main purpose of this paper is to propose benchmark functions to quantitatively evaluate
the isotropy of the discrete Laplacian operators in 2D and 3D spaces. The benchmark functions
have analytic 2D and 3D Laplacian solutions so that we can exactly compute the errors between
the numerical and analytic solutions.

The paper is organized as follows: In Section 2, 2D and 3D isotropic discretizations of Lapla-
cian operator are briefly described. In Section 3, several computational experiments are pre-
sented. In Section 4, conclusions are given.

(a) (b) (c) (d)
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(e) (f) (g) (h)
Figure 1. (a) is an elliptical initial condition. (b) and (c) are the computational results from the anisotropic and

isotropic schemes, respectively, at later time. (e) is 45 ◦ rotated elliptical initial condition. (f) and (g) are the

computational results from the anisotropic and isotropic schemes, respectively, at the later time. (d) and (h) are

the overlapped contours of the results ((b) and (f); (c) and (g)) for the anisotropic and isotropic schemes,

respectively, after being rotated. Reprinted from [25] with permission from Hindawi.

2. Isotropic discretization of Laplacian operator

2.1. Two-dimensional space. Let Ω = [Lx, Rx] × [Ly, Ry] be a computational domain and
be discretized as Ωh = {(xi, yj)|xi = Lx + (i− 1)h, i = 1, · · · , Nx and yj = Ly + (j − 1)h, j =
1, · · · , Ny}. Here, Nx and Ny are the positive integers and h = (Rx − Lx)/(Nx − 1) = (Ry −
Ly)/(Ny − 1) is the space grid size. By Taylor’s theorem in two variables [8], it can be written
as

u(x+ a, y + b) = u(x, y) +

(
a
∂

∂x
+ b

∂

∂y

)
u(x, y) +

1

2!

(
a
∂

∂x
+ b

∂

∂y

)2

u(x, y) (1)

+
1

3!

(
a
∂

∂x
+ b

∂

∂y

)3

u(x, y) + · · ·+ 1

(n− 1)!

(
a
∂

∂x
+ b

∂

∂y

)n−1

u(x, y)

+
1

n!

(
a
∂

∂x
+ b

∂

∂y

)n

u(x+ θa, y + θb), 0 < θ < 1.

Let us denote uij = u(xi, yj) for simplicity of the notation. Using (1), we obtain the following
equations:

ui+1,j =

(
u+ hux +

h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx

)
ij

+O(h5), (2)

ui−1,j =

(
u− hux +

h2

2
uxx −

h3

6
uxxx +

h4

24
uxxxx

)
ij

+O(h5), (3)

ui,j+1 =

(
u+ huy +

h2

2
uyy +

h3

6
uyyy +

h4

24
uyyyy

)
ij

+O(h5), (4)

ui,j−1 =

(
u− huy +

h2

2
uyy −

h3

6
uyyy +

h4

24
uyyyy

)
ij

+O(h5), (5)

ui+1,j+1 =
(
u+ hux + huy +

h2

2
uxx + h2uxy +

h2

2
uyy +

h3

6
uxxx +

h3

2
uxxy +

h3

2
uxyy (6)

+
h3

6
uyyy +

h4

24
uxxxx +

h4

6
uxxxy +

h4

4
uxxyy +

h4

6
uxyyy +

h4

24
uyyyy

)
ij
+O(h5),

ui−1,j+1 =
(
u− hux + huy +

h2

2
uxx − h2uxy +

h2

2
uyy −

h3

6
uxxx +

h3

2
uxxy −

h3

2
uxyy (7)

+
h3

6
uyyy +

h4

24
uxxxx −

h4

6
uxxxy +

h4

4
uxxyy −

h4

6
uxyyy +

h4

24
uyyyy

)
ij
+O(h5),
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ui+1,j−1 =
(
u+ hux − huy +

h2

2
uxx − h2uxy +

h2

2
uyy +

h3

6
uxxx −

h3

2
uxxy +

h3

2
uxyy (8)

−h3

6
uyyy +

h4

24
uxxxx −

h4

6
uxxxy +

h4

4
uxxyy −

h4

6
uxyyy +

h4

24
uyyyy

)
ij
+O(h5),

ui−1,j−1 =
(
u− hux − huy +

h2

2
uxx + h2uxy +

h2

2
uyy −

h3

6
uxxx −

h3

2
uxxy −

h3

2
uxyy (9)

