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A B S T R A C T

In this study, we present an efficient, fast, and fully explicit adaptive numerical scheme for
solving a recently developed novel phase-field model of crystal growth in both two-dimensional
(2D) and three-dimensional (3D) spaces. The novel phase-field model employed in this research
incorporates a term specifically designed to eliminate the artificial curvature effect, thereby
facilitating accelerated evolution when compared to traditional models. This enhancement
significantly enhances the efficiency and speed of the simulation, leading to more expedited
results. The crystal growth model employed in this study incorporates a phase-field equation
to accurately represent the crystal interface, in addition to a heat equation that effectively
models the distribution of temperature. To effectively solve the phase-field equation, we employ
an adaptive numerical algorithm that optimizes the computational process. Our numerical
scheme, specifically tailored for simulating dendritic growth, incorporates an adaptive narrow-
band domain approach to accurately resolve the interfacial transition layer of the phase field.
Furthermore, we enhance computational efficiency by implementing a double-sized grid for the
temperature distribution, further improving the overall efficiency of the model. By combining
these strategies, we achieve accurate and efficient solutions for the dendritic growth model. To
validate the accuracy and efficiency of our proposed adaptive numerical method for solving
the phase-field equation of dendritic growth, we conduct a series of numerical experiments in
both 2D and 3D spaces. In these experiments, we assess the performance of our algorithm,
analyzing its ability to accurately capture the intricate dynamics of dendritic growth while
maintaining computational efficiency. By thoroughly evaluating the results obtained from these
experiments, we provide strong evidence supporting the reliability and effectiveness of our
adaptive numerical algorithm.

. Introduction

The dendritic growth of crystals is a phenomenon commonly observed in nature, such as in snowflakes, frost patterns, metallic
lloys, and crystallization in supersaturated solutions, among others. Therefore, computational and theoretical studies on dendritic
rowth are valuable for understanding and utilizing natural phenomena. Numerous theoretical studies have been conducted to
nderstand the kinetic of crystal growth [1]. The phase-field method is a highly effective and widely used computational method
or modeling and numerically simulating the dendritic growth of crystals [2,3]. Previous models of dendritic growth typically consist
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of a system of two equations [4]. One equation is the phase-field equation which represents the interface dynamics of dendrites,
while the other equation governs the temperature distribution. The phase-field equation in dendritic growth model is Allen–Cahn
(AC) type equation. In terms of efficiency and accuracy, many studies have been conducted to solve the isotropic AC equation [5–7].
However, in the conventional phase-field equation, there is an undesired curvature term. In this study, we adopt a mathematical
model that eliminates the curvature effect in the phase-field equation [8].

There have been numerous studies focusing on the efficient and rapid simulation of dendritic growth. In [9], two efficient
inear, second-order time marching schemes using linear stabilization were presented. These schemes are provably unconditionally
nergy stable, enabling the use of large time steps in computations. In [10], an anisotropic lattice Boltzmann-phase field method to
tudy dendritic growth with melt convection was proposed. The authors in [11] proposed an efficient time adaptive algorithm for
umerical simulation of nonlinear systems for dendritic crystal growth. To optimize computing resources and reduce computation
ime while preserving accuracy, various numerical methods have been employed, including adaptive octree mesh [12], multi-GPUs
arallel computation for phase-field-lattice Boltzmann model [13,14], adaptive tree-based grids for parallel level-set methods [15],
ulti-grid method [16], adaptive meshless solution procedure [17], and parallel-adaptive mesh refinement algorithm [18]. In [19],
parallel method using a sequential operator splitting approach was proposed to solve the phase-field crystal growth. Additionally,

n [20], an efficient adaptive numerical scheme was proposed, which solves both the phase-field 𝜙 and temperature distribution 𝑇
in an adaptive domain.

The adaptive domain for solving the phase-field model was introduced in [20,21]. In this study, we propose a new and efficient
adaptive numerical algorithm for the recently proposed phase-field model. The fundamental mechanism of the novel phase-field
model effectively eliminates the undesired curvature effect by removing the artificial curvature term. The model consists of the phase
of crystal 𝜙 and the temperature 𝑇 . Specifically, our proposed method involves numerically solving the phase-field 𝜙 in an adaptive
domain, while solving the temperature distribution 𝑇 in the entire domain using a double-sized grid, enhancing computational
efficiency.

The outline of this paper is as follows. In Sections 2 and 3, we present the governing equations, the proposed fully explicit adaptive
finite difference schemes, and computational experiments for dendritic growth in two- and three-dimensional spaces, respectively.
Section 4 presents the concluding remarks and discussions drawn from the study.

2. Two-dimensional crystal growth

In this section, we present the two-dimensional (2D) phase-field equation, a numerical solution algorithm, and computational
simulations for crystal growth.

2.1. Two-dimensional phase-field equation

A recently proposed novel phase-field model [8], which eliminates the undesired curvature effect for crystal growth in 2D space,
is described as follows:

𝜖2(𝜙)
𝜕𝜙
𝜕𝑡

= ∇ ⋅ (𝜖2(𝜙)∇𝜙) + [𝜙 − 𝜆𝑈 (1 − 𝜙2)](1 − 𝜙2) − 𝜖2(𝜙)|∇𝜙|∇ ⋅
(

∇𝜙
|∇𝜙|

)

+
(

|∇𝜙|2𝜖(𝜙)
𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥
+
(

|∇𝜙|2𝜖(𝜙)
𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑦
, (1)

𝜕𝑈
𝜕𝑡

= 𝐷𝛥𝑈 + 1
2
𝜕𝜙
𝜕𝑡

, for 𝐱 ∈ 𝛺, 𝑡 > 0, (2)

where subscripts denote partial derivatives with respect to the indicated variables and 𝜖(𝜙) is given by

𝜖(𝜙) = 𝑊0(1 − 3𝛿4)

(

1 +
4𝛿4

1 − 3𝛿4

𝜙4
𝑥 + 𝜙4

𝑦

|∇𝜙|4

)

. (3)

In this model, the variable 𝜙(𝐱, 𝑡) represents the liquid phase when its value is close to −1, and the solid phase when its value is
close to 1 at position 𝐱 and time 𝑡. The variable 𝑈 (𝐱, 𝑡) represents the temperature distribution. Let 𝛤 = {𝐱 ∈ 𝛺|𝜙(𝐱, 𝑡) = 0} be the
interface of the crystal. For more detailed information regarding the definitions of the parameters, please refer to [8,20,22]. The
term 𝜖2(𝜙)|∇𝜙|∇ ⋅ (∇𝜙∕|∇𝜙|) in Eq. (1) eliminates the undesired curvature effect for crystal growth [8], and if that term is absent,
then Eq. (1) becomes the classical phase-field equation for crystal growth [22].

2.2. Two-dimensional numerical scheme

We describe a detailed explanation of an adaptive computational method for the phase-field and temperature equations. Let
𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) and ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 = (𝑅𝑦 − 𝐿𝑦)∕𝑁𝑦, where 𝑁𝑥 and 𝑁𝑦 are even natural numbers. Let 𝛺ℎ =
{(𝑥𝑖, 𝑦𝑗 )|𝑥𝑖 = 𝐿𝑥 + 𝑖ℎ, 𝑦𝑗 = 𝐿𝑦 + 𝑗ℎ for 0 ≤ 𝑖 ≤ 𝑁𝑥, 0 ≤ 𝑗 ≤ 𝑁𝑦} be an entire discrete domain for the phase-field function. Let
𝛺𝐻 = {(𝑋𝐼 , 𝑌𝐽 )|𝑋𝐼 = 𝐿𝑥 + 𝐼𝐻, 𝑌𝐽 = 𝐿𝑦 + 𝐽𝐻 for 0 ≤ 𝐼 ≤ 𝑁𝑥∕2, 0 ≤ 𝐽 ≤ 𝑁𝑦∕2} be an entire discrete domain for the temperature
distribution, where 𝐻 = 2ℎ, 𝑋𝐼 = 𝑥2𝐼 , and 𝑌𝐽 = 𝑦2𝐽 . For the sake of notation simplicity, 𝜙𝑛

𝑖𝑗 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡) and 𝑈𝑛
𝐼𝐽 = 𝑈 (𝑋𝐼 , 𝑌𝐽 , 𝑛𝛥𝑡),

where 𝛥𝑡 is the time step. In the proposed computational procedure, we solve Eqs. (1) and (2) only in a discrete narrow-band
𝑛

2

domain 𝛺nb (which will be subsequently defined) and 𝛺𝐻 , respectively, rather than the entire discrete domain 𝛺ℎ. Fig. 1(a) shows
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Fig. 1. Schematic illustration of (a) two computational domain for 𝛺ℎ (closed circle) and 𝛺𝐻 (open circle), (b) indices of 𝛺ℎ and 𝛺𝐻 .

