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Abstract
An effective time step analysis to the linear convex splitting scheme for the
Allen–Cahn equation with a high-order polynomial free energy is presented
in this article. Although the convex splitting scheme is unconditionally stable,
using a large time step causes a time step rescaling effect, leading to delayed
dynamics of the governing equation. We verify this problem by comparing it
with a reformulated semi-implicit scheme using the effective time step. Theo-
retical results show that the discrete energy stability and maximum-principle
hold, and the numerical results demonstrate that the time step rescaling issue
can be resolved using the effective time step. We confirm that slow dynamics
due to high-order potential is alleviated by the time step modification through
the results of motion by mean curvature.
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1 INTRODUCTION

In this article, an effective time step analysis for the Allen–Cahn (AC) equation with a high-order polynomial free energy
potential is presented. We denote this equation as the high-order Allen–Cahn (hAC) equation hereafter. The classical AC
equation is as follows:1

𝜕𝜙(x, t)
𝜕t

= −F′(𝜙(x, t))
𝜖2 + Δ𝜙(x, t), x ∈ Ω, t > 0, (1)

where 𝜙(x, t) is the difference between the two concentrations in a domain Ω ⊂ Rd, for d = 2, 3, with the zero Neu-
mann boundary condition, that is, 𝜕𝜙∕𝜕n = 0 on 𝜕Ω where 𝜕∕𝜕n is the normal derivative. The free energy function is
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F(𝜙) = 0.25(𝜙2 − 1)2, and 𝜖 is a positive parameter related to the interfacial thickness. We note that Equation (1) can be
derived as the L2-gradient flow of the following total energy functional:

(𝜙) =
∫Ω

(
F(𝜙)
𝜖2 + 1

2
|∇𝜙|2

)
dx. (2)

Differentiating Equation (2) with respect to time yields the non-increasing energy over time as follows:

d(𝜙)
dt

=
∫Ω

(
F′(𝜙)
𝜖2 𝜙t + ∇𝜙 ⋅ ∇𝜙t

)
dx

=
∫Ω

(
F′(𝜙)
𝜖2 − Δ𝜙

)
𝜙t dx = −

∫Ω
𝜙

2
t dx ≤ 0.

The classical AC equation and modified forms have been widely employed for phase transition,1,2 image processing,3,4

topology optimization,5,6 multiphase flows,7-9 mechanical behavior of thin-walled superalloys,10 dendrite growth,11,12

motion by mean curvature,13,14 microscopic fluctuating strain,15 damage field of sensitivity-uncertainty quantification
framework16 and so forth. As such, many scientific problems have been solved through the numerical application of the
AC equation. For the numerical solution to diffuse-interface systems, such as the AC equation, a sufficiently large num-
ber of grid points is required to discretize the phase interface layer.17 As one way to properly compute the diffuse-interface
even in relatively coarse grids for computational efficiency, the high-order polynomial free energy function was recently
applied.18,19 In particular, the authors in Reference 19 dealt with the use of the hAC equation especially focusing on
the advantages of employing the high-order free energy function in applications. The high-order polynomial free energy
function is defined as follows:

Fm(𝜙) = 0.25(𝜙2m − 1)2, (3)

where m is a positive integer. Please refer to References 18,19 and the references therein for further details. Figure 1 shows
the polynomial free energy functions (3), for m = 1, 2, 3, 4, and 5.

To resolve these scientific problems, several numerical solvers for the AC equation have been developed so far. Since
the other intrinsic property of the AC equation is the maximum-principle preserving20 along with the energy dissipa-
tion law above, research on schemes that inherit these properties at the discrete level has been recently presented.21-24

Feng et al. developed a linear second-order scheme based on the leapfrog scheme with a stabilized term.21 Under mod-
erate constraints on the time step, the maximum-principle is preserved at a discrete level. In Reference 22, the authors
provided a high-order explicit scheme for the AC equation, which is up to the fourth-order in time and is based on the
integrating factor Runge–Kutta method. The authors adopted the stabilizing parameter and projection method to amelio-
rate the restriction on the time step and achieved the first-order and fourth-order for stiff and non-stiff terms, respectively.
Wang et al. also provided a linear energy stable and maximum-principle preserving method for the AC equation.23 The
authors discussed a stabilized energy factorization to treat the common double-well potential semi-implicitly. Li and Song
developed a reduced-order finite difference scheme which is of second-order in time based on the proper orthogonal
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F I G U R E 1 High-order polynomial free energy functions.
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4728 LEE et al.

decomposition technique.24 The authors confirmed that the computational efficiency of the new framework is much bet-
ter than that of the conventional framework. Furthermore, the second-order nonlinear interior penalty discontinuous
Galerkin method was proposed by Li et al. in Reference 25. In particular, the authors focused on the convergence of the
numerical interface via the proposed scheme in a curvature-driven geometric flow. Recently, Montanelli and Bootland
proposed an exponential integration formula and compared its performance to stiff partial differential equations, includ-
ing the AC equation.26 Research using an adaptive physics-informed neural network on phase-field models including the
AC equation was embraced instead of the traditional solver for partial differential equations.27

As mentioned above, the maximum-principle preservation is accompanied by an appropriate restriction on the time
step. To satisfy the maximum-principle preservation regardless of the order in the hAC equation, we adopt the concept of
the linear convex splitting (CS) scheme reported by Eyre as follows:28

