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A B S T R A C T

This paper investigates the pattern dynamics of a harvested predator–prey model with no-flux boundary
conditions. Firstly, we analyze the positive equilibrium types of the local temporal model. We find that they can
be classified as nodes, foci, or centers depending on the harvesting coefficient within a certain parameter range.
Furthermore, the direction of the Hopf bifurcation is determined by employing the first Lyapunov coefficient.
In the subsequent analysis, we present the conditions for the existence of Turing instability and classify the
different pattern selections using amplitude equations with the assistance of weakly nonlinear analysis by
treating the harvesting coefficient as a critical parameter. Finally, the spot patterns and mixed patterns are
respectively displayed in 2D space, on spherical and torus surfaces with various harvesting coefficient values.
Especially, we can numerically demonstrate that the diffusion rate of the prey population will strongly affect
the pattern structures of the model. These results can provide a reference for understanding the interaction
dynamics of the model.
1. Introduction

Patterns exist broadly in the real world due to the movement of
substances, providing valuable information for understanding the dy-
namic properties of natural phenomena. For example, they contribute
to the understanding of formation mechanisms of animal body surface
patterns, the distribution of savannah vegetation, disease propagation,
and more. The spatial pattern theory in reaction–diffusion equations
was originally proposed by Turing in his influential work [1] regarding
the chemical basis of morphogenesis. Since then, pattern formation has
been extensively studied in various fields such as chemistry, biology,
ecology, and epidemiology. Li and Zhou [2] investigated the dynamics
of a general Selkov–Schnakenberg reaction–diffusion model for global
stability and Hopf bifurcation. By choosing the diffusion coefficient as
the critical parameter for Turing instability, Han et al. [3] obtained
the conditions under which Turing instability occurs and provided
amplitude equations that allow for the classification of various patterns.
Sarker and Sahani [4] reported Turing patterns in both 2D and 3D
regions, establishing a relationship between the wavenumber and the
superdiffusive exponent of the Turing pattern using an SI epidemic
model with standard incidence rate and superdiffusion effect. Dolnik
et al. [5] investigated the impact of obstructions on the growth of
Turing patterns, offering new insights into biological pattern growth
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and formation through the Lengyel–Epstein reaction–diffusion model.
Chang et al. [6] examined the pattern formation of a delayed predator–
prey model in a network environment, specifically highlighting wave
patterns in deterministic and random networks. For further publications
on pattern formation, we recommend consulting references such as [7–
15].

It is evident that predation is widespread in the natural envi-
ronment, and we have a particular interest in studying the pattern
dynamics of predator–prey models. In this context, we consider a
dimensionless reaction–diffusion version of the predator–prey model,
expressed as follows:

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝑑1𝛥𝑢 + 𝑢(1 − 𝑢) − 𝑎𝑢2𝑤
𝑢2 + 𝑏𝑤2

,

𝜕𝑤
𝜕𝑡

= 𝑑2𝛥𝑤 + 𝛾𝑤(1 − 𝑤
𝑢
),

where 𝑢 = 𝑢(𝐱, 𝑡) and 𝑤 = 𝑤(𝐱, 𝑡) represent the densities of the prey and
predators at location 𝐱 and time 𝑡, respectively. Here, 𝛥 is the Laplacian
operator, and 𝑑1 and 𝑑2 are the diffusion rates of the prey 𝑢 and
predators 𝑤, separately. The positive constants 𝛾, 𝑏, and 𝑎 have specific
interpretations in the context of the model. The nonlinear term 𝑎𝑢2

𝑢2+𝑏𝑤2 is
known as the ratio-dependent Holling III type functional response [16],
and the term 𝑤

𝑢 is the Leslie–Gower term [17].
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It is noticed that the development and utilization of natural re-
sources have become global concerns. Therefore, it is imperative to
ensure the scientific management of biological resource development.

In fact, owing to commercial and economic interests, the exploita-
tion of biological resources and species harvesting are common strate-
gies, and implementing effective harvesting policies can protect over-
fished populations from possible extinction [18]. On the other hand,
numerous studies have explored the dynamic behavior of species in-
teraction models incorporating harvesting effect. Omari et al. [19]
investigated the dynamics of a stage-structured predator–prey model
with distributed maturation delay and a harvesting term. They demon-
strated that the dynamics of a stage-structured predator–prey model
heavily depend on the harvesting efforts. Jiang et al. [20] analyzed
the stability of equilibrium, the existence of Turing instability, and
global Hopf bifurcation in the zooplankton population and a Holling III
functional response. They also demonstrated that the unstable interval
of the positive equilibrium decreases with increasing harvesting effort.
Xiao [21] reported the effect of seasonal harvesting on population sur-
vival using a model with constant-yield harvesting. The results indicate
that the ecological system exhibits persistence with seasonal constant-
yield harvesting. Additional references such as [22–29] provide further
dynamic results of ecological models incorporating harvesting terms.
However, it is worth noting that there is limited existing literature
reporting the dynamical behaviors of the above predator–prey model
in the presence of harvesting effects. Accordingly, motivated by the
discussions above, we consider the following predator–prey model with
a harvesting term:

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝑑1𝛥𝑢 + 𝑢(1 − 𝑢) − 𝑎𝑢2𝑤
𝑢2 + 𝑏𝑤2

−𝐻1,

𝜕𝑤
𝜕𝑡

= 𝑑2𝛥𝑤 + 𝛾𝑤(1 − 𝑤
𝑢
) −𝐻2,

(1)

where 𝐻1 implies harvesting of the prey population, and 𝐻2 denotes
arvesting of the predator population. It is important to note that
ifferent types of harvesting can be chosen for 𝐻1 and 𝐻2. For instance,
he constant-yield harvesting (cf. [22,23]) can be represented by 𝐻1 =
1 and 𝐻2 = ℎ2, where ℎ1 and ℎ2 are positive constants. The linear
arvesting (cf. [24,25,30]) corresponds to 𝐻1 = ℎ1𝑢 and 𝐻2 = ℎ2𝑤.
he quadratic harvesting (cf. [26,27]) is given by 𝐻1 = 𝑞1𝐸1𝑢2 and
2 = 𝑞2𝐸2𝑤2, where 𝑞1 and 𝑞2 are the catchability coefficients of

opulations 𝑢 and 𝑤, and 𝐸1 and 𝐸2 represent the external efforts
evoted to harvesting populations 𝑢 and 𝑤, respectively. Nonlinear
arvesting (cf. [28,29]) is described by 𝐻1 = 𝑞1𝐸1𝑢

𝑐1𝐸1+𝑙1𝑢
and 𝐻2 =

𝑞2𝐸2𝑤
𝑐2𝐸2+𝑙2𝑤

, where 𝑞1 and 𝑞2 represent the catchability coefficients of
prey 𝑢 and predator 𝑤, and 𝐸 represents the external effort devoted
to harvesting. Furthermore, 𝑐1, 𝑐2, 𝑙1, and 𝑙2 are positive constants.
Typically, the term 𝑞1𝐸1𝑢

𝑐1𝐸1+𝑙1𝑢
(or 𝑞2𝐸2𝑢

𝑐2𝐸2+𝑙2𝑢
) is referred to as a Michaelis–

Menten type functional response, originally proposed by Clark [31] in
the 1970s.

Let us review some known results regarding the model (1). In the
absence of harvesting (𝐻1 = 𝐻2 = 0), the stability of the equilib-
rium, pattern formation near the Turing bifurcation, and Turing–Hopf
bifurcation were analyzed in [32]. The concepts of uniform persistence,
global attractors, and asymptotic stability of the positive equilibrium
were considered in [33]. The boundedness of classical solutions, the
existence of codimension-two Turing–Hopf points (C2THP) and the
analysis of amplitude equations near C2THP were discussed in [34]. In
the case where 𝐻1 = 0 and 𝐻2 = ℎ2𝑤, the boundedness of solutions and
the nonexistence of nonconstant steady states for the continuous ver-
sion of the model were considered in [24]. Additionally, the existence
and direction of the Hopf bifurcation in a network environment were
demonstrated. Notably, the case of predator harvesting was considered
in [24]. However, the dynamics of the model (1) with prey harvesting
were not studied. To address this, we set 𝐻 = 𝐻𝑢 (𝐻 > 0) and
2

1

𝐻2 = 0 in the model (1), resulting in the following predator–prey model
incorporating prey harvesting:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝑑1𝛥𝑢 + 𝑢(1 − 𝑢) − 𝑎𝑢2𝑤
𝑢2 + 𝑏𝑤2

−𝐻𝑢, 𝐱 ∈ 𝛺, 𝑡 > 0,

𝜕𝑤
𝜕𝑡

= 𝑑2𝛥𝑤 + 𝛾𝑤(1 − 𝑤
𝑢
), 𝐱 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢
𝜕𝜈

= 𝜕𝑤
𝜕𝜈

= 0, 𝐱 ∈ 𝜕𝛺, 𝑡 ≥ 0,

𝑢(𝐱, 0) = 𝑢0(𝐱) ≥ 0, 𝑤(𝐱, 0) = 𝑤0(𝐱) ≥ 0, 𝐱 ∈ 𝛺,

(2)

where 𝛺 ⊂ R𝑁 with 𝑁 ≥ 1 is a bounded domain, and 𝜈 is the outward
unit normal vector along the smooth boundary 𝜕𝛺. The initial densities
of populations 𝑢 and 𝑤 are defined by 𝑢0(𝐱) ≥ 0 and 𝑤0(𝐱) ≥ 0,
espectively, indicating that they are non-negative.