Fig. 2. (a) Phase-field function, which is 4-fold symmetric crystal shape. (b) Space–time adaptive discrete narrow-band domain 𝛺𝑛
nb (open circles).

two different computational domains, while Fig. 1(b) shows the indices of the computational domain and illustrates the relationship
between the two indices.

Let us now proceed to describe the construction procedure of 𝛺𝑛
nb [20]. First, we consider a 4-fold symmetric crystal shape as

shown in Fig. 2(a), where the red line is the zero-level contour line of 𝜙. A temporal discrete narrow domain is defined as

𝛺𝑛
tmp =

{

(𝑥𝑖, 𝑦𝑗 ) ∶ |∇𝑑𝜙
𝑛
𝑖𝑗 | > 𝜉, 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦

}

, (4)

where 𝜉 is a gradient criterion parameter and the discrete gradient is defined as follows:

∇𝑑𝜙
𝑛
𝑖𝑗 =

(

𝜙𝑛
𝑖+1,𝑗 − 𝜙𝑛

𝑖−1,𝑗

2ℎ
,
𝜙𝑛
𝑖,𝑗+1 − 𝜙𝑛

𝑖,𝑗−1

2ℎ

)

. (5)

We define a discrete narrow-band domain 𝛺𝑛
nb using temporal discrete narrow domain 𝛺𝑛

tmp:

𝛺𝑛
nb =

𝑝=𝑚
⋃

𝑝=−𝑚

𝑞=𝑚
⋃

𝑞=−𝑚

{

(𝑥𝑖+𝑝, 𝑦𝑗+𝑞) ∶ (𝑥𝑖, 𝑦𝑗 ) ∈ 𝛺𝑛
tmp

}

(6)

for some positive integer 𝑚. In this study, 𝜉 = 0.5 is used unless otherwise specified. A discrete narrow-band domain 𝛺𝑛
nb is illustrated

in Fig. 2(b).
Next, we apply the explicit Euler method to solve Eqs. (1) and (2):

𝜖2(𝜙𝑛
𝑖𝑗 )

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= [∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑛𝑖𝑗 + [𝜙𝑛

𝑖𝑗 − 𝜆𝑈𝑛
𝑖𝑗 (1 − (𝜙𝑛

𝑖𝑗 )
2)](1 − (𝜙𝑛

𝑖𝑗 )
2)

−
[

𝜖2(𝜙)|∇ℎ𝜙|∇ℎ ⋅
(

∇ℎ𝜙
|∇ℎ𝜙|

)]𝑛

𝑖𝑗
+
[(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥

]𝑛

𝑖𝑗

+

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙

)

]𝑛

, (7)
3

𝑦 𝑦 𝑖𝑗
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𝑈𝑛+1
𝐼𝐽 − 𝑈𝑛

𝐼𝐽
𝛥𝑡

= 𝐷𝛥𝐻𝑈𝑛
𝐼𝐽 +

𝜙𝑛+1
𝐼𝐽 − 𝜙𝑛

𝐼𝐽
2𝛥𝑡

, (8)

where 𝛥𝐻𝑈𝑛
𝐼𝐽 = (𝑈𝑛

𝐼−1,𝐽 + 𝑈𝑛
𝐼+1,𝐽 + 𝑈𝑛

𝐼,𝐽−1 + 𝑈𝑛
𝐼,𝐽+1 − 4𝑈𝑛

𝐼𝐽 )∕𝐻
2. Additionally, 𝑈𝑛

𝑖𝑗 and 𝜙𝑛
𝐼𝐽 are defined as

𝑈𝑛
𝑖𝑗 =

(

𝑈𝑛
[

𝑖
2

]

,
[

𝑗
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗
2

] + 𝑈𝑛
[

𝑖
2

]

,
[

𝑗+1
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗+1
2

]

)

/

4, (9)

𝜙𝑛
𝐼𝐽 = 𝜙𝑛

2𝐼,2𝐽 , (10)

here [𝑥] is the greatest integer not greater than 𝑥. The term [∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑛𝑖𝑗 in Eq. (7) is defined as follows:

[∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑖𝑗

=
𝜖2(𝜙𝑖+1,𝑗 ) + 𝜖2(𝜙𝑖𝑗 )

2ℎ2
(𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗 ) −

𝜖2(𝜙𝑖𝑗 ) + 𝜖2(𝜙𝑖−1,𝑗 )

2ℎ2
(𝜙𝑖𝑗 − 𝜙𝑖−1,𝑗 )

+
𝜖2(𝜙𝑖,𝑗+1) + 𝜖2(𝜙𝑖𝑗 )

2ℎ2
(𝜙𝑖,𝑗+1 − 𝜙𝑖𝑗 ) −

𝜖2(𝜙𝑖𝑗 ) + 𝜖2(𝜙𝑖,𝑗−1)

2ℎ2
(𝜙𝑖𝑗 − 𝜙𝑖,𝑗−1).

The curvature term
[

𝜖2(𝜙)|∇ℎ𝜙|∇ℎ ⋅ (∇ℎ𝜙∕|∇ℎ𝜙|)
]𝑛

𝑖𝑗
in Eq. (21) is defined by using the following discretization.

∇ℎ ⋅
(

∇ℎ𝜙
|∇ℎ𝜙|

)

𝑖𝑗
= 1

2ℎ

⎛

⎜

⎜

⎜

⎝

𝜙𝑥
𝑖+ 1

2 ,𝑗+
1
2

+ 𝜙𝑦
𝑖+ 1

2 ,𝑗+
1
2

|∇ℎ𝜙𝑖+ 1
2 ,𝑗+

1
2
|

+
𝜙𝑥
𝑖+ 1

2 ,𝑗−
1
2

− 𝜙𝑦
𝑖+ 1

2 ,𝑗−
1
2

|∇ℎ𝜙𝑖+ 1
2 ,𝑗−

1
2
|

−
𝜙𝑥
𝑖− 1

2 ,𝑗+
1
2

− 𝜙𝑦
𝑖− 1

2 ,𝑗+
1
2

|∇ℎ𝜙𝑖− 1
2 ,𝑗+

1
2
|

−
𝜙𝑥
𝑖− 1

2 ,𝑗−
1
2

+ 𝜙𝑦
𝑖− 1

2 ,𝑗−
1
2

|∇ℎ𝜙𝑖− 1
2 ,𝑗−

1
2
|

⎞

⎟

⎟

⎟

⎠

,

where |∇ℎ𝜙𝑛
𝑖𝑗 | = |∇ℎ𝜙𝑛

𝑖+ 1
2 ,𝑗+

1
2

+ ∇ℎ𝜙𝑛
𝑖+ 1

2 ,𝑗−
1
2

+ ∇ℎ𝜙𝑛
𝑖− 1

2 ,𝑗+
1
2

+ ∇ℎ𝜙𝑛
𝑖− 1

2 ,𝑗−
1
2

|∕4 and ∇ℎ𝜙𝑖+ 1
2 ,𝑗+

1
2
= (𝜙𝑥

𝑖+ 1
2 ,𝑗+

1
2

, 𝜙𝑦
𝑖+ 1

2 ,𝑗+
1
2

) =
(

(𝜙𝑖+1,𝑗 +𝜙𝑖+1,𝑗+1−

𝜙𝑖𝑗 − 𝜙𝑖,𝑗+1)∕(2ℎ), (𝜙𝑖,𝑗+1 + 𝜙𝑖+1,𝑗+1 − 𝜙𝑖𝑗 − 𝜙𝑖+1,𝑗 )∕(2ℎ)
)