−h3

6
uyyy +

h4

24
uxxxx +

h4

6
uxxxy +

h4

4
uxxyy +

h4

6
uxyyy +

h4

24
uyyyy

)
ij
+O(h5),

where (a, b) = (h, 0), (−h, 0), (0, h), (0,−h), (h, h), (−h, h), (h,−h), and (−h,−h) are used for
(2)–(9), respectively. Summing (2)–(5) results, we obtain

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 = 4uij + h2 (uxx + uyy)ij +
h4

12
(uxxxx + uyyyy)ij +O(h5). (10)

Summing (6)–(9) results, we have

ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1 = 4uij + 2h2 (uxx + uyy)ij

+
h4

6
(uxxxx + 6uxxyy + uyyyy)ij +O(h5). (11)

After multiplying weights w and (1 − w) to (10) and (11), respectively, then by summing
them, we get

∆uij = (uxx + uyy)ij =
1

(2− w)h2

(
w(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 4uij + (1− w)(ui+1,j+1

+ui−1,j+1 + ui+1,j−1 + ui−1,j−1)

)
− h2

12

(
uxxxx +

12(1− w)

2− w
uxxyy + uyyyy

)
ij

+O(h3)

=
1

(2− w)h2

(
w(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 4uij + (1− w)(ui+1,j+1 + ui−1,j+1

+ui+1,j−1 + ui−1,j−1)

)
− h2

12

(
∆2u+

8− 10w

2− w
uxxyy

)
ij

+O(h3) (12)

=
1

(2− w)h2

(
w(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 4uij + (1− w)(ui+1,j+1 + ui−1,j+1

+ui+1,j−1 + ui−1,j−1)

)
+O(h2).

We should note that there exists anisotropic term (8−10w)uxxyy/(2−w) in (12) unless w = 4/5
in the leading order. In fact, this w = 4/5 value is unique to make the scheme be isotropic in
the lowest order. For 0 ≤ w ≤ 1, we define discrete Laplacian operator as

∆wuij =
1

(2− w)h2

(
w(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 4uij + (1− w)(ui+1,j+1

+ui−1,j+1 + ui+1,j−1 + ui−1,j−1)

)
. (13)

Therefore, if w = 1 in the definition (13), then we have the standard 5-point stencil for the
2D Laplacian operator as follow:

∆1uij =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij

h2
. (14)
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If w = 4/5 in the definition (13), then we have the 9-point isotropic stencil for the 2D Laplacian
operator:

∆ 4
5
uij =

4(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) + ui−1,j+1 + ui+1,j+1 + ui+1,j−1 + ui−1,j−1 − 20uij
6h2

,

which is the unique 2D isotropic discretization in the leading order error [10].
Fig.2(a) and (b) represent the numerical stencils for the standard 5-point and 9-point stencils

for the 2D Laplacian operator, respectively.

(a) (b)

Figure 2. Stencils for the standard 5-point (a) and 9-point (b) stencils for the 2D Laplacian operator.

The Laplacian operator, ∆ = ∂2/∂x2+∂2/∂y2, is invariant under rotation in two-dimensional
space [11]. To show this property, let us consider the following rotated variables (x′, y′) of (x, y):(

x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
,

where θ is the angle of rotation. Then, uxx+uyy = (cos2 θ+sin2 θ)(ux′x′ +uy′y′) = ux′x′ +uy′y′ .
Therefore, Laplacian operator is rotationally invariant. However, the standard 5-point discrete
Laplacian operator (14) is not isotropic because there exists anisotropic term −2uxxyy in (12).

We should note that there is a 7-point hexagonal scheme [5] which gives O(h4) order of ac-
curacy, which is the same with the 9-point classical difference scheme under some smoothness
conditions of the boundary functions and conjugation conditions. Furthermore, in [5], the au-
thors showed that 7-point stencil is more efficient in computational time because only 7 nonzero
diagonals occur in the coefficient matrix instead of 9 nonzero diagonals of the obtained system
of algebraic equations.