𝜙
n+1 − 𝜙

n

Δt
= −2𝜙n+1

𝜖2 − (𝜙
n)3 − 3𝜙n

𝜖2 + Δ𝜙n+1
. (4)

Note that the pointwise boundness of Equation (4) was demonstrated in Reference 29. This scheme is deduced from the
following factorization of the free energy functional:

(𝜙) =  c(𝜙) −  e(𝜙)

=
∫Ω

(1
2
|∇𝜙|2 + 1

𝜖2 𝜙
2
)

dx −
∫Ω

(
− 1

4𝜖2 (𝜙
2 − 1)2 + 1

𝜖2 𝜙
2
)

dx, (5)

where the contractive part  c(𝜙) and expansive part− e(𝜙) are treated implicitly and explicitly, respectively. Let ⟨𝜑,𝜓⟩ ≔
∫Ω 𝜑𝜓dx be the L2-inner product and ||𝜑|| ≔√⟨𝜑,𝜑⟩ be the L2-norm. Because Equation (1) is a gradient flow of (2),
⟨𝜙, J𝜙⟩ ≥ 𝜆 for 𝜆 ∈ R where J is the Jacobian of 𝛿∕𝛿𝜙. We reformulate Equations (4) and (5) to fit the hAC equation
in Section 2.

The main objective of this study is to present the effective time step analysis to the unconditionally gradient stable
linear CS method for the hAC equation. The CS scheme is handed down to implement the hAC equation in an arbitrary
order; however, studying the effective time step on the slow dynamics that occur as the order increases is necessary.19 In
fact, the CS scheme for the AC equation (4) can be interpreted as a semi-implicit scheme with different time step scaling
as follows:

𝜙
n+1 − 𝜙

n

𝜖2Δt
2Δt+𝜖2

= − 1
𝜖2 [(𝜙

n)3 − 𝜙
n] + Δ𝜙n+1

. (6)

Several prior studies have focused on the relation between CS and the fully implicit scheme.30-32 According to references
and those therein, the CS scheme may lack numerical accuracy unless the time step is sufficiently small. Thus, numerical
accuracy can be improved by adopting a fully implicit scheme using a small time step; however, the fully implicit inter-
pretation is difficult to employ owing to the high nonlinearity of the hAC equation. Therefore, we adopt the linear CS
scheme (4) and performed the effective time step analysis. We then rewrite Equation (6) to fit right in the hAC equation
and investigate the effect of modified time steps in the rewritten equation with respect to order m.

The remainder of this article is organized as follows. In Section 2, we explain the numerical solution with the effective
time step and analyze the two intrinsic properties of the hAC equation at the discrete level. In Section 3, numerical
simulations are conducted to support analytical results. In Section 4, conclusions and future work are discussed.

2 NUMERICAL ANALYSIS

We employ the conventional unconditionally energy stable linear CS scheme using the original time step to the hAC
equation owing to the high nonlinearity and interpret this scheme as the reformulated semi-implicit scheme using the
effective time step in this section. Moreover, the least upper bound of the effective time step is presented. Numerical
solution is derived from the rewritten semi-implicit scheme and discrete cosine transform framework. Theoretical results
for the energy stability and maximum-principle preservation of the linear CS scheme are also provided. We extend this
result to hold even in the reformulated semi-implicit scheme.
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LEE et al. 4729

2.1 Linear CS scheme

The total energy (2) is modified using the high-order free energy function (3), as follows:

(𝜙) =
∫Ω

(
Fm(𝜙)
𝜖2 + 1

2
|∇𝜙|2

)
dx. (7)

Using the variational approach yields the following L2-gradient flow:

𝜕𝜙

𝜕t
= −𝛿

𝛿𝜙
= −m

𝜖2 (𝜙
4m−1 − 𝜙

2m−1) + Δ𝜙. (8)

To employ the linear CS scheme based on Reference 28, the energy functional (7) is split into contractive and expansive
parts as follows:

(𝜙) =  c(𝜙) −  e(𝜙)

=
∫Ω

(|∇𝜙|2
2

+ 𝛼

2𝜖2 𝜙
2
)

dx −
∫Ω

(
−(𝜙

2m − 1)2

4𝜖2 + 𝛼

2𝜖2 𝜙
2
)

dx, (9)

where 𝛼 is a stabilizing constant that allows  e(𝜙) to be convex. If  e(𝜙) is not convex, then there might be multiple
equilibria of Equation (4) for 𝜆 < 0; hence, the convexity of  e(𝜙) yields ⟨𝜙, J e𝜙⟩ ≥ −𝜆 and then Equation (4) is consistent
and unconditionally stable.33 Note that the contractive part  c(𝜙) is convex by construction. Recall that the terms are
treated implicit and explicit ways, respectively. Let 𝜙n be an approximation of 𝜙(x,nΔt), where Δt is the discretized time
step. The following semi-discretized equation is derived by treating the contractive and expansive terms in Equation (9)
as implicit and explicit ways, respectively, and applying to Equation (8):

𝜙
n+1 − 𝜙

n

Δt
= −m

𝜖2 (𝜙
n)4m−1 + m

𝜖2 (𝜙
n)2m−1 − 𝛼

𝜖2 (𝜙
n+1 − 𝜙

n) + Δ𝜙n+1
. (10)

The second-order Taylor expansion to (𝜙) is used to show the non-increasing discrete energy over time for any Δt > 0
as follows:

(𝜙n+1) − (𝜙n) =
[


c(𝜙n+1) −  e(𝜙n+1)
]
−
[


c(𝜙n) −  e(𝜙n)
]

=
[


c(𝜙n+1) −  c(𝜙n)
]
−
[


e(𝜙n+1) −  e(𝜙n)
]

≤

⟨
𝛿

𝛿𝜙

(


c(𝜙n+1) −  e(𝜙n+1)
)
, 𝜙

n+1 − 𝜙
n
⟩

=
⟨
−𝜙

n+1 − 𝜙
n

Δt
, 𝜙

n+1 − 𝜙
n
⟩

= − 1
Δt

||𝜙n+1 − 𝜙
n||2 ≤ 0, (11)

when both contractive and expansive parts are convex. Therefore, 𝛼 is determined so that the expansive term satisfies the
convexity as follows:

𝛿
2


e(𝜙)
𝛿𝜙2 = −m(4m − 1)

𝜖2 𝜙
4m−2 + m(2m − 1)

𝜖2 𝜙
2m−2 + 𝛼

𝜖2 ≥ 0. (12)

Thus, we conclude that 𝛼 can be determined using Equation (12) as follows:

𝛼 ≥ m(4m − 1) −m(2m − 1) = 2m2
, (13)

if the absolute maximum value of 𝜙 does not exceed 1.
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4730 LEE et al.

To prove a discrete maximum-principle property, let |𝜙n| ≤ ||𝜙n||L∞ ≤ 1, where ||𝜑||L∞ ≔ supx∈Ω |𝜑(x)|, and rewrite
Equation (10) as follows:

( 1
Δt
+ 𝛼

𝜖2

)
𝜙

n+1 − Δ𝜙n+1 =
( 1
Δt
+ 𝛼

𝜖2

)
𝜙

n + m
𝜖2 (𝜙

n)2m−1(1 − (𝜙n)2m). (14)

Taking the L2-inner product with 1, where 1(x) = 1 for all x ∈ Ω, on the left-hand side of Equation (14), we have

( 1
Δt
+ 𝛼

𝜖2

) ⟨𝜙n+1
, 1⟩ − ⟨Δ𝜙n+1

, 1⟩ = ( 1
Δt
+ 𝛼

𝜖2

) ⟨𝜙n+1
, 1⟩ + ⟨∇𝜙n+1

,∇1⟩ −
∫
𝜕Ω
∇𝜙n+1 ⋅ nd𝜎

=
( 1
Δt
+ 𝛼

𝜖2

) ⟨𝜙n+1
, 1⟩. (15)

By applying the triangle inequality and (15) to Equation (14) yields

( 1
Δt
+ 𝛼

𝜖2

) ⟨|𝜙n+1|, 1⟩ ≤ ( 1
Δt
+ 𝛼

𝜖2

) ⟨|𝜙n|, 1⟩ + m
𝜖2

⟨
1 − |𝜙n|2m

, 1
⟩
. (16)

We now suppose that ||𝜙n+1||L∞ ≥ |𝜙n+1(x0)| > 1 for some x0 ∈ Ω.
Subsequently, we deduce the following from (16):

( 1
Δt
+ 𝛼

𝜖2

)⟨|𝜙n+1| − |𝜙n|, 1⟩ ≤ m
𝜖2

⟨
1 − |𝜙n|, 1 + |𝜙n| + · · · + |𝜙n|2m−1⟩

<
m
𝜖2

⟨|𝜙n+1| − |𝜙n|, 1⟩ sup
x∈Ω

(
1 + |𝜙n| + · · · + |𝜙n|2m−1)

. (17)

By the assumptions ||𝜙n||L∞ ≤ 1 and ||𝜙n+1||L∞ > 1, we get

( 1
Δt
+ 𝛼

𝜖2

)
<

m
𝜖2

2m∑
i=1

1 = 2m2

𝜖2 . (18)

Rearranging (18) yields

𝜖
2

Δt
< −𝛼 + 2m2

, (19)

which is a contradiction when 𝛼 ≥ 2m2 for all positive integers m. In other words, the maximum-principle property
||𝜙n+1||L∞ ≤ 1 holds when 𝛼 ≥ 2m2. This implies that the convexity condition (13) holds, and we can then fix 𝛼 = 2m2.

In the next step, we prove that scheme (10) is uniquely solvable. Find 𝜙 ∈ H1(Ω) such that

⟨𝜙,𝜑⟩ − Δt
⟨

𝛿

𝛿𝜙
( c(𝜙) −  e(𝜙n)), 𝜑

⟩
= ⟨𝜙n

, 𝜑⟩ , (20)

for any 𝜑 ∈ H1(Ω). Consider the following functional:

G(𝜙) = ⟨𝜙, 𝜙⟩ − Δt
⟨

𝛿

𝛿𝜙
( c(𝜙) −  e(𝜙n)), 𝜙

⟩
− ⟨𝜙n

, 𝜙⟩ . (21)

Then, G(𝜙) is strictly convex because the three terms in (21) are quadratic, convex, and linear in order, respectively, and
𝛿𝜙G(𝜙) is equal to Equation (20). This implies that 𝜙n+1 ∈ H1(Ω) is a unique minimizer of G if and only if Equation (20)
holds for any 𝜑 ∈ H1(Ω), that is,