. The other terms are discretized as follows:
[(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥

]𝑛

𝑖𝑗
=

[(

16𝛿4𝜖(𝜙)𝜙𝑥𝜙2
𝑦(𝜙

2
𝑥 − 𝜙2

𝑦)

|∇𝜙|4

)

𝑥

]𝑛

𝑖𝑗

,

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑦

]𝑛

𝑖𝑗

=
⎡

⎢

⎢

⎣

(

16𝛿4𝜖(𝜙)𝜙𝑦𝜙2
𝑥(𝜙

2
𝑦 − 𝜙2

𝑥)

|∇𝜙|4

)

𝑦

⎤

⎥

⎥

⎦

𝑛

𝑖𝑗

.

.3. Numerical experiments in two-dimensional space

Unless stated otherwise, the following initial conditions in 2D space are employed:

𝜙(𝑥, 𝑦, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2
√

2

)

, (11)

𝑈 (𝑥, 𝑦, 0) =
{

0, if 𝜙 > 0,
𝛥, otherwise (12)

with 𝜙(𝑥, 𝑦, 𝑡) = −1 and 𝑈 (𝑥, 𝑦, 𝑡) = 𝛥 on 𝜕𝛺.
Let us consider a convergence test for the parameter 𝑚. Fig. 3 represents the zero-level contours of the solutions (red lines)

and their corresponding narrow-band domains (dotted points) at time 𝑡 = 5000𝛥𝑡. We use 𝑅0 = 3, 𝛥 = −0.55, 𝛿4 = 0.05, 𝑊0 = 1,
𝜆 = 3.1913, 𝐷 = 0.6267𝜆, 𝑁𝑥 = 𝑁𝑦 = 400, ℎ = 0.35, and 𝛥𝑡 = 0.1ℎ2∕𝐷 on 𝛺 = (−70, 70) × (−70, 70) [22]. The results presented in
Fig. 3 demonstrate that the solution converges as the parameter 𝑚 increases. Furthermore, it has been observed that when setting
𝑚 = 6, the narrow-band domain 𝛺nb becomes adequately large to accurately represent the solution. Therefore, we adopt 𝑚 = 6 for
all other tests.

The parameter 𝑚 that controls the buffer of the narrow-band domain should depend on the interfacial thickness of the model.
Therefore, we estimate the appropriate 𝑚, depending on the interfacial thickness by the following numerical procedure. Fig. 4(a)
shows the zero-level contour of the 2D numerical solution. In addition, the cross-section profile of the 2D solution 𝜙(𝑥, 𝑦, 𝑡) at 𝑦 = 0
near the right tip is represented in Fig. 4(a). Fig. 4(b) is a magnified view of the image represented in (a) which shows the interfacial
thickness of 2𝜁 and the narrow-band buffer with parameter 𝑚. Here, the interfacial thickness is defined as 2𝜁 = |𝑥2 − 𝑥1|, where
𝜙(𝑥1, 0, 𝑡) = 0.9 and 𝜙(𝑥2, 0, 𝑡) = −0.9. In the presented crystal growth model, the interfacial thickness depends on 𝑊0, which is fixed
at 1 in our study. As a result, the interfacial thickness is approximately constant. Because the buffers consist of interior and exterior
regions to the interfacial transition layer, we can adjust the narrow-band buffer to a multiple of 𝜁 , as 𝑚ℎ = 𝛼𝜁 for some positive values
of 𝛼. To determine the parameter 𝑚, we use the rounding function defined as 𝑚 = ⌊(𝛼𝜁 )∕ℎ + 0.5⌋, where ⌊𝑥⌋ = max{𝑘 ∈ Z|𝑘 ≤ 𝑥} is
4
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Fig. 3. Zero level contours of solution 𝜙 at 𝑡 = 5000𝛥𝑡 and four different narrow-band domains 𝛺nb; 𝜉 = 0.5 (a) 𝑚 = 2, (b) 𝑚 = 4, (c) 𝑚 = 6, and (d) 𝑚 = 8.

Fig. 4. (a) Zero-level contour of the 2D numerical solution and the cross-section profile of the 𝜙(𝑥, 𝑦, 𝑡) at 𝑦 = 0. (b) Magnified cross-section profile in (a) with
nterfacial thickness 2𝜁 and buffer length 𝑚ℎ.

he floor function. Hence, we can take parameter 𝑚, depending on the interfacial thickness of the model and numerical parameter
.

Next, we proceed to compare the solutions obtained for the entire and adaptive domains. Fig. 5(a) shows the zero-level contours
f the solutions for the entire domain (solid line) and for the adaptive domain (asterisk markers). Figs. 5(b) and (c) show temporal
napshots of the progression of the zero-level contours of 𝜙 up to time 𝑡 = 10000𝛥𝑡 for the entire domain and the adaptive domain,
espectively. Generally, an adaptive mesh technique is a method used in computational simulations, particularly in numerical
ethods for solving partial differential equations. It involves adjusting the mesh or grid used in the simulation to focus computational
5
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Fig. 5. (a) comparison of the zero-level contours of two solutions for the entire domain and the adaptive domain at 𝑡 = 10000𝛥𝑡. The temporal snapshots of the
progression of the contours of 𝜙 at zero level up to time 𝑡 = 10000𝛥𝑡: (b) solution for the entire domain and (c) solution for the adaptive domain.

Table 1
CPU time (s) for the entire and adaptive domains with 𝐾 = 1, 100, and 500.

Entire domain 𝐾 = 1 𝐾 = 100 𝐾 = 500

CPU time (s) 86.110 64.625 39.765 33.796

resources more efficiently in regions where the solution varies rapidly or where high accuracy is required, while using coarser mesh
spacing in less critical areas. However, one of the most crucial considerations when applying the efficient adaptive mesh technique
is maintaining accuracy. In other words, we must ensure that the adaptive mesh technique does not compromise accuracy. As
demonstrated in Fig. 5, we can confirm the proposed adaptive mesh method for the novel phase-field model of crystal growth
maintains accuracy.

To compare the CPU times between the entire and adaptive domains, we establish a temporally periodic updating scheme for the
daptive domain. Specifically, we update the adaptive computational domain 𝛺𝑛

nb at intervals of 𝑛 = 𝐾𝑝, where 𝑝 = 0, 1, 2, … , and
is a positive integer. Table 1 lists the CPU times for the entire and adaptive domains with 𝐾 = 1, 100, and 500. As expected, CPU

imes for the adaptive domains with all 𝐾 values are smaller than for the entire domain. Furthermore, as the value of 𝐾 increases,
he CPU time decreases.

Fig. 6 illustrates the numerical results obtained for the entire and adaptive domains with 𝐾 = 1, 100, and 500. Fig. 6(a) shows
contours of the numerical solutions of 𝜙 at zero level for the entire domain (red solid line) and adaptive domains with 𝐾 = 1, 100,
nd 500 at time 𝑡 = 10000𝛥𝑡. We can observe a significant deviation from the entire domain result when 𝐾 = 500 is used. Fig. 6(b)
isplays the temporal evolution of the discrete area 𝐴(𝑡) for the entire and adaptive domains with 𝐾 = 1, 100, and 500, where the
iscrete area 𝐴(𝑡) is defined as follows:

𝐴(𝑡) =
𝑁𝑥
∑

𝑁𝑦
∑

(

𝜙𝑛
𝑖𝑗 + 1

)

2
ℎ2. (13)
6
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Fig. 6. (a) Contours of the numerical solutions of 𝜙 at zero level are shown for the entire domain (red solid line) and adaptive domains with 𝐾 = 1, 100, and
00 at time 𝑡 = 10000𝛥𝑡. (b) Areas of 𝜙 on entire domain and adaptive domains with 𝐾 = 1, 100 and 500. This test is conducted up to time 𝑡 = 10000𝛥𝑡.