2.2. Three-dimensional space. Let Ω = [Lx, Rx]× [Ly, Ry]× [Lz, Rz] be a computational
domain and be discretized as Ωh = {(xi, yj , zk)|xi = Lx + (i − 1)h, i = 1, · · · , Nx, yj =
Ly + (j − 1)h, j = 1, · · · , Ny, and zk = Lz + (k − 1)h, k = 1, · · · , Nz}. Here, Nx, Ny, and Nz

are the positive integers and h = (Rx−Lx)/(Nx−1) = (Ry−Ly)/(Ny−1) = (Rz−Lz)/(Nz−1)
is the space grid size. By Taylor’s theorem in three variables [8], it can be written as

u(x+ a, y + b, z + c) = u(x, y, z) +

(
a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)
u(x, y, z)

+
1

2!

(
a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)2

u(x, y, z)

+
1

3!

(
a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)3

u(x, y, z) + · · ·+ 1

(n− 1)!

(
a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)n−1

u(x, y, z)

+
1

n!

(
a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)n

u(x+ θa, y + θb, z + θc), 0 < θ < 1. (15)
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Let us denote uijk = u(xi, yj , zk) for simplicity of the notation. For non-negative values of α, β,
and γ, letting a, b, c be one of values −h, 0, h in (15) with n = 6, we have

α(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1) + β(ui+1,j,k−1 + ui−1,j,k−1 (16)

+ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k + ui−1,j−1,k + ui+1,j,k+1

+ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + γ(ui+1,j+1,k−1 + ui−1,j+1,k−1 + ui+1,j−1,k−1

+ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1)

= (6α+ 12β + 8γ)uijk + h2(α+ 4β + 4γ)(uxx + uyy + uzz)ijk

+
h4

12
[(α+ 4β + 4γ)(uxxxx + uyyyy + uzzzz) + (12β + 24γ)(uxxyy + uyyzz + uxxzz)]ijk +O(h6).

From (16), we have

∆uijk = (uxx + uyy + uzz)ijk

=
1

h2(α+ 4β + 4γ)

[
α(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1)

+β(ui+1,j,k−1 + ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k

+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + γ(ui+1,j+1,k−1 + ui−1,j+1,k−1

+ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1)

−(6α+ 12β + 8γ)uijk

]
− h4

12

[
uxxxx + uyyyy + uzzzz +

12β + 24γ

α+ 4β + 4γ
(uxxyy + uyyzz + uxxzz)

]
ijk

+O(h6).

Without loss of generality, we can assume α + β + γ = 1. If we choose α = 1, β = 0, and
γ = 0, we have the 3D 7-point stencil standard discrete Laplacian operator as follow

∆Suijk =
ui+1,j,k + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1 − 6uijk

h2
. (17)

However, in this case, we have the term related to h4 as [uxxxx + uyyyy + uzzzz]ijk, which is not
rotationally invariant. To make the term related to h4 be a three-dimensional biharmonic term,
we require 12β + 24γ = 2(α+ 4β + 4γ), i.e., 3β + 9γ = 1. Then,

[uxxxx + uyyyy + uzzzz +
12β + 24γ

α+ 4β + 4γ
(uxxyy + uyyzz + uxxzz)]ijk

= [uxxxx + uyyyy + uzzzz + 2(uxxyy + uyyzz + uxxzz)]ijk = (∆2u)ijk.

Therefore, we have

(∆u)ijk = (uxx + uyy + uzz)ijk (18)

=
1

h2(α+ 4β + 4γ)

[
α(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1)

+β(ui+1,j,k−1 + ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k

+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + γ(ui+1,j+1,k−1 + ui−1,j+1,k−1

+ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1)

−(6α+ 12β + 8γ)uijk

]
− h4

12
(∆2u)ijk +O(h6).

From (18), let us define 3D isotropic discrete Laplacian operator as

(∆βu)ijk = (uxx + uyy + uzz)ijk (19)

=
1

h2(α+ 4β + 4γ)

[
α(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1)

+β(ui+1,j,k−1 + ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k
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+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + γ(ui+1,j+1,k−1 + ui−1,j+1,k−1

+ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1)

−(6α+ 12β + 8γ)uijk

]
,

where 0 ≤ β ≤ 1/3, γ = (1 − 3β)/9, and α = 1 − β − γ. We note that there are infinitely
many 3D isotropic 27-point stencil discrete Laplacian operators. The Laplacian operator, ∆ =
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, is invariant under rotation in three-dimensional space [10]. To show
this property, let us consider the following rotated variables (x′, y′, z′): x′

y′

z′

 = R

 x
y
z

 ,

where R is a three-dimensional rotation matrix and is given as

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 .