𝜙
n+1 − 𝜙

n

Δt
= 𝛿

𝛿𝜙

(


c(𝜙n+1) −  e(𝜙n)
)
, (22)

which is equivalent to Equation (10). Therefore, Equation (10) is uniquely solvable.
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LEE et al. 4731

2.2 Semi-implicit scheme using the effective time step

We can rewrite Equation (10) as follows:

𝜙
n+1 − 𝜙

n

Δte
= −m

𝜖2 (𝜙
n)4m−1 + m

𝜖2 (𝜙
n)2m−1 + Δ𝜙n+1

, (23)

which is a semi-implicit scheme that uses the following effective time step:

Δte =
Δt

1 + 2m2Δt∕𝜖2 . (24)

We denote the least upper bound of Δte by Δt∞e ≔ supΔte = 𝜖
2∕2m2. Figure 2 shows the upper bound of the effective

time step for each order m. We consider 𝜖 = 0.005, 0.0075, and 0.01 in this case. As depicted in Figure 2, the upper bound
becomes lower as the order m increases. In fact, the linear CS scheme is unconditionally stable, but if the time step is
large, the numerical solution may differ from the exact solutions. More precisely, a large time step scale causes delayed
dynamics in the governing equation. In addition, it can exacerbate slow dynamics resulting from high-order potentials,
which is reported in a previous study.19 Therefore, we evaluate the numerical solution using the effective time step (24) in
order to alleviate slow dynamics. Note that the scale of the effective time step is not significantly related to the dimensions
of the domain. Furthermore, two intrinsic properties of the hAC equation–the energy stability and maximum-principle
preserving–are maintained in the rewritten scheme (23).

We conclude this subsection by verifying that the accuracy of the linear CS scheme is still of first-order when that of
the semi-implicit scheme is of first-order. In other words, the first-order accuracy of the linear CS can be guaranteed only
for the time step scale that maintains the first-order accuracy in the semi-implicit scheme. For simplicity, we assign the
errors of the linear CS and semi-implicit schemes as eCS and eSI, respectively, which are defined as follows:

en+1
CS = Δt

(
−m
𝜖2

(
(𝜙n)4m−1 − (𝜙n)2m−1) − 2m2

𝜖2 (𝜙n+1 − 𝜙
n) + Δ𝜙n+1

)
, (25)

en+1
SI = Δt

(
−m
𝜖2

(
(𝜙n)4m−1 − (𝜙n)2m−1) + Δ𝜙n+1

)
. (26)

Now, we assume that the semi-implicit scheme is of first order, that is, ‖‖‖en+1
SI

‖‖‖ ≤ KΔt for some K > 0 andΔt ≤ Δt∞e . Then,
by rearranging the expression for en+1

CS in (25) and dividing by (1 + 2m2Δt∕𝜖2), we have

‖‖‖en+1
CS

‖‖‖ =
‖‖‖‖Δte

(
−m
𝜖2

(
(𝜙n)4m−1 − (𝜙n)2m−1) + Δ𝜙n+1

)‖‖‖‖
≤
‖‖‖‖Δt

(
−m
𝜖2

(
(𝜙n)4m−1 − (𝜙n)2m−1) + Δ𝜙n+1

)‖‖‖‖ =
‖‖‖en+1

SI
‖‖‖ . (27)

Thus, the linear CS scheme is of first-order indeed when Δt ≤ Δt∞e .

1 2 3 4 5

1

2

3

4

5
10-5

F I G U R E 2 Upper bound of Δte for each order m with some different values of 𝜖.
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4732 LEE et al.

2.3 Numerical solution

To define the numerical solution, we discretize a two-dimensional domain Ω = [lx, rx] × [ly, ry]. Let Lx = rx − lx, Ly =
ry − ly be the lengths of x- and y-directions, respectively, and Nx, Ny be positive even integers. Consequently, we can define
hx = Lx∕Nx and hy = Ly∕Ny as the space step sizes for x- and y-directions, respectively. Furthermore, the discrete points
are denoted as (xi, yj) = (lx + (i − 0.5)hx, ly + (j − 0.5)hy)where 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny are integers. Let𝜙n

ij be an approx-
imation of𝜙(xi, yj, tn), where tn = nΔt andΔt is the time step size. For the given discrete approximations {𝜙n

ij|i = 1, … ,Nx
and j = 1, … ,Ny}, their discrete cosine transforms are defined as follows:

�̂�
n
pq = 𝛼p𝛽q

Nx∑
i=1

Ny∑
j=1

𝜙
n
ij cos(𝜉p𝜋xi) cos(𝜂q𝜋yj),

p = 1, … ,Nx and q = 1, … ,Ny,

where 𝜉p = (p − 1)∕(Rx − Lx), 𝜂q = (q − 1)∕(Ry − Ly),

𝛼p =

{√
1∕Nx, p = 1√
2∕Nx, 2 ≤ p ≤ Nx

, and 𝛽q =

{√
1∕Ny, q = 1√
2∕Ny, 2 ≤ q ≤ Ny

.

Consequently, the inverse discrete Fourier transform is defined as follows:

𝜙
n
ij =

Nx∑
p=1

Ny∑
q=1

𝛼p𝛽q�̂�
n
pq cos(𝜉p𝜋xi) cos(𝜂q𝜋yj).

Let us assume that

𝜙(x, y,nΔt) =
Nx∑

p=1

Ny∑
q=1

𝛼p𝛽q�̂�
n
pq cos(𝜉p𝜋x) cos(𝜂q𝜋y).