Table 2
Quantitative comparison of the dimensionless steady-sate tip velocities obtained by our proposed scheme(𝑉𝑂𝑃 = 𝑉 𝑑0∕𝐷), the
results in [23] (𝑉𝐿𝐿𝐾 ), results in [24] (𝑉𝐾𝑅), and Green’s function formula(𝑉𝐺𝐹 ), respectively.
𝛥 𝛿4 𝐷 𝑑0∕𝑊0 𝑉𝐿𝐿𝐾 𝑉𝐾𝑅 𝑉𝐺𝐹 𝑉𝑂𝑃

−0.55 0.05 2 0.277 0.0171 0.0168 0.0170 0.0170
−0.55 0.05 3 0.185 0.0174 0.0175 0.0170 0.0172
−0.55 0.05 4 0.139 0.0172 0.0174 0.0170 0.0171
−0.50 0.05 3 0.185 0.0103 0.0101 0.0099 0.0102
−0.45 0.05 3 0.185 0.0060 0.0056 0.0055 0.0055

Here, the test is conducted up to time 𝑡 = 10000𝛥𝑡. We can also note a substantial difference in the area compared to the entire
omain result when using 𝐾 = 500. Based on the computational results shown in Fig. 6 and the data presented in Table 1, choosing
= 100 appears to be a reasonable option for achieving both efficient and accurate computational results.

Then, we compare the dimensionless steady-state tip velocities of two solutions for entire domain and adaptive domain. The
uantitative comparison of the dimensionless steady-state tip velocities are obtained by our proposed schemes (𝑉𝑂𝑃 = 𝑉 𝑑0∕𝐷), the

results in [23] (𝑉𝐿𝐿𝐾 ), results in [24] (𝑉𝐾𝑅), and Green’s function formula(𝑉𝐺𝐹 ), respectively. This numerical test is investigated on
the domain 𝛺 = (−200, 200)2 with a 1024 × 1024 mesh grid under the following parameters setting: 𝑅0 = 3, 𝛥 = −0.55, 𝛿4 = 0.05,
𝑊0 = 1, 𝜆 = 𝐷∕𝑎2, 𝑎2 = 0.6267, ℎ = 0.35, and 𝛥𝑡 = 0.1ℎ2∕𝐷. The computational formula for the steady-state velocity is based on a
quadratic polynomial approximation, 𝑦 = 𝛼𝑥2 + 𝛽𝑥+ 𝛾. We assume that the three points (𝑥𝑘−1, 𝑦𝑘−1), (𝑥𝑘, 𝑦𝑘), (𝑥𝑘+1, 𝑦𝑘−1), are on the
nterface where 𝑦𝑘 is a maximum value. Thus, we can find the tip position 𝑦∗ by taking 𝑦′(𝑥∗) = 0 and 𝑦∗ = 𝛼𝑥2∗ + 𝛽𝑥∗ + 𝛾. It can be
bserved from the results in Table 2 that the results are almost identical.

Next, we consider the six-fold crystal growth model applied in the proposed adaptive method and presents numerical experiments
o demonstrate the consistency of the proposed adaptive method through comparison. The six-fold crystal model is presented in [8]
s follows:

𝜖2(𝜃)
𝜕𝜙
𝜕𝑡

= ∇ ⋅ (𝜖2(𝜃)∇𝜙) + [𝜙 − 𝜆𝑈 (1 − 𝜙2)](1 − 𝜙2) − 𝜖2(𝜃)|∇𝜙|∇ ⋅
(

∇𝜙
|∇𝜙|

)

− (𝜖′(𝜃)𝜖(𝜃)𝜙𝑦)𝑥 + (𝜖′(𝜃)𝜖(𝜃)𝜙𝑥)𝑦 (14)
𝜕𝑈
𝜕𝑡

= 𝐷𝛥𝑈 + 1
2
𝜕𝜙
𝜕𝑡

, for 𝐱 ∈ 𝛺, 𝑡 > 0, (15)

where 𝜃 satisfies tan 𝜃 = (−𝜙𝑦)∕(−𝜙𝑥) and 𝜖(𝜙) = 𝜖0(1 + 𝜖6 cos(6𝜙)) is the anisotropic function. Then, we discretize Eqs. (14) and (15)
using the explicit Euler scheme as follows:

𝜖2(𝜃𝑛𝑖𝑗 )
𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
=

[

∇ℎ ⋅ (𝜖2(𝜃)∇ℎ𝜙)
]𝑛
𝑖𝑗 + [𝜙𝑛

𝑖𝑗 − 𝜆𝑈𝑛
𝑖𝑗 (1 − (𝜙𝑛

𝑖𝑗 )
2)][1 − (𝜙𝑛

𝑖𝑗 )
2]

−
[

𝜖2(𝜃)|∇ℎ𝜙|∇ℎ ⋅
(

∇ℎ𝜙
|∇ℎ𝜙|

)]𝑛

𝑖𝑗
−
[

𝐷𝑥
(

𝜖′(𝜃)𝜖(𝜃)𝐷𝑦𝜙
)]𝑛

𝑖𝑗

+
[

𝐷𝑦
(

𝜖′(𝜃)𝜖(𝜃)𝐷𝑥𝜙
)]𝑛

𝑖𝑗 , (16)

𝑈𝑛+1
𝐼𝐽 − 𝑈𝑛

𝐼𝐽 = 𝐷∇2 𝑈𝑛 +
𝜙𝑛+1
𝐼𝐽 − 𝜙𝑛

𝐼𝐽 . (17)
7
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h

The angle between the normal vector of interface is obtained as 𝜃𝑛𝑖𝑗 = tanh

[

(𝜙𝑛
𝑖,𝑗+1 − 𝜙𝑛

𝑖,𝑗−1)∕(𝜙
𝑛
𝑖+1,𝑗 − 𝜙𝑛

𝑖−1,𝑗 )
]

. The terms in the right
and side of Eq. (16) are discretized as follows:

[

∇ℎ ⋅ (𝜖2(𝜃)∇ℎ𝜙)
]𝑛
𝑖𝑗 =

𝜖2(𝜃𝑛
𝑖,𝑗+ 1

2

)
(

𝜙𝑛
𝑖,𝑗+1 − 𝜙𝑛

𝑖𝑗

)

− 𝜖2(𝜃𝑛
𝑖,𝑗− 1

2

)
(

𝜙𝑛
𝑖𝑗 − 𝜙𝑛

𝑖,𝑗−1

)

ℎ2

+
𝜖2(𝜃𝑛

𝑖+ 1
2 ,𝑗

)
(

𝜙𝑛
𝑖+1,𝑗 − 𝜙𝑛

𝑖𝑗

)

− 𝜖2(𝜃𝑛
𝑖− 1

2 ,𝑗
)
(

𝜙𝑛
𝑖𝑗 − 𝜙𝑛

𝑖−1,𝑗

)

ℎ2
,

∇ℎ ⋅
(

∇ℎ𝜙
|∇ℎ𝜙|

)