The rotational matrix R is an orthogonal matrix, i.e., RRT = RTR = I and

3∑
k=1

rikrjk =

{
1 if i = j,

0 otherwise.
(20)

Then, using chain rule, we have

uxx + uyy + uzz = 2(r11r21 + r12r22 + r13r23)ux′y′ + 2(r21r31 + r12r32 + r23r33)uy′z′

+2(r31r11 + r32r12 + r33r13)uz′x′ + (r211 + r212 + r213)ux′x′

+(r221 + r222 + r223)uy′y′ + (r231 + r232 + r233)uz′z′

= ux′x′ + uy′y′ + uz′z′ ,

where we have used (20). Therefore, Laplacian operator is rotationally invariant. If we choose
α = 20/27, β = 2/9, and γ = 1/27, then (19) becomes

(∆ 2
9
u)ijk =

1

48h2

[
20(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1)− 200uijk

+6(ui+1,j,k−1 + ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k

+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + ui+1,j+1,k−1 + ui−1,j+1,k−1

+ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1

]
,

which was introduced in [14]. In [16], the authors used α = 7/9, β = 1/6, and γ = 1/18 for the
3D isotropic discretization for the Laplacian operator:

(∆ 1
6
u)ijk =

1

30h2

[
14(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1)− 128uijk

+3(ui+1,j,k−1 + ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k

+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1) + ui+1,j+1,k−1 + ui−1,j+1,k−1

+ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui+1,j−1,k+1 + ui−1,j−1,k+1

]
.
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0

0.2

0.4

0.6

0.8

1

Figure 3. 0 ≤ β ≤ 1/3, γ = (1− 3β)/9, and α = 1− β − γ.

Fig.3 shows the values of α, β, and γ for 3D isotropic discretization against β on 0 ≤ β ≤ 1/3
with the vertical lines of β = 1/6 and β = 2/9.

3. Numerical experiments

3.1. Two-dimensional space. Let us consider the following function on domain Ω = [−1.5, 1.5]×
[−1.5, 1.5]:

u(x, y) = tanh

(
1− x2 − y2

ϵ

)
, (21)

where ϵ is a parameter related to the thickness of interfacial transition layer. Here, ϵ = 0.25 is
used. Then, its Laplacian function is given as

∆u(x, y) = −
[
8

ϵ2
(x2 + y2) tanh

(
1− x2 − y2

ϵ

)
+

4

ϵ

]
sech2

(
1− x2 − y2

ϵ

)
.

For ϵ = 0.25, Fig.4(a) and (b) show u(x, y) and ∆u(x, y), respectively. Fig.4(c) and (d) are
mesh plots of ∆1u(x, y)−∆u(x, y) and ∆ 4

5
u(x, y)−∆u(x, y), respectively. Fig.4(e) and (f) are

filled contours of ∆1u(x, y) −∆u(x, y) and ∆ 4
5
u(x, y) −∆u(x, y), respectively. The grid size is

101× 101.
As shown in Fig.4(c), in the case of ∆1u(x, y), the errors are large in the directions of

0◦, 90◦, 180◦, and 270◦. As shown in Fig.4(d), in the case of ∆ 4
5
u(x, y), the errors are ra-

dially uniformly distributed. Because the given function u(x, y) in (21) is radially symmetric,
its Laplacian should be radially symmetric.

(a) (b)
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Figure 4. (a) u(x, y) and (b) ∆u(x, y). (c) and (d) are mesh plots of ∆1u(x, y)−∆u(x, y) and

∆ 4
5
u(x, y)−∆u(x, y), respectively. (e) and (f) are filled contours of ∆1u(x, y)−∆u(x, y) and

∆ 4
5
u(x, y)−∆u(x, y), respectively.