We can represent the Laplacian as the linear combination of coefficients in the Fourier space as follows:

Δ𝜙(x, y,nΔt) = −
Nx∑

p=1

Ny∑
q=1

[(
𝜉p𝜋

)2 +
(
𝜂q𝜋

)2
]
𝛼p𝛽q�̂�

n
pq cos(𝜉p𝜋x) cos(𝜂q𝜋y).

Therefore, we deduce the following numerical solution from Equation (23),

�̂�
n+1
pq =

�̂�
n
pq − Δte f̂ m(𝜙n

ij)∕𝜖
2

1 + 𝜋2Δte(𝜉2
p + 𝜂

2
q)

,

where fm(𝜙) = F′m(𝜙). For the remainder of this article, we use only a uniform spatial step, that is, h = hx = hy for sim-
plicity. Although we present the numerical solution only in two-dimensional space, it can be extended to one- and
three-dimensional spaces in a similar manner.

3 NUMERICAL RESULTS

In this section, numerical simulation results are provided in order to verify the effect of time step modification with respect
to the order m of the free energy function.

3.1 Adjusting 𝝐 for each order m

First, an appropriate value of the interfacial parameter 𝜖 with respect to exponent m of the polynomial potential Fm(𝜙)
should be derived. The hAC equation has a different transition width for each order m because the length of the interval
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LEE et al. 4733

at which the value of F′m(𝜙) is very close to 0 increases as the order m increases (see Figure 3). In other words, we adjust
the value of 𝜖 to appropriately compensate for the reduced transition width.

We denote the transition width as 𝜁 , which is approximated as the length between points xa and xb satis-
fying 𝜙(xa) ≈ −0.95 and 𝜙(xb) ≈ 0.95, respectively, in a numerical equilibrium state (see Figure 4A). The numer-
ical equilibrium is defined when the difference between two consecutive solutions is less than 10−8, that is,
||𝜙n+1 − 𝜙

n||2 < 10−8 where || ⋅ ||2 is the discrete l2-norm. We use a sufficiently small time step, Δt ≈ Δte. Table 1
lists the thickness of the transition layer 𝜁 with several 𝜖 and m. Subsequently, we generate a linear func-
tion using the least-squares method (see Figure 4B) using the data in Table 1 to approximate the suitable value
of 𝜖 with respect to the order m.18 The following are the best fitted lines obtained using the least-squares
method:

𝜖1(𝜁) = 0.1748𝜁 + 0.0029,
𝜖2(𝜁) = 0.2741𝜁 − 0.0004,
𝜖3(𝜁) = 0.3118𝜁 − 0.0004,
𝜖4(𝜁) = 0.3338𝜁 − 0.0009,
𝜖5(𝜁) = 0.3429𝜁 − 0.0002.

Note that 𝜖m(𝜁) is the approximate value of 𝜖 for each exponent m with a moderate transition length 𝜁 .

-1 -0.5 0 0.5 1

-1

0

-0.5

0.5

1

F I G U R E 3 Graph of F′m(𝜙) in [−1, 1]

(A)
0 0.1 0.2 0.3 0.4 0.5

0

0.02

0.04

0.06

0.08

(B)

F I G U R E 4 (A) Schematic of interface transition layer. (B) Data fitted linear functions to approximate suitable value of 𝜖 with respect to
the exponent m.
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4734 LEE et al.

Now that we have obtained the adjusted value of 𝜖m for each order, we provideΔt versusΔte plot with the upper bound
Δt∞e (dotted lines) for each order m in Figure 5. For each marker from left to right, each time step (horizontal axis) varies
as Δt = 10−3h2

, 10−2h2
, 10−1h2

, h2
, 10h2. The red line represents the one-to-one ratio of Δt to Δt∞. The parameters are

h = 1∕128 and 𝜖 = 𝜖m(8h). According to Figure 5, the difference in the scale of two time steps is not significant when
Δt < 10−2h2 andΔte is close to its upper bound whenΔt ≈ 10h2 regardless of the order m. Table 2 lists the ratios ofΔt toΔte
for m = 1, 2, 3, 4, and 5. The result yields the difference between two time steps become severe when Δt > 10−1h2, which
compared to h2∕2d that is the time stability condition of explicit scheme for the diffusion equation in three-dimensional
space (d = 3).34

3.2 Accuracy test

In this section, an accuracy test for the linear CS scheme with the effective time step is performed according to various
exponents m.

T A B L E 1 Scaled thickness of interfacial transition layer 𝜁∕h with respect to some 𝜖 and m.

Parameters 𝝐∕h = 2 𝝐∕h = 4 𝝐∕h = 6 𝝐∕h = 8 𝝐∕h = 10

m = 1 10.5002 20.7622 31.1006 41.7560 56.8054

m = 2 7.5219 14.7375 22.0905 29.3624 36.6892

m = 3 6.6748 12.9169 19.3987 25.8567 32.2747

m = 4 6.3304 12.3160 18.2838 24.2870 30.3053

m = 5 5.7637 11.9141 17.6404 23.3996 29.1785

Note: We use h = 1∕128 and truncate the values of thickness in the fourth decimal place.

10-6 10-4

10-7

10-6

10-5

10-4

F I G U R E 5 Plot of the original time step Δt versus the effective time step Δte. Each dotted line with a marker is the upper bound of
corresponding order and the red-colored line represents the one-to-one ratio. Note that both axes are on log-scale.