𝑖𝑗
= 1

2ℎ

⎛

⎜

⎜

⎜

⎝

𝜙𝑥
𝑖+ 1

2 ,𝑗+
1
2

+ 𝜙𝑦
𝑖+ 1

2 ,𝑗+
1
2

|∇ℎ𝜙𝑖+ 1
2 ,𝑗+

1
2
|

+
𝜙𝑥
𝑖+ 1

2 ,𝑗−
1
2

− 𝜙𝑦
𝑖+ 1

2 ,𝑗−
1
2

|∇ℎ𝜙𝑖+ 1
2 ,𝑗−

1
2
|

−
𝜙𝑥
𝑖− 1

2 ,𝑗+
1
2

− 𝜙𝑦
𝑖− 1

2 ,𝑗+
1
2

|∇ℎ𝜙𝑖− 1
2 ,𝑗+

1
2
|

−
𝜙𝑥
𝑖− 1

2 ,𝑗−
1
2

+ 𝜙𝑦
𝑖− 1

2 ,𝑗−
1
2

|∇ℎ𝜙𝑖− 1
2 ,𝑗−

1
2
|

⎞

⎟

⎟

⎟

⎠

,

[

𝐷𝑥
(

𝜖′(𝜃)𝜖(𝜃)𝐷𝑦𝜙
)]𝑛

𝑖𝑗 =
𝜖′(𝜃𝑖+ 1

2 ,𝑗
)𝜖(𝜃𝑖+ 1

2 ,𝑗
)
(

𝜙𝑛
𝑖+1,𝑗+1 − 𝜙𝑛

𝑖+1,𝑗−1 + 𝜙𝑛
𝑖,𝑗+1 − 𝜙𝑛

𝑖,𝑗−1

)

4ℎ2

−
𝜖′(𝜃𝑖− 1

2 ,𝑗
)𝜖(𝜃𝑖− 1

2 ,𝑗
)
(

𝜙𝑛
𝑖,𝑗+1 − 𝜙𝑛

𝑖,𝑗−1 + 𝜙𝑛
𝑖−1,𝑗+1 − 𝜙𝑛

𝑖−1,𝑗−1

)

4ℎ2
,

[

𝐷𝑦
(

𝜖′(𝜃)𝜖(𝜃)𝐷𝑥𝜙
)]𝑛

𝑖𝑗 =
𝜖′(𝜃𝑖,𝑗+ 1

2
)𝜖(𝜃𝑖,𝑗+ 1

2
)
(

𝜙𝑛
𝑖+1,𝑗+1 − 𝜙𝑛

𝑖−1,𝑗+1 + 𝜙𝑛
𝑖+1,𝑗 − 𝜙𝑛

𝑖−1,𝑗

)

4ℎ2

−
𝜖′(𝜃𝑖,𝑗− 1

2
)𝜖(𝜃𝑖,𝑗− 1

2
)
(

𝜙𝑛
𝑖+1,𝑗 − 𝜙𝑛

𝑖−1,𝑗 + 𝜙𝑛
𝑖+1,𝑗−1 − 𝜙𝑛

𝑖−1,𝑗−1

)

4ℎ2
,

where 𝜖′(𝜃) = −6𝜖0𝜖6 sin(6𝜃) and

𝜃𝑛
𝑖+ 1

2 ,𝑗
= tan−1

(

𝜙𝑛
𝑖+1,𝑗−1 − 𝜙𝑛

𝑖+1,𝑗+1 + 𝜙𝑛
𝑖,𝑗−1 − 𝜙𝑛

𝑖,𝑗+1

4(𝜙𝑛
𝑖𝑗 − 𝜙𝑛

𝑖+1,𝑗 )

)

,

𝜃𝑛
𝑖− 1

2 ,𝑗
= tan−1

(

𝜙𝑛
𝑖,𝑗−1 − 𝜙𝑛

𝑖,𝑗+1 + 𝜙𝑛
𝑖−1,𝑗−1 − 𝜙𝑛

𝑖−1,𝑗+1

4(𝜙𝑛
𝑖−1,𝑗 − 𝜙𝑛

𝑖𝑗 )

)

,

𝜃𝑛
𝑖,𝑗+ 1

2
= tan−1

(

4(𝜙𝑛
𝑖𝑗 − 𝜙𝑛

𝑖,𝑗+1)

𝜙𝑛
𝑖−1,𝑗+1 − 𝜙𝑛

𝑖+1,𝑗+1 + 𝜙𝑛
𝑖−1,𝑗 − 𝜙𝑛

𝑖+1,𝑗

)

,

𝜃𝑛
𝑖,𝑗− 1

2
= tan−1

(

4(𝜙𝑛
𝑖,𝑗−1 − 𝜙𝑛

𝑖𝑗 )

𝜙𝑛
𝑖−1,𝑗 − 𝜙𝑛

𝑖+1,𝑗 + 𝜙𝑛
𝑖−1,𝑗−1 − 𝜙𝑛

𝑖+1,𝑗−1

)

.

For the following numerical experiments of the six-fold crystal growth, we use 𝑅0 = 3, 𝛥 = −0.55, 𝜖0 = 1, 𝜖6 = 0.05, 𝜆 = 3.1913,
𝐷 = 0.6267𝜆, 𝑁𝑥 = 𝑁𝑦 = 400, ℎ = 0.35, and 𝛥𝑡 = 0.1ℎ2∕𝐷 on the computational domain 𝛺 = (−70, 70) × (−70, 70). In Fig. 7,
we compare the solutions obtained for the entire and adaptive domains for the six-fold crystal growth model. Fig. 7(a) shows the
zero-level contours of two solutions for the entire domain (−) and adaptive domain (∗) at 𝑡 = 25000𝛥𝑡. Figs. 7(b) and (c) illustrate
temporal snapshots of the zero-level contours up to time 𝑡 = 25000𝛥𝑡. From the results of the numerical test in Fig. 7, we can confirm
that the proposed adaptive method works well in the six-fold crystal growth model.

3. Three-dimensional crystal growth

3.1. Three-dimensional phase-field equation

Next, we extend the 2D equation to incorporate three dimensions. The three-dimensional (3D) phase-field equation for the 3D
crystal growth is expressed as follows:

𝜖2(𝜙)
𝜕𝜙
𝜕𝑡

= ∇ ⋅ (𝜖2(𝜙)∇𝜙) + [𝜙 − 𝜆𝑈 (1 − 𝜙2)](1 − 𝜙2) − 𝜖2(𝜙)|∇𝜙|∇ ⋅
(

∇𝜙
|∇𝜙|

)

(18)

+
(

|∇𝜙|2𝜖(𝜙)
𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥
+
(

|∇𝜙|2𝜖(𝜙)
𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑦
+
(

|∇𝜙|2𝜖(𝜙)
𝜕𝜖(𝜙)
𝜕𝜙𝑧

)

𝑧
,

𝜕𝑈 = 𝐷𝛥𝑈 + 1 𝜕𝜙
, for 𝐱 ∈ 𝛺, 𝑡 > 0, (19)
8
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Fig. 7. (a) comparison of the zero-level contours of two solutions for entire domain and adaptive domain, respectively, at 𝑡 = 25000𝛥𝑡. (b) and (c) are temporal
napshots of the progression of the contours of 𝜙 at zero level up to time 𝑡 = 25000𝛥𝑡 on the entire domain and adaptive domain, respectively.

here 𝜖(𝜙) is given as

𝜖(𝜙) = 𝑊0(1 − 3𝛿4)

(

1 +
4𝛿4

1 − 3𝛿4

𝜙4
𝑥 + 𝜙4

𝑦 + 𝜙4
𝑧

|∇𝜙|4

)

.