Fig.5(a) and (b) are graph plots of
(√

x2i + y2j , ∆1uij −∆u(xi, yj)
)
and(√

x2i + y2j , ∆ 4
5
uij −∆u(xi, yj)

)
, respectively. We can observe that the errors of the standard

5-point and isotropic stencils are not radially symmetric and radially symmetric, respectively.
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Figure 5. Graph plots of (a)
(√

x2
i + y2

j , ∆1uij −∆u(xi, yj)
)
and (b)

(√
x2
i + y2

j , ∆ 4
5
uij −∆u(xi, yj)

)
.

To quantitatively measure the radial symmetry of the numerical Laplacian operator, let
us consider a cubic spline least squares approximation to the errors. Let us define the er-
ror between the numerical approximation and analytic solution at position (xi, yj) as ew,ij =
∆wuij −∆u(xi, yj). We uniformly partition interval [0, 1.5] into Nr subintervals, which implies
(Nr + 1) node points, i.e., ri = 0.15i/Nr for i = 0, 1, . . . , Nr. In this study, we use Nr = 50,
which is a sufficiently large enough number. Let f(r) be a discrete function which is defined on
the (Nr +1) node points. Our goal is to construct the discrete function f(r) which best fits the
given data in the sense of least squares approximation when we use a cubic spine based on the
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function f(r). To construct the values f(ri) for i = 0, 1, . . . , Nr, we use the nonlinear curve-
fitting routine lsqcurvefit in MATLAB R2022a, which is a nonlinear least-squares optimization
function [17]. That is, we compute the optimal discrete function values f(ri) for i = 0, 1, . . . , Nr,
which minimize the following cost function:

E(f(r0), . . . , f(rNr)) =
1

2

∑
√

x2
i+y2j≤1.5

[
ew,ij − S

(√
x2i + y2j

)]2
,

where S(r) is the cubic spline interpolant using the discrete function values f(ri) for i =
0, 1, . . . , Nr. The specific usage of the nonlinear curve-fitting routine lsqcurvefit is as follows:

[f(r0), . . . , f(rNr)] = lsqcurvefit(‘fun’, [f0(r0), . . . , f
0(rNr)], R, E),

where [f(r0), . . . , f(rNr)] are the optimized discrete function values, ‘fun’ is the cubic spline inter-

polant, [f0(r0), . . . , f
0(rNr)] are the initial guess of the function f(r), R = {R|R =

√
x2i + y2j ≤

1.5} is the set of radii, and corresponding error values E = {ew,ij |
√

x2i + y2j ≤ 1.5}. We compute

the discrete l2-norm of the difference between the errors and best fitting function. The discrete
l2-norms of the numerical results in Figs.6(a) and (b) are 0.0775 and 0.0017, respectively. Table
1 lists errors of the two different Laplacian operators, ∆1 and ∆4/5, for various ϵ values. Fig.7
shows the difference data in Table 1 as a graph for ϵ. We can clearly observe that the isotropic
discretization of the Laplacian operator is superior to the standard discretization.
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Figure 6. Graph plots of (a)
(√

x2
i + y2

j , ∆1uij −∆u(xi, yj)
)
and (b)

(√
x2
i + y2

j , ∆ 4
5
uij −∆u(xi, yj)

)
with

corresponding cubic spline interpolants (solid curves) using ϵ = 0.25.

Table 1. Discrete l2-norm of the difference between the errors and best fitting function for two different
Laplacian operator cases for each various ϵ = 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 on two-dimensional space.

case ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.25 ϵ = 0.3 ϵ = 0.35

∆1 1.6172 0.4259 0.1631 0.0775 0.0423 0.0255

∆4/5 0.4642 0.0438 0.0062 0.0017 0.0006 0.0003

0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

Figure 7. Discrete l2-error for ∆1 and ∆4/5 on two-dimensional space.
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3.2. Three-dimensional space. Let us consider the following function on domain Ω = [−1.5,
1.5]× [−1.5, 1.5]× [−1.5, 1.5]:

u(x, y, z) = tanh

(
1− x2 − y2 − z2

ϵ

)
. (22)

Then, its Laplacian function is given as

∆u(x, y, z) = −
[
8

ϵ2
(x2 + y2 + z2) tanh

(
1− x2 − y2 − z2

ϵ

)
+

6

ϵ

]
sech2

(
1− x2 − y2 − z2

ϵ

)
.(23)