Pattern dynamics play an important role in understanding the com-
lex interaction dynamics among the species of a spatial ecological
athematical model for population dynamics. In this study, our focus is

n the pattern dynamics of the predator–prey model (2) incorporating
he harvesting effect. A natural question arises: how does the harvesting
ffect impact the dynamic profiles of the diffusive model (1)? We aim to
nswer this question theoretically and numerically. Specifically, when
ertain conditions are satisfied (i.e., 0 < 𝐻 < 1− 𝑎

1+𝑏 and 0 < 𝑎 < 1+ 𝑏),
odel (2) possesses a unique positive equilibrium 𝐸∗ = (𝑢∗, 𝑤∗) =

(

1 −𝐻 − 𝑎
1+𝑏 , 1 −𝐻 − 𝑎

1+𝑏

)

. However, if these conditions are not met,
the positive equilibrium 𝐸∗ does not exist. Furthermore, we observe
that the positive equilibrium 𝐸∗ undergoes a transition from a stable
node to a stable focus, followed by an unstable focus and an unstable
node, eventually reaching a center as the harvesting constant 𝐻 varies.

Additionally, the harvesting constant 𝐻 governs the existence of the
Hopf bifurcation and the Turing instability. By selecting the harvesting
constant 𝐻 as the critical value for the Turing instability, we discover
a variety of spatial patterns emerging in model (2). Numerical simu-
lations reveal that different spatial patterns emerge as the harvesting
constant 𝐻 changes. Importantly, these findings are also confirmed on
spherical and torus surfaces. These theoretical and numerical results
convincingly demonstrate the significant role played by the harvesting
effect in this predator–prey model, leading to complex dynamic behav-
iors. Throughout the entire paper, the novelty of this study mainly
includes two aspects. Theoretically, the harvesting effect is introduced
in the model, and we can show that the harvesting coefficient can
induce the Hopf bifurcation and Turing instability of the model (2).
Numerically, we can observe the complicated patterns on the spherical
surface and torus surface by considering the Laplace–Beltrami operator.
These results broaden the investigation of the predator–prey model (2)
with the harvesting effect.

The paper is organized as follows. In Section 2, we analyze the
dynamics of the local temporal model (2), including stability analysis,
the Hopf bifurcation, and its direction. In Section 3, we derive the
amplitude equations near the threshold to investigate various pattern
selections. In Section 4, we perform pattern simulations of model (2)
using numerical schemes. Finally, we conclude the article in Section 5.

2. Dynamics of the local model

Firstly, let us describe some dynamic behaviors of the temporal
model with reference to (2). The model is presented below.

⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡 = 𝑢(1 − 𝑢) − 𝑎𝑢2𝑤

𝑢2+𝑏𝑤2 −𝐻𝑢,
𝑑𝑤
𝑑𝑡 = 𝛾𝑤(1 − 𝑤

𝑢 ).
(3)

Denote by 𝑓 (𝑢,𝑤) = 𝑢(1 − 𝑢) − 𝑎𝑢2𝑣
𝑢2+𝑏𝑤2 − 𝐻𝑢 and 𝑔(𝑢,𝑤) = 𝛾𝑤(1 − 𝑤

𝑢 ).
o obtain the positive equilibrium, denoted as 𝐸∗ = (𝑢∗, 𝑤∗), of the
odel (3), we set 𝑓 (𝑢,𝑤) = 𝑔(𝑢,𝑤) = 0. By solving these equations, one

btains 𝐸 = (𝑢 ,𝑤 ) =
(

1 −𝐻 − 𝑎 , 1 −𝐻 − 𝑎
)

for 0 < 𝐻 < 1 − 𝑎

∗ ∗ ∗ 1+𝑏 1+𝑏 1+𝑏
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and 0 < 𝑎 < 1 + 𝑏. Now, we can obtain the Jacobian matrix, denoted as
𝐽0, of the system (3) at 𝐸∗ as shown below.

𝐽0 =
(

𝐻 −𝐻0 𝛿
𝛾 −𝛾

)

,

where 𝐻0 = 1− 2𝑎
(1+𝑏)2 and 𝛿 = 𝑎(𝑏−1)

(1+𝑏)2 . As such, the characteristic equation
at equilibrium 𝐸∗ is read as follows:

𝜆2 − 𝑇0(𝐻)𝜆 +𝐷0(𝐻) = 0, (4)

where 𝑇0(𝐻) = 𝐻 −𝐻0 − 𝛾 and 𝐷0(𝐻) = 𝛾(𝐻0 −𝐻 − 𝛿) = 𝛾𝑢∗ > 0. We
establish the following result.

Theorem 2.1. Suppose that 0 < 𝑎 < 1+𝑏, 0 < 𝐻 < 1− 𝑎
1+𝑏 and 𝐻0+𝛾 > 0

are valid.
(i) If 0 < 𝐻 ≤ 𝐻0 + 𝛾 − 2

√

𝛾𝑢∗, then 𝐸∗ is a node, and it is locally
symptotically stable.

(ii) If 𝐻0+𝛾−2
√

𝛾𝑢∗ < 𝐻 < 𝐻0+𝛾, then 𝐸∗ is a focus, and it is locally
symptotically stable;

(iii) If 𝐻0 + 𝛾 < 𝐻 < 𝐻0 + 𝛾 + 2
√

𝛾𝑢∗, then 𝐸∗ is a focus, and it is
nstable.

(iv) If 𝐻 ≥ 𝐻0 + 𝛾 + 2
√

𝛾𝑢∗, then 𝐸∗ is a node, and it is unstable.
(v) If 𝐻 = 𝐻0 + 𝛾, then 𝐸∗ is a center, and there is a Hopf bifurcation.

Proof. Owing to 𝐷0(𝐻) = 𝛾𝑢∗ > 0, the stability of the positive
equilibrium 𝐸∗ only depends on the sign of 𝑇0(𝐻). This means that the
positive equilibrium 𝐸∗ is locally asymptotically stable when 0 < 𝐻 <
𝐻0 + 𝛾, while it is unstable for 𝐻 > 𝐻0 + 𝛾. In the sequel, we denote by
𝛤 = 𝑇 2

0 (𝐻) − 4𝐷0(𝐻). By computation, we have 𝛤 = 𝑇 2
0 (𝐻) − 4𝐷0(𝐻) =

(𝐻 −𝐻0− 𝛾 −2
√

𝛾𝑢∗)(𝐻 −𝐻0− 𝛾 +2
√

𝛾𝑢∗). Thus, we have the following
cases with respect to the sign of 𝛤 and stability of 𝐸∗.

Case I. 0 < 𝐻 ≤ 𝐻0 + 𝛾 − 2
√

𝛾𝑢∗.
If 0 < 𝐻 ≤ 𝐻0+𝛾−2

√

𝛾𝑢∗ is true, we immediately have 𝛤 ≥ 0. In this
case, the characteristic Eq. (4) has two real eigenvalues with negative
real parts. Therefore, the positive equilibrium 𝐸∗ is a node, and it is
locally asymptotically stable.

Case II. 𝐻0 + 𝛾 − 2
√

𝛾𝑢∗ < 𝐻 < 𝐻0 + 𝛾.
For this case, it is easy to check that 𝐻 −𝐻0 − 𝛾 − 2

√

𝛾𝑢∗ < 0 and
− 𝐻0 − 𝛾 + 2

√

𝛾𝑢∗ > 0 are fulfilled. This means that 𝛤 < 0 is true.
We infer that the characteristic Eq. (4) has a pair of conjugate com-
plex eigenvalues with negative real parts. Consequently, the positive
equilibrium 𝐸∗ is a focus, and it is locally asymptotically stable.

Case III. 𝐻0 + 𝛾 < 𝐻 < 𝐻0 + 𝛾 + 2
√

𝛾𝑢∗.
For this case, it is easy to check that 𝐻 − 𝐻0 − 𝛾 − 2

√

𝛾𝑢∗ < 0
and 𝐻 − 𝐻0 − 𝛾 + 2

√

𝛾𝑢∗ > 0 are fulfilled. This means that 𝛤 < 0 is
true. We infer that the characteristic Eq. (4) has a pair of conjugate
complex eigenvalues with positive real parts. Consequently, the positive
equilibrium 𝐸∗ is a focus, and it is unstable.

Case IV. 𝐻 ≥ 𝐻0 + 𝛾 + 2
√

𝛾𝑢∗.
For this case, 𝛤 ≥ 0 is valid. Moreover, we have 𝐻0 + 𝛾 + 2

√

𝛾𝑢∗ >
0 + 𝛾. This implies that the characteristic Eq. (4) has two real eigen-

alues with positive real parts. Therefore, the positive equilibrium 𝐸∗
s a node and it is unstable.
Case V. If 𝐻 = 𝐻0 + 𝛾, we know that 𝑇0(𝐻) = 0. Accordingly,

he characteristic Eq. (4) has a pair of purely imaginary eigenvalues,
amely, 𝐸∗ is a center. In addition, we find 𝑑𝑅𝑒(𝜆)

𝑑𝐻
|

|

|𝐻=𝐻0+𝛾
= 1

2 > 0.
hus, the model (3) undergoes the Hopf bifurcation at 𝐻 = 𝐻0 + 𝛾. We
onclude the proof.

emark 2.1. Based on Theorem 2.1, we observe that 𝐸∗ undergoes the
ransition from a stable node to a stable focus, then to an unstable focus,
nd finally to an unstable node, as well as a center, with changes in the
arvesting constant 𝐻 . This illustrates that the harvesting constant 𝐻
an affect the dynamic profiles of the model (3).

emark 2.2. We will perform numerical simulations to confirm the
alidity of statements (i) and (ii) in Theorem 2.1. To this end, we fix the
3

arameters as follows: 𝑎 = 0.5, 𝑏 = 1, and 𝛾 = 0.5. Then, we calculate
0+ 𝛾 −2

√

𝛾𝑢∗ = 0.4754,𝐻0+ 𝛾 = 1.25, and 𝐻0+ 𝛾 +2
√

𝛾𝑢∗ = 2.0246. By
choosing the harvesting constant 𝐻 = 0.47, our numerical simulation
shows that 𝐸∗ = (0.28, 0.28) is a stable node, as depicted in Fig. 1(a).
Hence, statement (i) of Theorem 2.1 is true. Next, we consider 𝑎 =
0.5, 𝑏 = 0.5, and 𝛾 = 0.045. In this case, we have 𝐻0 + 𝛾 − 2

√

𝛾𝑢∗ =
0.4831,𝐻0 + 𝛾 = 0.6006, and 𝐻0 + 𝛾 + 2

√

𝛾𝑢∗ = 0.7180. By choosing the
harvesting constant 𝐻 = 0.59, our numerical experiments indicate that
the unique positive equilibrium 𝐸∗ = (0.0767, 0.0767) is a stable focus,
as shown in Fig. 1(b). Therefore, statement (ii) of Theorem 2.1 is true.
Overall, the theoretical predictions presented in Theorem 2.1 are valid,
as confirmed by our numerical simulations.