3.2. Three-dimensional numerical scheme

We use an adaptive computational method for Eqs. (18) and (19) on a 3D domain 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦) × (𝐿𝑧, 𝑅𝑧). For positive
even integers 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧, let ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥 = (𝑅𝑦 − 𝐿𝑦)∕𝑁𝑦 = (𝑅𝑧 − 𝐿𝑧)∕𝑁𝑧 be the space grid size. The discrete domain
is then defined as follows: 𝛺ℎ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 = 𝐿𝑥 + 𝑖ℎ, 𝑦𝑗 = 𝐿𝑦 + 𝑗ℎ, 𝑧𝑘 = 𝐿𝑧 + 𝑘ℎ for 0 ≤ 𝑖 ≤ 𝑁𝑥, 0 ≤ 𝑗 ≤ 𝑁𝑦, 0 ≤ 𝑘 ≤ 𝑁𝑧} and
𝛺𝐻 = {(𝑋𝐼 , 𝑌𝐽 , 𝑍𝐾 )|𝑋𝐼 = 𝐿𝑥 + 𝐼𝐻, 𝑌𝐽 = 𝐿𝑦 + 𝐽𝐻,𝑍𝐾 = 𝐿𝑧 + 𝐾𝐻 for 0 ≤ 𝐼 ≤ 𝑁𝑥∕2, 0 ≤ 𝐽 ≤ 𝑁𝑦∕2, 0 ≤ 𝐾 ≤ 𝑁𝑧∕2}, where 𝐻 = 2ℎ,
𝑋𝐼 = 𝑥2𝐼 , 𝑌𝐽 = 𝑦2𝐽 and 𝑍𝐾 = 𝑧2𝐾 . For the sake of notation simplicity, we set 𝜙𝑛

𝑖𝑗𝑘 = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑛𝛥𝑡) and 𝑈𝑛
𝐼𝐽𝐾 = 𝑈 (𝑋𝐼 , 𝑌𝐽 , 𝑍𝐾 , 𝑛𝛥𝑡),

where 𝛥𝑡 is the time step. We define 3D temporal discrete narrow domain as 𝛺𝑛
tmp = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∣ |∇𝑑𝜙𝑛

𝑖𝑗𝑘| > 𝜉, 0 ≤ 𝑖 ≤ 𝑁𝑥, 0 ≤ 𝑗 ≤
𝑁𝑦, 0 ≤ 𝑘 ≤ 𝑁𝑧}, where ∇𝑑𝜙𝑖𝑗𝑘 is defined as follows:

∇𝑑𝜙𝑖𝑗𝑘 =
(𝜙𝑖+1,𝑗,𝑘 − 𝜙𝑖−1,𝑗,𝑘

2ℎ
,
𝜙𝑖,𝑗+1,𝑘 − 𝜙𝑖,𝑗−1,𝑘

2ℎ
,
𝜙𝑖,𝑗,𝑘+1 − 𝜙𝑖,𝑗,𝑘−1

2ℎ

)

.

3D space–time adaptive discrete narrow-band domain 𝛺𝑛
nb is defined as

𝛺𝑛
nb =

𝑝=𝑚
⋃

𝑝=−𝑚

𝑞=𝑚
⋃

𝑞=−𝑚

𝑟=𝑚
⋃

𝑟=−𝑚

{

(𝑥𝑖+𝑝, 𝑦𝑗+𝑞 , 𝑧𝑘+𝑟) ∶ (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∈ 𝛺𝑛
tmp

}

(20)

for positive integer 𝑚. The schematic of the 3D results in the discrete narrow-band domain is illustrated in Fig. 8.
9
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Fig. 8. Schematic illustration of the 3D dendritic growth in the narrow-band domain 𝛺nb (dotted points) over time.

The computational solutions for the 3D crystal growth are obtained using the following explicit Euler method:

𝜖2(𝜙𝑛
𝑖𝑗𝑘)

𝜙𝑛+1
𝑖𝑗𝑘 − 𝜙𝑛

𝑖𝑗𝑘

𝛥𝑡
= [∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑛𝑖𝑗𝑘 + [𝜙𝑛

𝑖𝑗𝑘 − 𝜆𝑈𝑛
𝑖𝑗𝑘(1 − (𝜙𝑛

𝑖𝑗𝑘)
2)](1 − (𝜙𝑛

𝑖𝑗𝑘)
2)

−
[

𝜖2(𝜙)|∇ℎ𝜙|∇ℎ ⋅
(

∇ℎ𝜙
|∇ℎ𝜙|

)]𝑛

𝑖𝑗𝑘
+
[(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥

]𝑛

𝑖𝑗𝑘

+

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑦

]𝑛

𝑖𝑗𝑘

+

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑧

]𝑛

𝑖𝑗𝑘

, (21)

𝑈𝑛+1
𝐼𝐽𝐾 − 𝑈𝑛

𝐼𝐽𝐾
𝛥𝑡

= 𝐷𝛥𝐻𝑈𝑛
𝐼𝐽𝐾 +

𝜙𝑛+1
𝐼𝐽 − 𝜙𝑛

𝐼𝐽
2𝛥𝑡

, (22)

where 𝛥𝐻𝑈𝑛
𝐼𝐽𝐾 = (𝑈𝑛

𝐼−1,𝐽 ,𝐾 + 𝑈𝑛
𝐼+1,𝐽 ,𝐾 + 𝑈𝑛

𝐼,𝐽−1,𝐾 + 𝑈𝑛
𝐼,𝐽+1,𝐿 + 𝑈𝑛

𝐼,𝐽 ,𝐾−1 + 𝑈𝑛
𝐼,𝐽 ,𝐾+1 − 6𝑈𝑛

𝐼𝐽𝐾 )∕𝐻
2. Also 𝑈𝑛

𝑖𝑗𝑘 and 𝜙𝑛
𝐼𝐽𝐾 are defined as

𝑈𝑛
𝑖𝑗𝑘 =

(

𝑈𝑛
[

𝑖
2

]

,
[

𝑗
2

]

,
[

𝑘
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗
2

]

,
[

𝑘
2

] + 𝑈𝑛
[

𝑖
2

]

,
[

𝑗+1
2

]

,
[

𝑘
2

] + 𝑈𝑛
[

𝑖
2

]

,
[

𝑗
2

]

,
[

𝑘+1
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗+1
2

]

,
[

𝑘
2

]

+𝑈𝑛
[

𝑖
2

]

,
[

𝑗+1
2

]

,
[

𝑘+1
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗
2

]

,
[

𝑘+1
2

] + 𝑈𝑛
[

𝑖+1
2

]

,
[

𝑗+1
2

]

,
[

𝑘+1
2

]

)

/

8, (23)

𝜙𝑛
𝐼𝐽𝐾 = 𝜙𝑛

2𝐼,2𝐽 ,2𝐾 . (24)

The term [∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑛𝑖𝑗 in 3D space is defined as follows:

[∇ℎ ⋅ (𝜖2(𝜙)∇ℎ𝜙)]𝑛𝑖𝑗𝑘

=

[

𝜖2(𝜙𝑛
𝑖+1,𝑗𝑘) + 𝜖2(𝜙𝑛

𝑖𝑗𝑘)
] (

𝜙𝑛
𝑖+1,𝑗𝑘 − 𝜙𝑛

𝑖𝑗𝑘

)

−
[

𝜖2(𝜙𝑛
𝑖𝑗𝑘) + 𝜖2(𝜙𝑛

𝑖−1,𝑗𝑘)
] (

𝜙𝑛
𝑖𝑗𝑘 − 𝜙𝑛

𝑖−1,𝑗𝑘

)

2ℎ2

+

[

𝜖2(𝜙𝑛
𝑖,𝑗+1,𝑘) + 𝜖2(𝜙𝑛

𝑖𝑗𝑘)
] (

𝜙𝑛
𝑖,𝑗+1,𝑘 − 𝜙𝑛

𝑖𝑗𝑘

)

−
[

𝜖2(𝜙𝑛
𝑖𝑗𝑘) + 𝜖2(𝜙𝑛

𝑖,𝑗−1,𝑘)
] (

𝜙𝑛
𝑖𝑗𝑘 − 𝜙𝑛

𝑖,𝑗−1,𝑘

)

2ℎ2

+

[

𝜖2(𝜙𝑛
𝑖𝑗,𝑘+1) + 𝜖2(𝜙𝑛

𝑖𝑗𝑘)
] (

𝜙𝑛
𝑖𝑗,𝑘+1 − 𝜙𝑛

𝑖𝑗𝑘

)

−
[

𝜖2(𝜙𝑛
𝑖𝑗𝑘) + 𝜖2(𝜙𝑛

𝑖,𝑗,𝑘−1)
] (

𝜙𝑛
𝑖𝑗𝑘 − 𝜙𝑛

𝑖,𝑗,𝑘−1

)

2ℎ2
.