Because the given function u(x, y, z) in (22) is spherically symmetric, its Laplacian should be
spherically symmetric, i.e., (23). For ϵ = 0.25, Figs.8(a), (b), and (c) are isosurfaces of u(x, y, z)
at level zero, ∆Su(x, y, z) −∆u(x, y, z) at level 2.7, and ∆ 2

9
u(x, y, z) −∆u(x, y, z) at level 2.7,

respectively. The grid size is 51×51. We can observe that the standard 7-point stencil generates
the anisotropic result as shown in Fig.8(b). In the case of isotropic discretization, (∆ 2

9
u)ijk, we

have the good isotropic result as shown in Fig.8(c).

(a)

(b) (c)
Figure 8. (a) is isosurface of u(x, y, z) at level zero; (b) and (c) are isosurfaces of ∆Su(x, y, z)−∆u(x, y, z) and

∆ 2
9
u(x, y, z)−∆u(x, y, z), respectively, at level 2.7.

(a) (b)

Figure 9. Graph plots of (a)
(√

x2
i + y2

j + z2k,∆Suijk −∆u(xi, yj , zk)
)
and (b)(√

x2
i + y2

j + z2k,∆ 2
9
uijk −∆u(xi, yj , zk)

)
.
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Fig.9(a) and (b) are graph plots of
(√

x2i + y2j + z2k,∆Suijk −∆u(xi, yj , zk)
)
and

(√
x2i + y2j + z2k,

∆ 2
9
uijk −∆u(xi, yj , zk)

)
, respectively.

To quantitatively measure the spherical symmetry of the 3D numerical Laplacian operator,
let us consider a cubic spline least squares approximation to the errors. Let us define the error
between the numerical approximation and analytic solution at position (xi, yj , zk) as eβ,ijk =
∆βuijk −∆u(xi, yj , zk). Let f(r) be a discrete function which is defined on the (Nr + 1) node
points. Our goal is to construct the discrete function f(r) which best fits the given data in the
sense of least squares approximation when we use a cubic spine based on the function f(r). That
is, we compute the optimal discrete function values f(ri) for i = 0, 1, . . . , Nr, which minimize
the following cost function:

E(f(r0), . . . , f(rNr)) =
1

2

∑
√

x2
i+y2j+z2k≤1.5

[
eβ,ijk − S

(√
x2i + y2j + z2k

)]2
,

where S(r) is the cubic spline interpolant using the discrete function values f(ri) for i =
0, 1, . . . , Nr. The specific usage of the nonlinear curve-fitting routine lsqcurvefit is as follows:

[f(r0), . . . , f(rNr)] = lsqcurvefit(‘fun’, [f0(r0), . . . , f
0(rNr)], R, E),

where [f(r0), . . . , f(rNr)] are the optimized discrete function values, ‘fun’ is the cubic spline inter-

polant, [f0(r0), . . . , f
0(rNr)] are the initial guess of the function f(r),R = {R|R =

√
x2i + y2j + z2k

≤ 1.5} is the set of radii, and corresponding error values E = {eβ,ijk|
√

x2i + y2j + z2k ≤ 1.5}. We

compute the discrete l2-norm of the difference between the errors and best fitting function f(r).
The discrete l2-norms of the numerical results in Figs.10(a) and (b) are 0.2913 and 0.0176, re-
spectively. Table 2 lists errors of the two different Laplacian operators, ∆S and ∆2/9, for various
ϵ values. Fig.7 shows the difference data in Table 2 as a graph for ϵ. We can clearly observe that
the isotropic discretization of the Laplacian operator is superior to the standard discretization.

(a) (b)

Figure 10. Graph plots of (a)
(√

x2
i + y2

j + z2k,∆Suijk −∆u(xi, yj , zk)
)
and (b)(√

x2
i + y2

j + z2k,∆ 2
9
uijk −∆u(xi, yj , zk)

)
with corresponding cubic spline interpolants (solid curves).