Note that when 𝐻 = 𝐻0 + 𝛾, the model (3) exhibits a Hopf
bifurcation. The following result pertains to the direction of the Hopf
bifurcation.

Theorem 2.2. Suppose that 0 < 𝑎 < 1 + 𝑏, 0 < 𝐻 < 1 − 𝑎
1+𝑏 ,

and 𝐻 = 𝐻0 + 𝛾 > 0. Then, the Hopf bifurcation is supercritical (resp.
ubcritical) when 𝐿1 < 0 (resp. 𝐿1 > 0). Moreover, the periodic solution
ifurcated from the Hopf bifurcation is stable (resp. unstable) when 𝐿1 < 0
resp. 𝐿1 > 0), where 𝐿1 can be found below.

roof. Let 𝑢̃ = 𝑢−𝑢∗ and 𝑤̃ = 𝑤−𝑤∗. We will continue to denote 𝑢̃ and
̃ as 𝑢 and 𝑤, respectively. Then, model (3) is approximately equivalent
o the following system:
𝑑𝑢
𝑑𝑡

= 𝑓𝑢𝑢 + 𝑓𝑤𝑤 + 𝑓𝑢𝑢𝑢2 + 𝑓𝑢𝑤𝑢𝑤 + 𝑓𝑤𝑤𝑤2 + 𝑓𝑢𝑢𝑢𝑢3

+ 𝑓𝑢𝑢𝑤𝑢2𝑤 + 𝑓𝑢𝑤𝑤𝑢𝑤2 + 𝑓𝑤𝑤𝑤𝑤3 + (|𝑢,𝑤|

4),
𝑑𝑤
𝑑𝑡

= 𝑔𝑢𝑢 + 𝑔𝑤𝑤 + 𝑔𝑢𝑢𝑢2 + 𝑔𝑢𝑤𝑢𝑤 + 𝑔𝑤𝑤𝑤2 + 𝑔𝑢𝑢𝑢𝑢3

+ 𝑔𝑢𝑢𝑤𝑢2𝑤 + 𝑔𝑢𝑤𝑤𝑢𝑤2 + 𝑔𝑤𝑤𝑤𝑤3 + (|𝑢,𝑤|

4),

here (|𝑢,𝑤|

4) are higher terms and

𝑢 = 𝐻 −𝐻0, 𝑓𝑤 =
𝑎(𝑏 − 1)
(1 + 𝑏)2

, 𝑔𝑢 = 𝛾, 𝑔𝑤 = −𝛾,

𝑓𝑢𝑢 =
𝑎𝑏(3 − 𝑏)
𝑢∗(1 + 𝑏)3

− 1, 𝑓𝑢𝑤 =
2𝑎𝑏(𝑏 − 3)
𝑢∗(1 + 𝑏)3

, 𝑔𝑢𝑤 =
2𝛾
𝑢∗

,

𝑓𝑢𝑢𝑤 =
𝑎𝑏(𝑏2 − 14𝑏 + 9)

𝑢2∗(1 + 𝑏)4
,

𝑢𝑢 = −
𝛾
𝑢∗

, 𝑔𝑢𝑢𝑢 =
𝛾
𝑢2∗

, 𝑔𝑢𝑢𝑤 = −
2𝛾
𝑢2∗

, 𝑓𝑢𝑢𝑢 =
4𝑎𝑏(𝑏 − 1)
𝑢2∗(1 + 𝑏)4

,

𝑓𝑢𝑤𝑤 =
2𝑎𝑏(8𝑏 − 𝑏2 − 3)

𝑢2∗(1 + 𝑏)4
,

𝑓𝑤𝑤 =
𝑎𝑏(3 − 𝑏)
𝑢∗(1 + 𝑏)3

, 𝑓𝑤𝑤𝑤 =
𝑎𝑏(𝑏2 − 6𝑏 + 1)

𝑢2∗(1 + 𝑏)4
, 𝑔𝑢𝑤𝑤 =

𝛾
𝑢2∗

,

𝑔𝑤𝑤 = −
𝛾
𝑢∗

, 𝑔𝑤𝑤𝑤 = 0.

o obtain the discriminant of the direction of the Hopf bifurcation, we
eed to compute the following first Lyapunov number.

1 =
−3𝜋

2𝑓𝑤D0(𝐻)3∕2
{[𝑓𝑢𝑔𝑢(𝑓 2

𝑢𝑤 + 𝑓𝑢𝑤𝑔𝑤𝑤 + 𝑓𝑤𝑤𝑔𝑢𝑤)

+ 𝑓𝑢𝑓𝑤(𝑔2𝑢𝑤 + 𝑓𝑢𝑢𝑔𝑢𝑤 + 𝑓𝑢𝑤𝑔𝑤𝑤)

+ 𝑔2𝑢 (𝑓𝑢𝑤𝑓𝑤𝑤 + 2𝑓𝑤𝑤𝑔𝑤𝑤) − 2𝑓𝑢𝑔𝑢(𝑔2𝑤𝑤 − 𝑓𝑢𝑢𝑓𝑤𝑤)

− 2𝑓𝑢𝑓𝑤(𝑓 2
𝑢𝑢 − 𝑔𝑢𝑢𝑔𝑤𝑤)

− 𝑓 2
𝑤(2𝑔𝑢𝑢𝑓𝑢𝑢 + 𝑔𝑢𝑤𝑔𝑢𝑢) + (𝑓𝑤𝑔𝑢 − 2𝑓 2

𝑢 )(𝑔𝑢𝑤𝑔𝑤𝑤 − 𝑓𝑢𝑤𝑓𝑢𝑢)]

− (𝑓 2
𝑢 + 𝑓𝑤𝑔𝑢)[3(𝑔𝑢𝑔𝑤𝑤𝑤 − 𝑓𝑤𝑓𝑢𝑢𝑢) + 2𝑓𝑢(𝑓𝑢𝑢𝑤 + 𝑔𝑢𝑤𝑤)

+ (𝑔𝑢𝑓𝑢𝑤𝑤 − 𝑓𝑤𝑔𝑢𝑢𝑤)]}.

t the critical point of Hopf bifurcation, 𝐻 = 𝐻0 + 𝛾, we obtain

1 =
−3𝜋

2𝑓 ′
𝑤(𝛾𝑢∗)3∕2

{[4𝑓 ′
𝑢𝑔

′
𝑢𝑓

′
𝑤𝑤(𝑓

′
𝑤𝑤 − 𝑔′𝑤𝑤) + 2𝑓 ′

𝑢𝑓
′
𝑤𝑔

′
𝑤𝑤(2𝑔

′
𝑤𝑤 − 2𝑓 ′

𝑤𝑤 − 1)

+ 2(𝑔2)′𝑓 ′ (−𝑓 ′ + 𝑔′ ) − 2𝑓 ′𝑔′ ((𝑔2 )′ − 𝑓 ′ 𝑓 ′ )
𝑢 𝑤𝑤 𝑤𝑤 𝑤𝑤 𝑢 𝑢 𝑤𝑤 𝑢𝑢 𝑤𝑤
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Fig. 1. The phase portraits of the model (3) in the plane of 𝑢−𝑤. (a): the unique positive equilibrium 𝐸∗ = (0.28, 0.28) is a stable node with the parameters 𝑎 = 0.5, 𝑏 = 1, 𝛾 = 0.5,
and 𝐻 = 0.47; (b): the unique positive equilibrium 𝐸∗ = (0.0767, 0.0767) is a stable focus when choosing the parameters 𝑎 = 0.5, 𝑏 = 0.5, 𝛾 = 0.045, and 𝐻 = 0.59.
Fig. 2. Stable periodic solutions emerge in the model (3). (a): Taking 𝑎 = 0.5, 𝑏 = 0.5, 𝛾 = 0.045, and 𝐻 = 0.6006; (b): Choosing the parameter 𝑎 = 0.5, 𝑏 = 0.5, 𝛾 = 0.046, and
= 0.6016.
i

T
e
(
b
t
s
n

− 2𝑓 ′
𝑢𝑓

′
𝑤((𝑓

2
𝑢𝑢)

′ − (𝑔2𝑤𝑤)
′)

− (𝑓 2
𝑤)

′(2𝑔′𝑤𝑤𝑓
′
𝑢𝑢 − 2(𝑔2𝑤𝑤)

′) + (𝑓 ′
𝑤𝑔

′
𝑢 − 2(𝑓 2

𝑢 )
′)(−2(𝑔2𝑤𝑤)

′ + 2𝑓 ′
𝑤𝑤𝑓

′
𝑢𝑢)]

− ((𝑓 2
𝑢 )

′ + 𝑓 ′
𝑤𝑔

′
𝑢)[2𝑓

′
𝑢(𝑓

′
𝑢𝑢𝑤 + 𝑔′𝑢𝑤𝑤) − 3𝑓 ′

𝑤𝑓
′
𝑢𝑢𝑢

+ (𝑔′𝑢𝑓
′
𝑢𝑤𝑤 − 𝑓 ′

𝑤𝑔
′
𝑢𝑢𝑤)]},

here  ′ denotes the evaluation of  = |

|

|𝐻=𝐻0+𝛾
. In light of [35],

e know that the Hopf bifurcation is supercritical (resp. subcritical)
hen 𝐿1 < 0 (resp. 𝐿1 > 0). Moreover, the periodic solution bifurcated

rom the Hopf bifurcation is stable (resp. unstable) when 𝐿1 < 0 (resp.
1 > 0). This concludes the proof.

emark 2.3. Taking the parameters 𝑎 = 0.5, 𝑏 = 0.5, and 𝛾 = 0.045,
e obtain the critical value of the Hopf bifurcation as 𝐻0 + 𝛾 = 0.6006.