The curvature term
[

𝜖2(𝜙)|∇ℎ𝜙|∇ℎ ⋅ (∇ℎ𝜙∕|∇ℎ𝜙|)
]𝑛

𝑖𝑗𝑘
in Eq. (21) can be similarly discretized to 2D space, and further details can be

found in [25]. The other terms are discretized as follows:
[(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑥

)

𝑥

]𝑛

𝑖𝑗𝑘
=

[(

16𝛿4𝜖(𝜙)𝜙𝑥(𝜙2
𝑥𝜙

2
𝑦 + 𝜙2

𝑥𝜙
2
𝑧 − 𝜙4

𝑦 − 𝜙4
𝑧)

|∇𝜙|4

)

𝑥

]𝑛

𝑖𝑗𝑘

,

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑦

]𝑛

𝑖𝑗𝑘

=
⎡

⎢

⎢

⎣

(

16𝛿4𝜖(𝜙)𝜙𝑦(𝜙2
𝑦𝜙

2
𝑥 + 𝜙2

𝑦𝜙
2
𝑧 − 𝜙4

𝑥 − 𝜙4
𝑧)

|∇𝜙|4

)

𝑦

⎤

⎥

⎥

⎦

𝑛

𝑖𝑗𝑘

,

[

(

|∇ℎ𝜙|
2𝜖(𝜙)

𝜕𝜖(𝜙)
𝜕𝜙𝑦

)

𝑥

]𝑛

𝑖𝑗𝑘

=

[(

16𝛿4𝜖(𝜙)𝜙𝑧(𝜙2
𝑧𝜙

2
𝑥 + 𝜙2

𝑧𝜙
2
𝑦 − 𝜙4

𝑥 − 𝜙4
𝑦)

|∇𝜙|4

)

𝑧

]𝑛

𝑖𝑗𝑘

.

10
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Fig. 9. Temporal progress of the zero-level isosurface of 𝜙 for the 3D novel dendritic growth model. From top to bottom rows, we consider the entire and
adaptive domains, respectively. Here, (a), (b), and (c) are the computational results at times 𝑡 = 0, 900𝛥𝑡, 1800𝛥𝑡, respectively. 𝐾 = 100 is used.

Table 3
CPU time (s) for the entire and adaptive domains with 𝐾 = 1, 100, and 150 in 3D space.

Case Entire domain 𝐾 = 1 𝐾 = 100 𝐾 = 150

CPU time (s) 843.219 470.781 288.859 270.495

3.3. Numerical experiments in three-dimensional space

Unless stated otherwise, the following initial conditions in 3D space are employed:

𝜙(𝑥, 𝑦, 𝑧, 0) = tanh

(

𝑅0 −
√

𝑥2 + 𝑦2 + 𝑧2
√

2

)

, (25)

𝑈 (𝑥, 𝑦, 𝑧, 0) =
{

0, if 𝜙 > 0,
𝛥, otherwise, (26)

with 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = −1 and 𝑈 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛥 on 𝜕𝛺 for all 𝑡. For the following 3D tests, we use an initial radius 𝑅0 = 3, 𝛥 = −0.55,
𝛿4 = 0.05, 𝑊0 = 1, 𝜆 = 3.1913, and 𝐷 = 0.6267𝜆. The computational parameters used are 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 200, ℎ = 0.8, 𝛥𝑡 = 0.1ℎ2∕𝐷,
𝑚 = 6, 𝐾 = 100, and 𝜉 = 0.5 on 𝛺 = (−80, 80) × (−80, 80) × (−80, 80). Fig. 9 displays temporal progress of the isosurface of the
computational solutions at level 0 for the 3D novel dendritic growth model up to time 𝑡 = 1800𝛥𝑡. In Fig. 9, the top and bottom
rows illustrate the numerical solutions for the entire domain and adaptive domain, respectively. Here, (a), (b), and (c) are the
computational results at times 𝑡 = 0, 900𝛥𝑡, 1800𝛥𝑡, respectively. We can confirm that the computational results on the adaptive
domain closely match those on the entire domain computation.

From top to bottom, Figs. 10(a)–(d) display the temporal evolutions of the numerical results for the entire and adaptive domains
with 𝐾 = 1, 𝐾 = 100, and 𝐾 = 150 in 3D space, respectively. When we examine the computational outcomes visually, we find
that they exhibit a high degree of similarity in terms of their appearance and characteristics. However, as shown in Fig. 10(e), the
temporal evolution of the discrete volume of 𝜙 with 𝐾 = 150 deviates from the results of the entire domain. Here, the discrete
volume 𝑉 (𝑡) is defined as follows:

𝑉 (𝑡) =
𝑁𝑥
∑

𝑖=0

𝑁𝑦
∑

𝑗=0

𝑁𝑧
∑

𝑘=0

(

𝜙𝑛
𝑖𝑗𝑘 + 1

)

2
ℎ3. (27)

Table 3 lists the CPU times for the entire and adaptive domains with 𝐾 = 1, 100, and 150 in 3D space. As expected, CPU times
for the adaptive domains with all 𝐾 values are smaller than for the entire domain. Furthermore, as the value of 𝐾 increases, the
CPU time decreases. Based on the numerical results shown in Fig. 10 and Table 3, choosing 𝐾 = 100 is both efficient and accurate
for achieving computational results.

Finally, we conduct a comparison test of 2D and 3D numerical results for the crystal growth models. The simulations are
performed in the domains 𝛺 = (80, 80)𝑑 , where 𝑑 = 2 or 3 is the space dimension. For this test, we take the following parameter
11
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Fig. 10. From the top to bottom row, temporal evolution of the zero-level isosurface of the numerical solution 𝜙 for the entire and adaptive domain with 𝐾 = 1,
𝐾 = 100, and 𝐾 = 150 at (a) 𝑡 = 0, (b) 𝑡 = 540𝛥𝑡, (c) 𝑡 = 1080𝛥𝑡, (d) 𝑡 = 1800𝛥𝑡. (e) Volumes of 𝜙 on entire domain and adaptive domains with 𝐾 = 1, 100 and
150.

values: 𝑅0 = 3, 𝛥 = −0.55, 𝛿4 = 0.05, 𝑊0 = 1, 𝜆 = 3.1913, 𝐷 = 0.6267𝜆, 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 200, ℎ = 0.8, and 𝛥𝑡 = 0.1ℎ2∕𝐷. Temporal

evolutions of the zero-level contours and isosurfaces of the numerical solutions for 2D and 3D crystal growth are shown in Figs. 11(a)

and (b), respectively. From a 3D space perspective, the 2D result is effectively a cylindrical expansion. The result of expansion into

3D cylinder form is shown in Fig. 11(c). Fig. 11(d) compares the 2D result and 3D slice result 𝜙(𝑥, 𝑦, 0, 𝑡) projected onto the 𝑥–𝑦
12
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Fig. 11. (a) Temporal snapshots of the zero-level contours of the numerical solutions for the 2D crystal growth up to time 𝑡 = 1800𝛥𝑡. (b) Temporal snapshots
of the zero-level isosurfaces of the numerical solutions for the 3D crystal growth up to time 𝑡 = 1800𝛥𝑡. (c) Temporal snapshots of the zero-level isosurfaces of
the 2D numerical solution expanded into 3D cylinder form. (d) Temporal snapshots of the 2D numerical results (dotted line) and zero-level contours of the 3D
numerical solution 𝜙(𝑥, 𝑦, 0, 𝑡) projected onto the 𝑥–𝑦 plane (solid line).

plane. In contrast to the 2D result, the tip experiences an additional undercooling effect in the upward and downward directions
along the 𝑧-axis in the 3D result. Therefore, the 3D crystal grows more rapidly than it does in 2D space.