T A B L E 2 Ratios of Δt to Δte for m = 1, 2, 3, 4, and 5

Parameters 𝚫t = 10−3h2 𝚫t = 10−2h2 𝚫t = 10−1h2 𝚫t = h2 𝚫t = 10h2

m = 1 1.0068 1.0677 1.6770 7.7702 68.7016

m = 2 1.0049 1.0490 1.4901 5.9012 50.0117

m = 3 1.0030 1.0302 1.3015 4.0155 31.1547

m = 4 1.0017 1.0174 1.1744 2.7443 18.4427

m = 5 1.0006 1.0064 1.0639 1.6387 7.3867

Note: h = 1∕128.
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LEE et al. 4735

3.2.1 Temporal accuracy

First, we measure the convergence rate in time which is expected to be of first order. Here, we use Nx = Ny = 128, h =
1∕128, and 𝜖 = 𝜖m(8h). The following initial condition is employed:

𝜙(x, y, 0) = 0.95 cos
(

2𝜋x
Lx

)
cos

(
2𝜋y
Ly

)
.

Figure 6 depicts the convergence rate of the rewritten scheme (23) represented by the slope of the time step Δte versus
l2-errors ||𝜙n,Δtref − 𝜙

n,Δte ||2 where 10−10
< Δtref = 2−17Δt∞e < 10−9 for all m = 1, 2, 3, 4, and 5. The final times are set to

T = 11Δt∞e for Figure 6A and T = 24Δt∞e for Figure 6B, respectively. A time step Δte varies 2−4Δt∞e , 2−3Δt∞e , … , Δt∞e in
Figure 6A andΔt∞e , … , 23Δt∞e in Figure 6B, respectively, for each order m = 1, 2, 3, 4, and 5. Note that we directly assign
a value to Δte to verify whether Equation (23) is of first-order. According to Figure 6A, Equation (23) is of first-order in
time though the accuracy slightly degrades from 1 as the time step approaches the upper bound. Moreover, the stabil-
ity of the numerical solution is not guaranteed for a time step that exceeds the upper bound, as expected, as depicted
in Figure 6B.

In the next step, the convergence rate of Equation (10) are measured by varying the time step Δt = 2−13T, 2−10T, … ,
2−2T when the final time is T = 10h2 and Δtref = 2−18T ≈ 10−9. Figure 7 shows the convergence rate of the linear CS
scheme via l2-errors ||𝜙n,Δtref − 𝜙

n,Δt||2 versus the time stepΔt plot and the upper bound of the effective time step. Note that
we employ the same parameters and initial condition as those listed above. As depicted in Figure 7, there are considerable
effects to the accuracy of scheme when Δt exceeds Δt∞e , regardless of order m. This provides a rationale for using the
effective time step.

3.2.2 Spatial accuracy

We now examine the accuracy in space with respect to m = 1, 2, 3, 4, and 5. For the reference solution, we employ Nxref =
Nyref = 512, href = 1∕512, and 𝜖 = 𝜖m(16href ). Note that we fix the time step size to be sufficiently small as Δt = 10−7 such
that Δte ≈ Δt for 1 ≤ m ≤ 5 and set up the final time as T = 10−6. Figure 8 shows the exponential convergence rate in
space for both schemes for hAC equations with varying orders. Here, we use the following initial condition:

𝜙(x, y, 0) = tanh

(
0.2 −

√
x2 + y2√

2𝜖0

)
,

10-6 10-5
10-4

10-3

10-2

(A)

10-5 10-4

100

105

1010

(B)

F I G U R E 6 Time step Δte versus l2-errors ||𝜙n,Δtref − 𝜙
n,Δte ||2. Each dotted-line with marker is the upper bound. Note that both axes are

on log-scale. (A) Δte ≤ Δt∞e ; (B) Δte ≥ Δt∞e
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4736 LEE et al.

10-7 10-6 10-5 10-4

10-3

10-2

10-1

F I G U R E 7 Time step Δt versus l2-errors ||𝜙n,Δtref − 𝜙
n,Δt||2. Each dotted-line with marker is the upper bound of corresponding order.

Note that both axes are on log-scale.

10-2 10-1

10-8

10-6

10-4

(A)
10-2 10-1

10-8

10-6

10-4

(B)

F I G U R E 8 Illustration of exponential convergence rate in space to (A) linear CS scheme using Δt and (B) semi-implicit scheme using
Δte with varying the orders m = 1, 2, 3, 4, and 5. Note that both axes are on log-scale.

where 𝜖0 = 0.02. Note that an error is defined as follows:

Error = ||𝜙n
href
− 𝜙

n
h||2.

We confirm the spatial accuracy in space indeed in both cases, and the errors are nearly similar because there is a slight
difference between the time step scales Δt and Δte.