Consequently, when 𝐻 = 0.6006, we have 𝐿1 = −9.5557𝐸 + 03 < 0.
According to Theorem 2.2, we conclude that model (3) undergoes a
supercritical Hopf bifurcation, which is confirmed by our numerical
simulation as shown in Fig. 2(b). Similarly, if we choose 𝑎 = 0.5, 𝑏 = 0.5,
and 𝛾 = 0.046, we obtain the Hopf bifurcation critical value 𝐻0 + 𝛾 =
0.6016. Setting 𝐻 = 0.6016, we find 𝐿1 = −1.0145𝐸 + 04 < 0. Our
numerical simulation demonstrates the emergence of a stable periodic
solution in model (3) due to the supercritical Hopf bifurcation.

3. Turing instability

3.1. Existence conditions

Now, let us explore the conditions for the occurrence of Turing
4

instability around the positive equilibrium 𝐸∗ of model (2). We can I
obtain a linearized form of model (2) as follows:
𝜕𝐔
𝜕𝑡

= 𝐽𝐔 +𝐷𝛥𝐔, (5)

where

𝐔 =
(

𝑢 − 𝑢∗
𝑤 −𝑤∗

)

, 𝐷 =
(

𝑑1 0
0 𝑑2

)

, 𝐽 =
(

𝐻 −𝐻0 𝛿
𝛾 −𝛾

)

.

For Eq. (5), we consider the following general form solution:

𝐔 =
(

𝑎𝑘
𝑏𝑘

)

𝑒𝜆𝑡+𝑖𝐤⋅𝐫 ,

where 𝜆 is the growth rate of perturbation at time 𝑡, 𝐤 = (𝑘𝑥, 𝑘𝑦) is the
wave vector, and it gives 𝑘 = |𝐤|, 𝐫 = (𝑥, 𝑦) represents the spatial vector
n 2D space, 𝑖 admits 𝑖2 = −1, 𝑎𝑘 ≠ 0 and 𝑏𝑘 ≠ 0 are constants. By direct

calculation, we can obtain the dispersion equation as follows:

𝜆2 − 𝑇𝑘(𝐻)𝜆 +𝐷𝑘(𝐻) = 0, (6)

where
{

𝑇𝑘(𝐻) = −(𝑑1 + 𝑑2)𝑘2 +𝐻 −𝐻0 − 𝛾,
𝐷𝑘(𝐻) = 𝑑1𝑑2𝑘4 + [𝛾𝑑1 − (𝐻 −𝐻0)𝑑2]𝑘2 +𝐷0(𝐻).

Obviously, 𝐷𝑘(𝐻) > 0 for all 𝑘 ≠ 0 when 𝐻 ≤ 𝐻0. For the
uring instability, we should first guarantee that the unique positive
quilibrium 𝐸∗ is locally asymptotically stable for the temporal model
3). Therefore, one of the conditions (i) and (ii) of Theorem 2.1 should
e fulfilled. It is clear that we only need to restrict 0 < 𝐻 < 𝐻0 + 𝛾
o be valid. Secondly, the unique positive equilibrium 𝐸∗ will lose its
tability as the diffusion effect is introduced. This indicates that we
eed require 𝐷𝑘(𝐻) < 0 for certain 𝑘 ≠ 0 and 𝑇𝑘(𝐻) < 0 for any 𝑘 ≠ 0.

n fact, 𝑇𝑘(𝐻) < 0 can be immediately satisfied because the condition
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0 < 𝐻 < 𝐻0 + 𝛾 holds true. Therefore, the next task is to determine
nder what condition 𝐷𝑘(𝐻) < 0 for certain 𝑘 ≠ 0 is also valid. To this
nd, consider the following marginal stability condition

in(𝐷𝑘2𝑐
(𝐻)) = 0, (7)

here 𝑘2𝑐 is the critical wave number of the Turing instability and is
ndetermined. In light of (7), one has

(𝐻) ∶= 𝑑22𝐻
2 − 2𝑑2(𝛾𝑑1 +𝐻0𝑑2)𝐻 + (𝛾𝑑1 +𝐻0𝑑2)2 − 4𝑑1𝑑2𝐷0(𝐻) = 0,

and min(𝐷𝑘2𝑐
(𝐻)) = −𝛩(𝐻). An easy computation shows that the root’s

existence discriminant of 𝛩(𝐻) = 0 is 16𝑑1𝑑32𝐷0(𝐻) > 0. Next, for the
convenience of discussion, we always assume that 𝐻0 > 0. Choosing
the harvesting constant 𝐻 as the threshold of Turing instability, we
proceed as follows.

Case I. (𝛾𝑑1 +𝐻0𝑑2)2 − 4𝑑1𝑑2𝐷0(𝐻) > 0.
For this case, it is easy to infer that 𝛩(𝐻) = 0 has two distinct

positive real roots

𝐻𝑐
1 =

𝛾𝑑1 +𝐻0𝑑2 − 2
√

𝑑1𝑑2𝐷0(𝐻)
𝑑2

,

𝐻𝑐
2 =

𝛾𝑑1 +𝐻0𝑑2 + 2
√

𝑑1𝑑2𝐷0(𝐻)
𝑑2

.

We infer that 𝛩(𝐻) > 0 as 0 < 𝐻 < 𝐻𝑐
1 or 𝐻 > 𝐻𝑐

2 , and 𝛩(𝐻) < 0
as 𝐻𝑐

1 < 𝐻 < 𝐻𝑐
2 . It is noticed that min(𝐷𝑘2𝑐

(𝐻)) = −𝛩(𝐻), so there
exists a certain 𝑘 = 𝑘𝑐 such that 𝐷𝑘(𝐻) < 0 if 0 < 𝐻 < 𝐻𝑐

1 or 𝐻 > 𝐻𝑐
2

and 𝐷𝑘(𝐻) > 0 if 𝐻𝑐
1 < 𝐻 < 𝐻𝑐

2 . Recalling the necessary condition
0 < 𝐻 < 𝐻0 + 𝛾, we can conclude that the unique positive equilibrium
𝐸∗ is locally asymptotically stable when 𝐻𝑐

1 < 𝐻 < min{𝐻𝑐
2 ,𝐻0 + 𝛾},

while it becomes unstable when 0 < 𝐻 < min{𝐻𝑐
1 ,𝐻0 + 𝛾} or 𝐻0 + 𝛾 >

𝐻 > 𝐻𝑐
2 . Consequently, the diffusive model (2) may suffer from the

Turing instability when 0 < 𝐻 < min{𝐻𝑐
1 ,𝐻0 + 𝛾} or 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐

2 .
Case II. (𝛾𝑑1 +𝐻0𝑑2)2 − 4𝑑1𝑑2𝐷0(𝐻) ≤ 0.
For this case, 𝛩(𝐻) = 0 only has a positive real root

𝐻𝑐
3 =

𝛾𝑑1 +𝐻0𝑑2 + 2
√

𝑑1𝑑2𝐷0(𝐻)
𝑑2

.

Clearly, 𝛩(𝐻) > 0 as 𝐻 > 𝐻𝑐
3 , and 𝛩(𝐻) < 0 when 0 < 𝐻 < 𝐻𝑐

3 .
Hence, there exists a certain 𝑘 = 𝑘𝑐 such that 𝐷𝑘(𝐻) < 0 if 𝐻 >
𝐻𝑐

3 and 𝐷𝑘(𝐻) > 0 if 0 < 𝐻 < 𝐻𝑐
3 . We conclude that the unique

ositive equilibrium 𝐸∗ is locally asymptotically stable for 0 < 𝐻 <
in{𝐻𝑐

3 ,𝐻0 + 𝛾} and it becomes unstable for 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐
3 . In this

ase, Turing instability appears only when 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐
3 .

Now, let us determine the critical wave number 𝑘𝑐 . Using Eq. (7)

nce again, we find that 𝑘𝑐 = 4

√

𝐷0(𝐻)
𝑑1𝑑2

. It is evident that 𝑘𝑐 uniquely
epends on the diffusion coefficients 𝑑1, 𝑑2, and 𝐷0(𝐻).

In summary, we establish the following result.

heorem 3.1. Suppose that 0 < 𝑎 < 1 + 𝑏, 0 < 𝐻 < 1 − 𝑎
1+𝑏 , and 𝐻0 > 0.

We have
(i) if (𝛾𝑑1 +𝐻0𝑑2)2 −4𝑑1𝑑2𝐷0(𝐻) > 0, then the unique positive equilib-

rium 𝐸∗ is locally asymptotically stable when 𝐻𝑐
1 < 𝐻 < min{𝐻𝑐

2 ,𝐻0 + 𝛾},
and it is unstable when 0 < 𝐻 < min{𝐻𝑐

1 ,𝐻0 + 𝛾} or 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐
2 .