4. Conclusions

In this study, we have presented an efficient, fast, and fully explicit adaptive numerical scheme for solving a novel phase-field
equation of crystal growth in both 2D and 3D spaces. The recently developed phase-field equation incorporates a term that eliminates
artificial curvature effects, resulting in faster evolution compared to conventional models. The dendritic growth model consists of
a phase-field equation for capturing the crystal interface and a heat equation for describing temperature distribution. To solve the
phase-field equation accurately and efficiently, we have introduced an adaptive numerical algorithm. This algorithm uses an adaptive
narrow-band domain to capture the phase-field interface and enhances accuracy by employing a double-sized grid for temperature
distribution. Through a series of numerical experiments in 2D and 3D spaces, we have demonstrated the accuracy and efficiency
of our proposed adaptive numerical algorithm for solving the phase-field equation of crystal growth. Overall, our work contributes
to the advancement of phase-field simulation in dendritic growth and provides an effective approach for accurately capturing the
complex interface dynamics. The developed adaptive numerical scheme offers improved computational efficiency and accuracy,
opening avenues for further investigations and applications in the field of materials science and solidification phenomena.

CRediT authorship contribution statement

Seokjun Ham: Formal analysis, Writing – original draft, Validation, Visualization, Review & editing. Yibao Li: Formal
analysis, Writing – original draft, Software, Review & editing. Soobin Kwak: Software, Data curation, Review & editing. Darae
Jeong: Methodology, Software, Review & editing. Junseok Kim: Supervision, Methodology, Software, Review & editing, Project
administration, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
13



Communications in Nonlinear Science and Numerical Simulation 131 (2024) 107822S. Ham et al.

A

R
a
(

R

Data availability

No data was used for the research described in the article.

cknowledgments

Y.B. Li is supported by National Natural Science Foundation of China (No. 12271430). D. Jeong was supported by the National
esearch Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00248564). The corresponding
uthor (J.S. Kim) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
No. 2022R1A2C1003844). The authors express their gratitude to the reviewers for their helpful feedback on this revised version.

eferences

[1] Zhang J, Chen C, Yang X. A novel decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model. Appl Math Lett 2019;95:122–9.
[2] Gong TZ, Chen Y, Li DZ, Cao YF, Fu PX. Quantitative comparison of dendritic growth under forced flow between 2D and 3D phase-field simulation. Int

J Heat Mass Transf 2019;135:262–73.
[3] Zhang Y, Wang X, Yang S, Chen W, Hou H. The morphology and solute segregation of dendrite growth in Ti-4.5% Al alloy: A phase-field study. Materials

2021;14(23):7257.
[4] Lee S, Li Y, Shin J, Kim J. Phase-field simulations of crystal growth in a two-dimensional cavity flow. Comput Phys Commun 2017;216:84–94.
[5] Zhu L, Ju L, Zhao W. Fast high-order compact exponential time differencing Runge–Kutta methods for second-order semilinear parabolic equations. J Sci

Comput 2016;67:1043–65.
[6] Wang X, Kou J, Gao H. Linear energy stable and maximum principle preserving semi-implicit scheme for Allen–Cahn equation with double well potential.

Commun Nonlinear Sci Numer Simul 2021;98:105766.
[7] Wu C, Feng X, He Y, Qian L. A second-order strang splitting scheme with exponential integrating factor for the Allen–Cahn equation with logarithmic

Flory–Huggins potential. Commun Nonlinear Sci Numer Simul 2023;117:106983.
[8] Li Y, Yu Q, Ham S, Kwak S, Lee C, Kim J. A phase-field model without artificial curvature effect for the crystal growth simulation. Int J Heat Mass Transf

2023;203:123847.
[9] Yang X. Efficient linear, stabilized, second-order time marching schemes for an anisotropic phase field dendritic crystal growth model. Comput Meth Appl

Mech Eng 2019;347:316–39.
[10] Sun D, Xing H, Dong X, Han Y. An anisotropic lattice Boltzmann-phase field scheme for numerical simulations of dendritic growth with melt convection.

Int J Heat Mass Transf 2019;133:1240–50.
[11] Shah A, Sabir M, Bastian P. An efficient time-stepping scheme for numerical simulation of dendritic crystal growth. Eur J Comput Mech 2016;25(6):475–88.
[12] Yin Y, Li Y, Wu K, Zhou J. Numerical simulation of solidification microstructure based on adaptive octree grids. Arch Foundry Eng 2016;16(2):33–40.
[13] Sakane S, Takaki T, Rojas R, Ohno M, Shibuta Y, Shimokawabe T, et al. Multi-GPUs parallel computation of dendrite growth in forced convection using

the phase-field-lattice Boltzmann model. J Cryst Growth 2017;474:154–9.
[14] Sakane S, Aoki T, Takaki T. Parallel GPU-accelerated adaptive mesh refinement on two-dimensional phase-field lattice Boltzmann simulation of dendrite

growth. Comput Mater Sci 2022;211:111507.
[15] Mirzadeh M, Guittet A, Burstedde C, Gibou F. Parallel level-set methods on adaptive tree-based grids. J Comput Phys 2016;322:345–64.
[16] Natsume Y, Ohsasa K. Cellular automaton modeling of dendritic growth using a multi-grid method. In: IOP conference series: Materials science and

engineering, vol. 84 no. 1. IOP Publishing; 2015, 012050.
[17] Dobravec T, Mavrič B, Šarler B. Phase field modelling of dendritic solidification by using an adaptive meshless solution procedure. In: IOP conference

series: Materials science and engineering, vol. 861 no. 1. IOP Publishing; 2020, 012060.
[18] Guo Z, Xiong SM. Study of dendritic growth and coarsening using a 3-D phase field model: Implementation of the Para-AMR algorithm. In: IOP conference

series: Materials science and engineering, vol. 84 no. 1. IOP Publishing; 2015, 012067.
[19] Wang Y, Xiao X, Feng X. An accurate and parallel method with post-processing boundedness control for solving the anisotropic phase-field dendritic crystal

growth model. Commun Nonlinear Sci Numer Simul 2022;115:106717.
[20] Jeong D, Kim J. Fast and accurate adaptive finite difference method for dendritic growth. Comput Phys Commun 2019;236:95–103.
[21] Ham S, Li Y, Jeong D, Lee C, Kwak S, Hwang Y, et al. An explicit adaptive finite difference method for the Cahn–Hilliard equation. J Nonlinear Sci

2022;32(6):32–80.
[22] Rosam J, Jimack PK, Mullis AA. Fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification. J Comput

Phys 2007;225(2):1271–87.
[23] Li Y, Lee HG, Kim J. And accurate operator splitting method for phase-field simulations of crystal growth. J Cryst Growth 2011;321(1):176–82.
[24] Karma A, Rappel WJ. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 1998;57(4):4323–49.
[25] Yang SD, Lee HG, Kim J. A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint. Comput Phys Commun

2010;181(6):1037–46.
14

http://refhub.elsevier.com/S1007-5704(24)00008-X/sb1
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb2
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb2
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb2
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb3
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb3
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb3
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb4
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb5
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb5
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb5
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb6
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb6
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb6
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb7
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb7
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb7
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb8
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb8
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb8
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb9
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb9
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb9
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb10
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb10
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb10
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb11
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb12
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb13
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb13
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb13
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb14
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb14
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb14
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb15
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb16
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb16
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb16
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb17
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb17
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb17
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb18
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb18
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb18
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb19
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb19
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb19
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb20
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb21
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb21
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb21
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb22
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb22
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb22
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb23
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb24
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb25
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb25
http://refhub.elsevier.com/S1007-5704(24)00008-X/sb25

	An efficient and fast adaptive numerical method for a novel phase-field model of crystal growth
	Introduction
	Two-dimensional crystal growth
	Two-dimensional phase-field equation
	Two-dimensional numerical scheme
	Numerical experiments in two-dimensional space

	Three-dimensional crystal growth
	Three-dimensional phase-field equation
	Three-dimensional numerical scheme
	Numerical experiments in three-dimensional space

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