Table 2. Discrete l2-norm of the difference between the errors and best fitting function for two different
Laplacian operator cases for each various ϵ = 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 on three-dimensional space. Here,

∆S is the 3D 7-point standard discrete Laplacian operator (17)

case ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.25 ϵ = 0.3 ϵ = 0.35

∆S 4.8169 1.4653 0.5913 0.2913 0.1634 0.1006

∆2/9 1.3692 0.2211 0.0531 0.0176 0.0072 0.0034
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Figure 11. Discrete l2-error for ∆S and ∆2/9 on three-dimensional space.

Fig.12 shows the discrete l2-norm of the difference between the errors and best fitting function
against 0 ≤ β ≤ 1/3 when we use (22). In Fig.12, when we choose α = 8/9, β = 0, and γ = 1/9,
the error is the largest. However, it makes (19) become the smallest 15-point isotropic stencil
for the 3D discrete Laplacian operator as follows:

(∆0u)ijk =
1

12h2

[
8(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1) + ui+1,j+1,k−1

+ui−1,j+1,k−1 + ui+1,j−1,k−1 + ui−1,j−1,k−1 + ui+1,j+1,k+1 + ui−1,j+1,k+1

+ui+1,j−1,k+1 + ui−1,j−1,k+1 − 56uijk

]
,

which has a computational advantage. This scheme was studied in [20] as the 14-point averaging
operator. Conversely, we can observe that the error is minimum when β = 1/3, which implies
γ = 0. If we take α = 2/3, β = 1/3, and γ = 0, then (19) becomes

(∆ 1
3
u)ijk =

1

7h2

[
2(ui+1,jk + ui−1,jk + ui,j+1,k + ui,j−1,k + uij,k+1 + uij,k−1) + ui+1,j,k−1

+ui−1,j,k−1 + ui,j+1,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k

+ui−1,j−1,k + ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1 − 24uijk

]
,

which is a 19-point isotropic stencil for the 3D discrete Laplacian operator. Hence, ∆0 using
15-point is isotropic and has a computational advantage, and ∆ 1

3
using 19-point is more accurate

than ∆0 and is an isotropic Laplacian operator that is more efficient than using 27-point.

Figure 12. Discrete l2-norm of the difference between the errors and best fitting function against β.

In this study, we focused on the numerical analysis and computational tests. Theoretical
results for the discrete isotropic Laplacian operator were given in [10, 12]. Fig.13, reprinted
from [25], shows the numerical results of a tumor growth model in 3D space, which is an
application of real-life model problem. In Fig.13, (a) is an ellipsoid initial condition. (b) and (c)
are the computational results from the anisotropic and isotropic schemes, respectively, at latter
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time. (e) is π/4 rotated ellipsoid initial condition. (f) and (g) are the computational results
from the anisotropic and isotropic schemes, respectively, at the later time. (d) and (h) are the
overlapped isosurfaces of the results ((b) and (f); (c) and (g)) for the anisotropic and isotropic
schemes, respectively, after being rotated.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 13. (a) is an ellipsoid initial condition. (b) and (c) are the computational results from the anisotropic

and isotropic schemes, respectively, at later time. (e) is 45 ◦ rotated ellipsoid initial condition. (f) and (g) are

the computational results from the anisotropic and isotropic schemes, respectively, at the later time. (d) and (h)

are the overlapped isosurfaces of the results ((b) and (f); (c) and (g)) for the anisotropic and isotropic schemes,

respectively, after being rotated. Reprinted from [25] with permission from Hindawi.

4. Conclusion

The main conclusion from the numerical experiments is that it is highly recommended to use
isotropic stencils for the 2D and 3D Laplacian operators with the extra cost for extended stencils.
In this study, we proposed benchmark functions to quantitatively evaluate the isotropy of the
discrete Laplacian operators in 2D and 3D spaces using a cubic spline interpolant. There is only
one isotropic 2D stencil to the lowest order, while there are many isotropic 3D stencils. Among
them, there is the 3D 19-point isotropic stencil which is accurate and fast because of the small
number of points compared with full 27-point isotropic stencils. There is the smallest 3D 15-
point isotropic stencil which is the fastest because of the smallest number of points with a slightly
larger error. As a future work, it would be interesting to develop isotropic 2D Laplacian discrete
operators in triangular or hexagonal grids [1–3,5]. Because, in triangular or hexagonal grids, we
may use fewer grid points to solve the isotropic Laplacian operator, and better computational
efficiency can be expected.
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