Moreover, the diffusive model (2) may exhibit Turing instability when 0 <
𝐻 < min{𝐻𝑐

1 ,𝐻0 + 𝛾} or 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐
2 , with the critical wave number

𝑘𝑐 = 4

√

𝐷0(𝐻)
𝑑1𝑑2

;

(ii) if (𝛾𝑑1 + 𝐻0𝑑2)2 − 4𝑑1𝑑2𝐷0(𝐻) ≤ 0, then the unique positive
equilibrium 𝐸∗ is locally asymptotically stable when 0 < 𝐻 < min{𝐻𝑐

3 ,𝐻0+
}, and it becomes unstable when 𝐻0 + 𝛾 > 𝐻 > 𝐻𝑐

3 . Furthermore, Turing
instability appears in the model (2) when 𝐻0+𝛾 > 𝐻 > 𝐻𝑐

3 with the critical

wave number 𝑘𝑐 = 4

√

𝐷0(𝐻)
𝑑1𝑑2

.

emark 3.1. To better understand Theorem 3.1, we plot the stability
iagram in the 𝛾 −𝐻 plane, see Fig. 3. The parameter plane is divided
5

into four domains, namely 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 , and 𝐼𝑉 . Now, let us explain
Fig. 3(a). In domain 𝐼 , we have 𝐻 > 𝐻0 + 𝛾. This indicates that
the unique positive equilibrium 𝐸∗ is unstable in the temporal model
(3). Therefore, this domain is classified as a non-Turing domain. Upon
crossing the critical curve of Hopf bifurcation at 𝐻 = 𝐻0 + 𝛾 and
entering domain 𝐼𝐼 , we have 𝐻𝑐

2 < 𝐻 < 𝐻0 + 𝛾. We claim that
the unique positive equilibrium 𝐸∗ is locally asymptotically stable in
model (3), while it remains unstable in model (2). Consequently, this
is referred to as the Turing domain. Moving into domain 𝐼𝐼𝐼 , we find
𝐻𝑐

1 < 𝐻 < 𝐻𝑐
2 and 𝐻𝑐

1 < 𝐻 < 𝐻0 + 𝛾. Consequently, this domain is
considered stable. In fact, it is a bistable domain because the unique
positive equilibrium 𝐸∗ is locally asymptotically stable in both models
(2) and (3). Finally, upon crossing the critical curve of Turing instability
at 𝐻𝑐

1 and entering domain 𝐼𝑉 , we observe that 0 < 𝐻 < 𝐻𝑐
1 . This

also represents a Turing domain. We can provide a similar explanation
for Fig. 3(b). Here, Fig. 3(a) and (b) correspond to (i) and (ii) of
Theorem 3.1, respectively.

We have confirmed the existence of the Turing instability, which
could be induced by the harvesting constant 𝐻 . In the following
sections, we assume that model (2) exhibits Turing instability at the
threshold 𝐻 = 𝐻𝑐 , where 𝐻𝑐 could be 𝐻𝑐

1 ,𝐻
𝑐
2 , or 𝐻𝑐

3 with different
assumptions. Our task now is to deduce the amplitude equation around
the onset of Turing instability at 𝐻 = 𝐻𝑐 . The main method we used
here is weakly nonlinear analysis, as described in Refs. [7,9,28] and the
reference cited therein. This technique is useful to helping us classify
the pattern selection.

3.2. Amplitude equation

Let us rewrite the reaction–diffusion model (2) at 𝐸∗ as follows:
𝜕𝐔
𝜕𝑡

= 𝐋𝐔 + 𝐍(𝐔,𝐔), (8)

where

𝐔 =
(

𝑢
𝑤

)

, 𝐋 =
(

𝐻 −𝐻0 + 𝑑1𝛥 𝛿
𝛾 −𝛾 + 𝑑2𝛥

)

,

nd

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑓𝑢𝑢𝑢2 + 𝑓𝑢𝑤𝑢𝑤 + 𝑓𝑤𝑤𝑤2 + 𝑓𝑢𝑢𝑢𝑢3

+𝑓𝑢𝑢𝑤𝑢2𝑤 + 𝑓𝑢𝑤𝑤𝑢𝑤2 + 𝑓𝑤𝑤𝑤𝑤3

𝑔𝑢𝑢𝑢2 + 𝑔𝑢𝑤𝑢𝑤 + 𝑔𝑤𝑤𝑤2 + 𝑔𝑢𝑢𝑢𝑢3

+𝑔𝑢𝑢𝑤𝑢2𝑤 + 𝑔𝑢𝑤𝑤𝑢𝑤2 + 𝑔𝑤𝑤𝑤𝑤3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ (4).

Now, around the onset of Turing instability at 𝐻 = 𝐻𝑐 , let

−𝐻𝑐 = 𝜀𝐻1 + 𝜀2𝐻2 + 𝜀3𝐻3 + (4). (9)

onstructing time scale transformations 𝑇0 = 𝑡, 𝑇1 = 𝜀𝑡, 𝑇2 = 𝜀2𝑡 and
3 = 𝜀3𝑡, we have
𝜕
𝜕𝑡

= 𝜕
𝜕𝑇0

+ 𝜀 𝜕
𝜕𝑇1

+ 𝜀2 𝜕
𝜕𝑇2

+ 𝜀3 𝜕
𝜕𝑇3

+ (4). (10)

Expanding the solution 𝐔 as follows

𝐔 =
(

𝑢
𝑤

)

= 𝜀
(

𝑢1
𝑤1

)

+ 𝜀2
(

𝑢2
𝑤2

)

+ 𝜀3
(

𝑢3
𝑤3

)

+ (4). (11)

For the nonlinear term 𝐍, we set

𝐍 = 𝜀2𝐍2 + 𝜀3𝐍3 + (𝜀4), (12)

ith

2 =

(

𝑓𝑢𝑢𝑢21 + 𝑓𝑢𝑤𝑢1𝑤1 + 𝑓𝑤𝑤𝑤2
1

𝑔𝑢𝑢𝑢21 + 𝑔𝑢𝑤𝑢1𝑤1 + 𝑔𝑤𝑤𝑤2
1

)

,

nd

3 =

⎛

⎜

⎜

⎜

⎜

⎜

2𝑓𝑢𝑢𝑢1𝑢2 + 𝑓𝑢𝑤(𝑢1𝑤2 + 𝑢2𝑤1) + 2𝑓𝑤𝑤𝑤1𝑤2

+𝑓𝑢𝑢𝑢𝑢31 + 𝑓𝑢𝑢𝑤𝑢21𝑤1 + 𝑓𝑢𝑤𝑤𝑢1𝑤2
1 + 𝑓𝑤𝑤𝑤𝑤3

1

2𝑔𝑢𝑢𝑢1𝑢2 + 𝑔𝑢𝑤(𝑢1𝑤2 + 𝑢2𝑤1) + 2𝑔𝑤𝑤𝑤1𝑤2
3 2 2 3

⎞

⎟

⎟

⎟

⎟

⎟

.

⎝

+𝑔𝑢𝑢𝑢𝑢1 + 𝑔𝑢𝑢𝑤𝑢1𝑤1 + 𝑔𝑢𝑤𝑤𝑢1𝑤1 + 𝑔𝑤𝑤𝑤𝑤1 ⎠
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w

Fig. 3. Stability diagrams in 𝛾 −𝐻 planes, where figure (a) for case (i) and figure (b) for case (ii) in Theorem 3.1, respectively.
Finally, expanding the operator 𝐋 as belows:

𝐋 = 𝐋𝑐 + (𝐻 −𝐻𝑐 )𝐌, (13)

where

𝐋𝑐 =
(

𝐻𝑐 −𝐻0 + 𝑑1𝛥 𝛿
𝛾 −𝛾 + 𝑑2𝛥

)

, 𝐌 =
(

1 0
0 0

)

.

Accordingly, substituting Eqs. (9)–(13) into Eq. (8) results in
(𝜀):

𝐋𝑐

(

𝑢1
𝑤1

)

= 𝟎. (14)

(𝜀2):

𝐋𝑐

(

𝑢2
𝑤2

)

= 𝜕
𝜕𝑇1

(

𝑢1
𝑤1

)

−𝐻1𝐌
(

𝑢1
𝑤1

)

− 𝐍2. (15)

(𝜀3):

𝐋𝑐

(

𝑢3
𝑤3

)

= 𝜕
𝜕𝑇1

(

𝑢2
𝑤2

)

+ 𝜕
𝜕𝑇2

(

𝑢1
𝑤1

)

− 𝐻1𝐌
(

𝑢2
𝑤2

)

−𝐻2𝐌
(

𝑢1
𝑤1

)

− 𝐍3. (16)

For the perturbation Eq. (14), consider the following general solu-
tion
(

𝑢1
𝑤1

)

=
(

𝜙
1

)

( 3
∑

𝑗=1
𝐴𝑗exp(𝑖𝐤𝑗 ⋅ 𝐫) +

3
∑

𝑗=1
𝐴̄𝑗exp(−𝑖𝐤𝑗 ⋅ 𝐫)

)

, (17)

where 𝜙 = 𝛿
𝑑1𝑘2𝑐+𝐻0−𝐻𝑐

, |𝐤𝑗 | = 𝑘𝑐 = 4

√

𝐷0
𝑑1𝑑2

and 𝐴𝑗 are the amplitudes
ith respect to the mode of exp(𝑖𝐤𝐣 ⋅ 𝑟). In what follows, let 𝐋∗

𝑐 be the
adjoint operator of 𝐋𝑐 and
(

1
𝜑

)

(exp(−𝑖𝐤𝑗 ⋅ 𝐫)) + 𝑐⋅𝑐⋅, 𝑗 = 1, 2, 3, (18)

with 𝜑 = 𝑑1𝑘2𝑐+𝐻0−𝐻
𝛾 be the zero eigenvector of the adjoint operator 𝐋∗

𝑐 .
Moreover, we define
(

𝐻𝑢
𝐻𝑤

)

≜ 𝜕
𝜕𝑇1

(

𝑢1
𝑤1

)

−𝐻1𝐌
(

𝑢1
𝑤1

)

− 𝐍𝟐.