3.3 Numerical energy stability

In this section, we demonstrate the energy stability of Equation (23) by computing numerically Equation (7). First, we
discretize Equation (7) in both time and space as follows:


h(𝜙n) =

Nx∑
i=1

Ny∑
j=1

1
4𝜖2

[
(𝜙n

ij)
2m − 1

]2
h2

+ 1
2

Nx−1∑
i=1

Ny−1∑
j=1

[
(𝜙n

i+1,j − 𝜙
n
ij)

2 + (𝜙n
i,j+1 − 𝜙

n
ij)

2
]
. (28)
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LEE et al. 4737

Since we prove the non-increasing discrete energy property in Equation (11) and this fact is also valid for Equation (23),
we depict the energy dissipation in Figure 9 as numerically for m = 1, 2, 3, 4, and 5. Here, we adopt the following initial
condition:

𝜙(x, y, 0) = 0.5rand(−1, 1),

where rand(a, b) denotes a random number between a and b. The parameters used are Nx = Ny = 128, h = 1∕128, and
𝜖 = 𝜖m(8h). We take two time step scales: Δt1 = 10−6 and Δt2 = 10−4. Figure 9 shows the discrete energy (28) dissipation
using Δt1 and Δt2, their effective time steps, and the upper bound Δt∞e for each order m. As shown in Figure 9, the
numerical energy stability is verified indeed. In particular, when the time step scale is small (Δt1), the energy dissipations
of the two schemes are almost the same, but when the time step scale is large (Δt2), the results are different. For the second
case, the result obtained using the effective time step converges to that obtained when Δt∞e as depicted in the enlarged
axes (blue color) of Figure 9.

3.4 Maximum-principle preservation

To verify the discrete maximum-principle preservation, we perform numerical simulations by varying the order m until
T = h. The parameters employed are Nx = Ny = 256, h = 1∕256, 𝜖 = 𝜖m(8h), and Δt = 0.1h with the following initial
condition:

𝜙(x, y, 0) = 0.9 cos
(

2𝜋x
Lx

)
cos

(
2𝜋y
Ly

)
.

Figure 10 shows that the results agree well with theory.
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F I G U R E 9 Discrete energy (28) dissipation over time with the varying orders m = 1, 2, 3, 4, and 5. Note that the boxed region (blue
color) is shown enlarged with the horizontal axis on log-scale. (A) m = 1; (B) m = 2; (C) m = 3; (D) m = 4; (E) m = 5
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4738 LEE et al.

3.5 Motion by mean curvature

In this section, we confirm that the motion by mean curvature property is satisfied in the hAC equation and further
verify the effect of Δte through the errors between the analytical and numerical solutions in the comparison test. Let us
consider the minimum distance between the elements of two sets A and B as dist(A,B) and define the local coordinates
as r(x, t) = dist(x,Γ(t))sgn(𝜙(x, t))where Γ(t) = {x | 𝜙(x, t) = 0} is a zero-level set over time, and sgn(⋅) is a sign function.
We define n = −∇𝜙∕|∇𝜙| is the outward unit normal vector of the interface. Figure 11 shows the local coordinate system
r(x, t). Although the high-order potential Fm(𝜙) is not strictly bistable for m > 1 because F′′m(0) = 0, the condition can be
weakened to hold locally near±1 which is the minimum value of Fm(𝜙).13 Thus, the following relation is formally proven:

𝜙t = −
F′m(𝜙)
𝜖2 + 𝜙rr + 𝜅𝜙r,

and −F′m(𝜙)∕𝜖2 + 𝜙rr ≈ 0 as 𝜖 → 0; hence, the zero-level set Γ(t) approaches a surface that follows the corresponding
geometric law V = −𝜅, where V is the normal velocity of the surface and 𝜅 is the mean curvature.13,35,36

Let R0 and R(t) be the initial radius and the radius at time t of the d-dimensional sphere, respectively. The geometric
law has the following form:

V = dR(t)
dt

= − d
R(t)

,

0 1 2 3
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0
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(A)

0 1 2 3
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0

-1

1

(B)

0 1 2 3
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1

(C)

0 1 2 3

10-3

-1

0

1

(D)

0 1 2 3

10-3

0

-1

1

(E)

F I G U R E 10 Maximum and minimum values of 𝜙 versus time with different m. (A) m = 1; (B) m = 2; (C) m = 3; (D) m = 4; (E) m = 5

F I G U R E 11 Local coordinates system r(x, t) with the zero-level set Γ(t).
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LEE et al. 4739

and its solution is given as follows:

R(t) =
√

R2
0 − 2dt. (29)

For the two-dimensional case, the initial condition is as follows:

𝜙(x, y, 0) = tanh
R0 −

√
x2 + y2√
2𝜖

,

in [−0.5, 0.5] × [−0.5, 0.5]. The parameters employed are Nx = Ny = 128, h = 1∕128, Δt = 0.15h2 ≈ 9.16 × 10−6, and 𝜖 =
𝜖m(10h). We take R0 = 0.2 and perform the test until R(t) = 0. Figure 12 shows snapshots of the shrinking circles with
exponents m = 1 (first row) and 5 (second row). Since we regard 𝜙 = 0 as the interface, the circles disappear at the final
time in both cases, as shown in Figure 12C. To confirm the effect of Δte more precisely, we compare the radii obtained
under the same parameters, except for the time step using (10) and (23) for the analytic solution simultaneously until
R(t) ≈ 0. Figure 13 depicts R(t) over time obtained using Equations (10), (23), and (29) with the varying exponents m = 1,
2, 3, 4, and 5. The parameters are employed as in the previous test, but for T = 0.015. Note that the number of iterations
performed for the same final time T is different for both schemes. That is, a difference in the time evolution occurs.
Therefore, the same final time is applied to both schemes; the time rescaling effect becomes more severe as the time step
size Δte employed in (23) approaches Δt∞e , that is, when Δt increases. As shown in Figure 13, it is confirmed that the
solution obtained by using the effective time step is more accurate for each exponent m indeed. Moreover, the effect ofΔte
increases as m increases. An important fact at this point is that Δt ≈ Δt∞e yields the time rescaling problem even though
Δte is not close to Δt∞e , that is, when Δt is not extremely large.