In light of the orthogonality condition to the perturbation Eq. (15), we
have

(1, 𝜑)exp(−𝑖𝐤𝑗 ⋅ 𝐫)
(

𝐻 𝑗
𝑢
𝑗

)

= 0, 𝑗 = 1, 2, 3, (19)
6

𝐻𝑤
where 𝐻 𝑗
𝑢 and 𝐻 𝑗

𝑤 are the coefficients corresponding to exp(𝑖𝐤𝑗 ⋅ 𝐫) in
𝐻𝑢 and 𝐻𝑤, respectively. We can obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝜙 + 𝜑)
𝜕𝐴1
𝜕𝑇1

= 𝜙𝐻1𝐴1 + 2(ℎ1 + 𝜑ℎ2)𝐴2𝐴3,

(𝜙 + 𝜑)
𝜕𝐴2
𝜕𝑇1

= 𝜙𝐻1𝐴2 + 2(ℎ1 + 𝜑ℎ2)𝐴1𝐴3,

(𝜙 + 𝜑)
𝜕𝐴3
𝜕𝑇1

= 𝜙𝐻1𝐴3 + 2(ℎ1 + 𝜑ℎ2)𝐴1𝐴2,

(20)

where ℎ1 = 𝑓𝑢𝑢𝜙2+𝑓𝑢𝑤𝜙+𝑓𝑤𝑤, ℎ2 = 𝑔𝑢𝑢𝜙2+𝑔𝑢𝑤𝜙+𝑔𝑤𝑤. In what follows,
let us substitute Eq. (17) into Eq. (15), we get

(

𝑢2
𝑤2

)

=
(

𝑈0
𝑊0

)

+
3
∑

𝑗=1

(

𝑈𝑗
𝑊𝑗

)

𝑒𝑖𝐤𝑗 ⋅𝐫

+
3
∑

𝑗=1

(

𝑈𝑗𝑗
𝑊𝑗𝑗

)

𝑒2𝑖𝐤𝑗 ⋅𝐫 +
(

𝑈12
𝑊12

)

𝑒𝑖(𝐤𝟏−𝐤𝟐)⋅𝐫

+
(

𝑈23
𝑊23

)

𝑒𝑖(𝐤𝟐−𝐤𝟑)⋅𝐫 +
(

𝑈31
𝑊31

)

𝑒𝑖(𝐤𝟑−𝐤𝟏)⋅𝐫 + 𝑐.𝑐., (21)

where

𝑈𝑗 = 𝜙𝑊𝑗 ,
(

𝑈0
𝑊0

)

=
(

𝑢00
𝑤00

)

(|𝐴1|
2 + |𝐴2|

2 + |𝐴3|
2),

(

𝑈𝑗𝑗
𝑊𝑗𝑗

)

=
(

𝑢11
𝑤11

)

𝐴2
𝑗 ,

(

𝑈12
𝑊12

)

=
(

𝑢22
𝑤22

)

𝐴1𝐴2,
(

𝑈23
𝑊23

)

=
(

𝑢22
𝑤22

)

𝐴2𝐴3,
(

𝑈31
𝑊31

)

=
(

𝑢22
𝑤22

)

𝐴3𝐴1,

with

(

𝑢00
𝑤00

)

=

⎛

⎜

⎜

⎜

⎜

⎝

2(𝛿ℎ2 + 𝛾ℎ1)
𝛾(𝐻0 −𝐻𝑐 − 𝛿)

2[𝛾ℎ1 − (𝐻𝑐 −𝐻0)ℎ2]
𝛾(𝐻0 −𝐻𝑐 − 𝛿)

⎞

⎟

⎟

⎟

⎟

⎠

,

(

𝑢11
𝑤11

)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝛿ℎ2 + (𝛾 + 4𝑑2𝑘2𝑐 )ℎ1
[(𝐻𝑐 −𝐻0 − 4𝑑1𝑘2𝑐 )(−𝛾 − 4𝑑2𝑘2𝑐 ) − 𝛾𝛿]

𝛾ℎ1 − (𝐻𝑐 −𝐻0 − 4𝑑1𝑘2𝑐 )ℎ2
[(𝐻𝑐 −𝐻0 − 4𝑑1𝑘2𝑐 )(−𝛾 − 4𝑑2𝑘2𝑐 ) − 𝛾𝛿]

⎞

⎟

⎟

⎟

⎟

⎠

,

(

𝑢22
𝑤22

)

=

⎛

⎜

⎜

⎜

⎜

⎝

2[𝛿ℎ2 + (𝛾 + 3𝑑2𝑘2𝑐 )ℎ1]
[(𝐻𝑐 −𝐻0 − 3𝑑1𝑘2𝑐 )(−𝛾 − 3𝑑2𝑘2𝑐 ) − 𝛾𝛿]

2[𝛾ℎ1 − (𝐻𝑐 −𝐻0 − 3𝑑1𝑘2𝑐 )ℎ2]
[(𝐻𝑐 −𝐻0 − 3𝑑1𝑘2𝑐 )(−𝛾 − 3𝑑2𝑘2𝑐 ) − 𝛾𝛿]

⎞

⎟

⎟

⎟

⎟

⎠

.

Now, let (𝑅𝑢, 𝑅𝑣)𝑇 denote the right-hand side of Eq. (16). By sub-
stituting Eqs. (17) and (21) into Eq. (16), we can obtain (𝑅𝑗 , 𝑅𝑗 )𝑇
𝑢 𝑣
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I
b
f

(

s

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w

𝜇

r

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

w
t
C

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a
d

𝜉

w

𝜉

I

i

corresponding to 𝑒𝑖𝐤𝑗 ⋅𝐫 . This represents

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑅1
𝑢 = 𝜙

𝜕𝑊1
𝜕𝑇1

+ 𝜙
𝜕𝐴1
𝜕𝑇2

− 𝜙𝐻1𝑊1 − 𝜙𝐻2𝐴1

−2ℎ1(𝐴̄2𝑊̄3 + 𝐴̄3𝑊̄2) −
(

𝑐1|𝐴1|
2 + 𝑐2(|𝐴2|

2 + |𝐴3|
2)
)

𝐴1,

𝑅1
𝑣 =

𝜕𝑊1
𝜕𝑇1

+
𝜕𝐴1
𝜕𝑇2

− 2ℎ2(𝐴̄2𝑊̄3 + 𝐴̄3𝑊̄2)

−
(

𝑐3|𝐴1|
2 + 𝑐4(|𝐴2|

2 + |𝐴3|
2)
)

𝐴1,

𝑅2
𝑢 = 𝜙

𝜕𝑊2
𝜕𝑇1

+ 𝜙
𝜕𝐴2
𝜕𝑇2

− 𝜙𝐻1𝑊2 − 𝜙𝐻2𝐴2

−2ℎ1(𝐴̄1𝑊̄3 + 𝐴̄3𝑊̄1) −
(

𝑐1|𝐴2|
2 + 𝑐2(|𝐴1|

2 + |𝐴3|
2)
)

𝐴2,

𝑅2
𝑣 =

𝜕𝑊2
𝜕𝑇1

+
𝜕𝐴2
𝜕𝑇2

− 2ℎ2(𝐴̄1𝑊̄3 + 𝐴̄3𝑊̄1)

−
(

𝑐3|𝐴2|
2 + 𝑐4(|𝐴1|

2 + |𝐴3|
2)
)

𝐴2,

𝑅3
𝑢 = 𝜙

𝜕𝑊3
𝜕𝑇1

+ 𝜙
𝜕𝐴3
𝜕𝑇2

− 𝜙𝐻1𝑊3 − 𝜙𝐻2𝐴3

−2ℎ1(𝐴̄1𝑊̄2 + 𝐴̄2𝑊̄1) −
(

𝑐1|𝐴3|
2 + 𝑐2(|𝐴1|

2 + |𝐴2|
2)
)

𝐴3,

𝑅3
𝑣 =

𝜕𝑊3
𝜕𝑇1

+
𝜕𝐴3
𝜕𝑇2

− 2ℎ2(𝐴̄1𝑊̄2 + 𝐴̄2𝑊̄1)

−
(

𝑐3|𝐴3|
2 + 𝑐4(|𝐴1|

2 + |𝐴2|
2)
)

𝐴3,

with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑐1 = (2𝜙𝑓𝑢𝑢 + 𝑓𝑢𝑤)(𝑢00 + 𝑢11) + (𝜙𝑓𝑢𝑤 + 2𝑓𝑤𝑤)(𝑤00 +𝑤11)

+ 3𝜙3𝑓𝑢𝑢𝑢 + 3𝜙2𝑓𝑢𝑢𝑤 + 3𝜙𝑓𝑢𝑤𝑤 + 3𝑓𝑤𝑤𝑤,

𝑐2 = (2𝜙𝑓𝑢𝑢 + 𝑓𝑢𝑤)(𝑢00 + 𝑢22) + (𝜙𝑓𝑢𝑤 + 2𝑓𝑤𝑤)(𝑤00 +𝑤22)

+ 6𝜙3𝑓𝑢𝑢𝑢 + 6𝜙2𝑓𝑢𝑢𝑤 + 6𝜙𝑓𝑢𝑤𝑤 + 6𝑓𝑤𝑤𝑤,

𝑐3 = (2𝜙𝑔𝑢𝑢 + 𝑔𝑢𝑤)(𝑢00 + 𝑢11) + (𝜙𝑔𝑢𝑤 + 2𝑔𝑤𝑤)(𝑤00 +𝑤11)

+ 3𝜙3𝑔𝑢𝑢𝑢 + 3𝜙2𝑔𝑢𝑢𝑤 + 3𝜙𝑔𝑢𝑤𝑤 + 3𝑔𝑤𝑤𝑤,

𝑐4 = (2𝜙𝑔𝑢𝑢 + 𝑔𝑢𝑤)(𝑢00 + 𝑢22) + (𝜙𝑔𝑢𝑤 + 2𝑔𝑤𝑤)(𝑤00 +𝑤22)

+ 6𝜙3𝑔𝑢𝑢𝑢 + 6𝜙2𝑔𝑢𝑢𝑤 + 6𝜙𝑔𝑢𝑤𝑤 + 6𝑔𝑤𝑤𝑤.

f perturbation Eq. (16) has the nontrivial solution (𝑅𝑢, 𝑅𝑤)𝑇 , it must
e orthogonal with the zero eigenvectors of 𝐋∗

𝑐 . This implies that the
ollowing condition

1, 𝜑)exp(−𝑖𝐤𝑗 ⋅ 𝐫)
(

𝑅𝑗
𝑢

𝑅𝑗
𝑤

)

= 0, 𝑗 = 1, 2, 3, (22)

hould be fulfilled. Performing direct computations yields

(𝜙 + 𝜑)
(

𝜕𝑊1
𝜕𝑇1

+
𝜕𝐴1
𝜕𝑇2

)

= 𝜙(𝐻1𝑊1 +𝐻2𝐴1)

+ 2(ℎ1 + 𝜑ℎ2)(𝐴2𝑊̄3 + 𝐴3𝑊̄2)

+ [(𝑐1 + 𝜑𝑐3)|𝐴1|
2

+ (𝑐2 + 𝜑𝑐4)(|𝐴2|
2 + |𝐴3|

2)]𝐴1,

(𝜙 + 𝜑)
(

𝜕𝑊2
𝜕𝑇1

+
𝜕𝐴2
𝜕𝑇2

)

= 𝜙(𝐻1𝑊2 +𝐻2𝐴2)

+ 2(ℎ1 + 𝜑ℎ2)(𝐴1𝑊̄3 + 𝐴3𝑊̄1)

+ [(𝑐1 + 𝜑𝑐3)|𝐴2|
2

+ (𝑐2 + 𝜑𝑐4)(|𝐴1|
2 + |𝐴3|

2)]𝐴2,

(𝜙 + 𝜑)
(

𝜕𝑊3
𝜕𝑇1

+
𝜕𝐴3
𝜕𝑇2

)

= 𝜙(𝐻1𝑊3 +𝐻2𝐴3)

+ 2(ℎ1 + 𝜑ℎ2)(𝐴2𝑊̄1 + 𝐴1𝑊̄2)

+ [(𝑐1 + 𝜑𝑐3)|𝐴3|
2

+ (𝑐2 + 𝜑𝑐4)(|𝐴2|
2 + |𝐴1|

2)]𝐴3.

(23)

Considering the perturbation of the amplitude as follows

2

7

𝐶𝑗 = 𝜀𝐴𝑗 + 𝜀 𝑊𝑗 + (3).
As a result, by using Eqs. (10), (20) and (23), we can deduce

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜏
𝜕𝐶1
𝜕𝑡

= 𝜇𝐶1 + ℎ𝐶2𝐶3 −
[

𝑔1|𝐶1|
2 + 𝑔2(|𝐶2|

2 + |𝐶3|
2)
]

𝐶1,

𝜏
𝜕𝐶2
𝜕𝑡

= 𝜇𝐶2 + ℎ𝐶1𝐶3 −
[

𝑔1|𝐶2|
2 + 𝑔2(|𝐶1|

2 + |𝐶3|
2)
]

𝐶2,

𝜏
𝜕𝐶3
𝜕𝑡

= 𝜇𝐶3 + ℎ𝐶1𝐶2 −
[

𝑔1|𝐶3|
2 + 𝑔2(|𝐶1|

2 + |𝐶2|
2)
]

𝐶3,

(24)

here

=
𝐻 −𝐻𝑐

𝐻𝑐
, 𝜏 =

𝜙 + 𝜑
𝜙𝐻𝑐

,

ℎ =
2(ℎ1 + 𝜑ℎ2)

𝜙𝐻𝑐
, 𝑔1 = −

𝑐1 + 𝜑𝑐3
𝜙𝐻𝑐

, 𝑔2 = −
𝑐2 + 𝜑𝑐4
𝜙𝐻𝑐

.

Now, suppose that each amplitude in (24) takes the form

𝐶𝑗 = 𝜉𝑗exp(𝑖𝜃𝑗 ), 𝑗 = 1, 2, 3, (25)

where 𝜉𝑗 and 𝜃𝑗 represent the mode and the corresponding phase angle,
espectively. Then, we have

𝜏 𝜕𝜃
𝜕𝑡

= −ℎ
𝜉21𝜉

2
2 + 𝜉21𝜉

2
3 + 𝜉22𝜉

2
3

𝜉1𝜉2𝜉3
sin 𝜃,

𝜏
𝜕𝜉1
𝜕𝑡

= 𝜇𝜉1 + ℎ𝜉2𝜉3 cos 𝜃 − 𝑔1𝜉
3
1 − 𝑔2(|𝜉2|

2 + |𝜉3|
2)𝜉1,

𝜏
𝜕𝜉2
𝜕𝑡

= 𝜇𝜉2 + ℎ𝜉1𝜉3 cos 𝜃 − 𝑔1𝜉
3
2 − 𝑔2(|𝜉1|

2 + |𝜉3|
2)𝜉2,

𝜏
𝜕𝜉3
𝜕𝑡

= 𝜇𝜉3 + ℎ𝜉2𝜉1 cos 𝜃 − 𝑔1𝜉
3
3 − 𝑔2(|𝜉1|

2 + |𝜉2|
2)𝜉3,

(26)

ith 𝜃 = 𝜃1 + 𝜃2 + 𝜃3. Based on the first equation of (26), we can infer
hat its solution is stable if 𝜃 = 0 and ℎ > 0 or 𝜃 = 𝜋 and ℎ < 0.
onsequently, we obtain the following amplitude equations

𝜏
𝜕𝜉1
𝜕𝑡

= 𝜇𝜉1 + |ℎ|𝜉2𝜉3 − 𝑔1𝜉
3
1 − 𝑔2(|𝜉2|

2 + |𝜉3|
2)𝜉1,

𝜏
𝜕𝜉2
𝜕𝑡

= 𝜇𝜉2 + |ℎ|𝜉1𝜉3 − 𝑔1𝜉
3
2 − 𝑔2(|𝜉1|

2 + |𝜉3|
2)𝜉2,

𝜏
𝜕𝜉3
𝜕𝑡

= 𝜇𝜉3 + |ℎ|𝜉2𝜉1 − 𝑔1𝜉
3
3 − 𝑔2(|𝜉1|

2 + |𝜉2|
2)𝜉3.

(27)

By employing the amplitude Eq. (27) and referring to existing liter-
ture [7,9,28], we can determine the pattern selection of the reaction–
iffusion model (2) as follows.

(i) Spot pattern:

1 = 𝜉2 = 𝜉3 = 0,

hich is stable when 𝜇 < 𝜇2 = 0 and unstable when 𝜇 > 𝜇2 = 0.
(ii) Stripe pattern:

1 =
√

𝜇
𝑔1

≠ 0, 𝜉2 = 𝜉3 = 0.

t is stable when 𝜇 > 𝜇3 =
ℎ2𝑔1

(𝑔2−𝑔1)2
and unstable when 𝜇 < 𝜇3.

(iii) Hexagonal pattern 𝐻0 or 𝐻𝜋 when 𝜃 = 0 or 𝜃 = 𝜋:

𝜉1 = 𝜉2 = 𝜉3 =
|ℎ| ±

√

ℎ2 + 4(𝑔1 + 2𝑔2)𝜇
2(𝑔1 + 2𝑔2)

.

Its existence condition is 𝜇 > 𝜇1 =
−ℎ2

4(𝑔1+2𝑔2)
. Moreover, 𝜉+ is stable only

for 𝜇 < 𝜇4 =
(2𝑔1+𝑔2)ℎ2

(𝑔2−𝑔1)2
. The solution 𝜉− is always unstable, where

𝜉+ =
|ℎ| +

√

ℎ2 + 4(𝑔1 + 2𝑔2)𝜇
2(𝑔1 + 2𝑔2)

, 𝜉− =
|ℎ| −

√

ℎ2 + 4(𝑔1 + 2𝑔2)𝜇
2(𝑔1 + 2𝑔2)

.

(iv) Mixed structural state:

𝜉1 =
|ℎ|

𝑔2 − 𝑔1
, 𝜉2 = 𝜉3 =

√

𝜇 − 𝑔1𝜉21
𝑔1 + 𝑔2

,

t exists when 𝜇 > 𝜇3 and is always unstable with 𝑔2 > 𝑔1.
We establish the following conclusion.
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⎧

⎪

⎪

⎨

⎪

⎪

Theorem 3.2. Suppose that 0 < 𝑎 < 1 + 𝑏, 0 < 𝐻 < 1 − 𝑎
1+𝑏 , we have

(i) the spot solution is stable when 𝜇 < 𝜇2 and unstable when 𝜇 > 𝜇2.
(ii) the stripe solution is stable when 𝜇 > 𝜇3 and unstable when 𝜇 < 𝜇3.
(iii) the hexagonal solution exists when 𝜇 > 𝜇1. Moreover, the solution

𝜌+ is stable for 𝜇 < 𝜇4 and 𝜌− is always unstable.
(iv) the mixed solution exists and is always unstable when 𝑔2 > 𝑔1 and

𝜇 > 𝜇3.