We further extend the solution (29) to three-dimensional case. The initial condition is as follows:

𝜙(x, y, z, 0) = tanh
R0 −

√
x2 + y2 + z2√

2𝜖
,

in [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5]. Here, the parameters are employed as Nx = Ny = Nz = 100, h = 1∕100, Δt =
0.15h2 = 1.5 × 10−5, 𝜖 = 𝜖m(8h), R0 = 0.2, and the test is performed until R(t) = 0. Figure 14 illustrates snapshots of
shrinking spheres with orders m = 1 (first row) and 5 (second row). The spheres vanished, as depicted in Figure 14C,
similar to the two-dimensional case. We proceed with the same test to examine the impact of the effective time step in
three-dimensional space. Figure 15 describes R(t) over time obtained using Equations (10), (23), and (29) with the varying
orders m = 1, 2, 3, 4, and 5. The parameters are the same as in the previous test but for T = 0.0075.
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F I G U R E 12 Snapshots of shrinking circles governed by the mean curvature flow at (A) t = 0.006, (B) t = 0.014, and (C) t = 0.02. The
first row is m = 1 case and the second row is m = 5 case.
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F I G U R E 13 Comparison plot of R(t) obtained by three different ways: analytic, linear CS method using Δt, and semi-implicit scheme
using Δte in two-dimensional space. The parameters are adopted as same as used in Figure 12. Note that the value of Δte is approximated as
(A) 0.9374Δt, (B) 0.8577Δt, (C) 0.7770Δt, (D) 0.6839Δt, and (E) 0.6070Δt, respectively. (A) m = 1(Δt∞e ≈ 1.37 × 10−4); (B)
m = 2(Δt∞e ≈ 5.52 × 10−5); (C) m = 3(Δt∞e ≈ 3.19 × 10−5); (D) m = 4(Δt∞e ≈ 1.98 × 10−5); (E) m = 5(Δt∞e ≈ 1.41 × 10−5)
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F I G U R E 14 Snapshots of shrinking spheres governed by the mean curvature flow at (A) t = 0.002, (B) t = 0.008, and (C) t = 0.01. The
first row is m = 1 case and the second row is m = 5 case.
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F I G U R E 15 Comparison plot of R(t) obtained by three different ways: analytic, linear CS method using Δt, and semi-implicit scheme
using Δte in three-dimensional space. The parameters are employed as same as used in Figure 14. Note that the value of Δte is approximated
as (A) 0.9048Δt, (B) 0.7943Δt, (C) 0.6905Δt, (D) 0.5811Δt, and (E) 0.4972Δt, respectively. (A) m = 1(Δt∞e ≈ 1.43 × 10−4); (B)
m = 2(Δt∞e ≈ 5.79 × 10−5); (C) m = 3(Δt∞e ≈ 3.35 × 10−5); (D) m = 4(Δt∞e ≈ 2.08 × 10−5); (E) m = 5(Δt∞e ≈ 1.48 × 10−5)
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F I G U R E 16 Transition width comparison between the two numerical solutions (m = 1 and 5) at the same R(t) ≈ 0.1414. (A)
Two-dimensional case (t = 0.01). (B) Three-dimensional case (t = 0.005)

Similar to the results in two-dimensional space, the effect of the time step modification is conspicuous in the
three-dimensional case, as shown in Figure 15. Overall, it is confirmed that the motion by mean curvature property
remains independent of the exponent m, as shown in Figures 12 and 14, although the shape of the transition layer is
slightly different depending on the order. A comparison of the transition widths between the two numerical solutions
(m = 1 and 5) at the same R(t) ≈ 0.1414 is presented in Figure 16. It is verified that the speed and transition width of the
mean curvature flow do not differ significantly depending on the dimension of the domain and order m when the effective
time step is employed. More precisely, there is a slight difference between the two numerical solutions because the values
of 𝛼 and 𝜖 affect the effective time step Δte and the initial conditions. However, this fact does not affect the conclusions.
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4 CONCLUSIONS

An effective time step analysis of the CS scheme for the hAC equation is presented herein. It was verified that the time
step rescaling problem of the CS scheme and the distinct slow dynamics of the hAC equation depending on the orders
were reported in several studies.19,31,32 Owing to the high nonlinearity of the hAC equation, we adopted the linear CS
scheme and reformulated it to a semi-implicit scheme using a different time step scale to investigate the effect of time
step scaling. We theoretically proved that the linear CS scheme satisfies the two intrinsic properties of the hAC equation,
energy stability, and maximum-principle preservation, and confirmed that it is valid in the reformulated scheme. These
properties are also shown numerically. The convergence rate was of first-order in time only when the time step was
within the upper bound. To check how accurately solved by the semi-implicit scheme usingΔte rather than the linear CS
scheme using Δt for the delayed dynamics according to the increase in order, the motion by mean curvature was used.
We confirmed that the effect of Δte was prominent, and the numerical results agreed well with the theoretical results. In
future work, we will apply this analysis to multiphase flow modeling and simulation because the temporal evolution can
be approximated fairly accurately via the effective time step.
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