4. Numerical simulation

4.1. Pattern formation in 2D space

In this subsection, we want to visualize the pattern formation of
the diffusive model (2) within a 2D domain, 𝛺 = (0, 100) × (0, 100).
For discretization of the domain, we consider a uniform spatial grid.
Let 𝑁 be the number of spatial grid points and ℎ = 100∕𝑁 be the
uniform spatial step size. Then, the discrete computational domain is
defined as 𝛺ℎ =

{

(𝑥𝑝, 𝑦𝑞) | (𝑝 − 0.5)ℎ, (𝑞 − 0.5)ℎ, 1 ≤ 𝑝, 𝑞 ≤ 𝑁
}

.
Within this discrete computational domain 𝛺ℎ, we define the notations
for numerical approximations as 𝑢𝑛𝑝𝑞 ∶= 𝑢(𝑥𝑝, 𝑦𝑞 , 𝑛𝛥𝑡) and 𝑤𝑛

𝑝𝑞 ∶=
𝑤(𝑥𝑝, 𝑦𝑞 , 𝑛𝛥𝑡), where 𝛥𝑡 is a time step size. The continuous model (2)
can be discretized using the explicit Euler method as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑛+1𝑝𝑞 − 𝑢𝑛𝑝𝑞
𝛥𝑡

= 𝑑1𝛥ℎ𝑢𝑛𝑝𝑞 + 𝑢𝑛𝑝𝑞(1 − 𝑢𝑛𝑝𝑞) −
𝑎(𝑢𝑛𝑝𝑞)

2𝑤𝑛
𝑝𝑞

(𝑢𝑛𝑝𝑞)2 + 𝑏(𝑤𝑛
𝑝𝑞)2

−𝐻𝑢𝑛𝑝𝑞 ,

𝑤𝑛+1
𝑝𝑞 −𝑤𝑛

𝑝𝑞

𝛥𝑡
= 𝑑2𝛥ℎ𝑤𝑛

𝑝𝑞 + 𝛾𝑤𝑛
𝑝𝑞

(

1 −
𝑤𝑛

𝑝𝑞

𝑢𝑛𝑝𝑞

)

,

(28)

where

𝛥ℎ𝑢𝑝𝑞 =
𝑢𝑝+1,𝑞 + 𝑢𝑝−1,𝑞 + 𝑢𝑝,𝑞+1 + 𝑢𝑝,𝑞−1 − 4𝑢𝑝𝑞

ℎ2

and

𝛥ℎ𝑤𝑝𝑞 =
𝑤𝑝+1,𝑞 +𝑤𝑝−1,𝑞 +𝑤𝑝,𝑞+1 +𝑤𝑝,𝑞−1 − 4𝑤𝑝𝑞

ℎ2
.

From Eq. (28), we can obtain the numerical solutions with the previous
time solutions 𝑢𝑛 and 𝑤𝑛 as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑛+1𝑝𝑞 = 𝑢𝑛𝑝𝑞 + 𝛥𝑡

[

𝑑1𝛥ℎ𝑢𝑛𝑝𝑞 + 𝑢𝑛𝑝𝑞(1 − 𝑢𝑛𝑝𝑞) −
𝑎(𝑢𝑛𝑝𝑞)

2𝑤𝑛
𝑝𝑞

(𝑢𝑛𝑝𝑞)2 + 𝑏(𝑤𝑛
𝑝𝑞)2

−𝐻𝑢𝑛𝑝𝑞

]

,

𝑤𝑛+1
𝑝𝑞 = 𝑤𝑛

𝑝𝑞 + 𝛥𝑡

[

𝑑2𝛥ℎ𝑤𝑛
𝑝𝑞 + 𝛾𝑤𝑛

𝑝𝑞

(

1 −
𝑤𝑛

𝑝𝑞

𝑢𝑛𝑝𝑞

)]

.

For the following numerical simulation, the time step size is set to
e 𝛥𝑡 = 0.01, and the spatial step length is ℎ = 1. The initial conditions
re given as follows:

𝑢(𝑥, 𝑦, 0) = 𝑢∗ + 0.01𝜉∗(𝑥, 𝑦),
𝑤(𝑥, 𝑦, 0) = 𝑤∗ + 0.01𝜉∗(𝑥, 𝑦),

(29)

here 𝜉∗(𝑥, 𝑦) is the uniformly distributed random perturbation be-
ween −1 and 1. In the following, we only display the pattern of the
olution 𝑢(𝑥, 𝑦, 𝑡) because a similar pattern can be observed for the
olution 𝑤(𝑥, 𝑦, 𝑡).

First, we choose the parameters 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 =
.2, 𝑑2 = 2.5, and 𝐻 = 0.235 for the model (2). This choice results in
∗ = (𝑢∗, 𝑤∗) = (0.1410, 0.1410),𝐻0 + 𝛾 = 0.3516, and (𝛾𝑑1 + 𝐻0𝑑2)2 −
𝑑1𝑑2𝐷0 = −0.0932 < 0. Therefore, statement (ii) of Theorem 3.1
mplies that there exists a unique potential critical value of the Turing
nstability 𝐻𝑐 = 𝐻𝑐

3 = 0.1553. Obviously, the assumption 𝐻0 + 𝛾 >
> 𝐻𝑐

3 is valid in statement (ii) of Theorem 3.1 and thereby, the
odel (2) admits pattern formation due to the existence of the Turing

nstability. On the other hand, we obtain the following results: 𝜙 =
.1218, 𝜑 = −0.4873, ℎ1 = 1.9880, ℎ2 = −24.1920, 𝑢00 = 252.4896, 𝑤00 =
14.2496, 𝑢11 = 33.8917, 𝑤11 = −3.5312, 𝑢22 = 128.1578, 𝑤22 = −1.3039,
1 = −1.7290𝑒 + 03, 𝑐2 = −2.8910𝑒 + 03, 𝑐3 = −600.9055, 𝑐4 = 94.2379. As
result, we obtain 𝑔1 = 2.2441𝑒 + 03, 𝑔2 = 4.5891𝑒 + 03, ℎ = 43.0560, 𝜇 =
8

.5135, 𝜇1 = −0.0406, 𝜇2 = 0, 𝜇3 = 0.7565, and 𝜇4 = 3.0602. Hence,
⎩

e can ensure that 𝜇1 < 𝜇2 < 𝜇 < 𝜇3 < 𝜇4 is valid. Our numerical
xperiment illustrates that the emergence of hexagonal patterns in the
odel (2), as shown in Fig. 4. As a consequence, statement (iii) of
heorem 3.2 is confirmed to be true.

Next, let us keep the parameters 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 =
.2, 𝑑2 = 2.5, and 𝐻 = 0.21 in the model (2). As a consequence, we
btain the unique positive equilibrium 𝐸∗ = (𝑢∗, 𝑤∗) = (0.1660, 0.1660),
0 + 𝛾 = 0.3516, and (𝛾𝑑1 +𝐻0𝑑2)2 −4𝑑1𝑑2𝐷0 = −0.1107 < 0. Therefore,

y using statement (ii) of Theorem 3.1, we know that there exists a
nique potential critical value of the Turing instability 𝐻𝑐 = 𝐻𝑐

3 =
.1660. Obviously, the assumption 𝐻0+𝛾 > 𝐻 > 𝐻𝑐

3 is valid in statement
ii) of Theorem 3.1. This implies that there is pattern formation owing
o the existence of the Turing instability. Furthermore, we can compute
he following values: 𝜙 = 3.8929, 𝜑 = −0.4006, ℎ1 = −1.3128, ℎ2 =
17.6446, 𝑢00 = 167.2181, 𝑤00 = 66.3916, 𝑢11 = 3.1049, 𝑤11 = −4.4051,
22 = 22.5185, 𝑤22 = −9.4295, 𝑐1 = −1.1711𝑒+03, 𝑐2 = −1.9700𝑒+03, 𝑐3 =
−80.2238, 𝑐4 = 863.0119. Thereby, we obtain 𝑔1 = 1.7629𝑒 + 03, 𝑔2 =
3.5847𝑒 + 03, ℎ = 17.8205, 𝜇 = 0.2654, 𝜇1 = −0.0089, 𝜇2 = 0, 𝜇3 = 0.1687,
and 𝜇4 = 0.6804. Clearly, 𝜇1 < 𝜇2 < 𝜇3 < 𝜇 < 𝜇4 is valid. By employing
statement (iv) of Theorem 3.2, we infer that there are mixed patterns
in the model (2). The numerical simulation results show that there are
spot and stripe patterns can coexist in the bounded domain, as shown
in Fig. 5. Consequently, our theoretical prediction is valid.

4.2. Pattern formation on the spherical and torus surfaces

4.2.1. Discretization of the Laplace–beltrami operator on a triangular sur-
face mesh

To simulate pattern formation on curved surfaces such as spheres
and tori using the harvested predator–prey model, let us consider the
Laplace–Beltrami operator 𝛥 on a closed, smooth curved surface .
The Laplace–Beltrami operator can be discretized on triangular surface
mesh using simple and explicit methods [36,37]. Let 𝑑 be a triangu-
lated surface mesh with 𝑣 vertex points as shown in Fig. 6(a). The set of
given surface points on the triangulated surface mesh 𝑑 is labeled by
{

𝐱𝑖
}𝑣
𝑖=1 =

{

𝐱1, 𝐱2, 𝐱3,… , 𝐱𝑣
}

. On the triangulated curved surface 𝑑 , for
surface points 𝐱𝑖, we denote the numerical solutions by 𝑢𝑛𝑖 ∶= 𝑢(𝐱𝑖, 𝑛𝛥𝑡)
and 𝑤𝑛

𝑖 ∶= 𝑤(𝐱𝑖, 𝑛𝛥𝑡), where 𝛥𝑡 is the time step.
We can discretize the model (2) by using the explicit Euler method

with the discretized Laplace–Beltrami operator 𝛥 on triangulated
curved surfaces:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑛+1𝑖 − 𝑢𝑛𝑖
𝛥𝑡

= 𝑑1𝛥𝑢𝑛𝑖 + 𝑢𝑛𝑖 (1 − 𝑢𝑛𝑖 ) −
𝑎(𝑢𝑛𝑖 )

2𝑤𝑛
𝑖

(𝑢𝑛𝑖 )2 + 𝑏(𝑤𝑛
𝑖 )2

−𝐻𝑢𝑛𝑖 ,

𝑤𝑛+1
𝑖 −𝑤𝑛

𝑖
𝛥𝑡

= 𝑑2𝛥𝑤𝑛
𝑖 + 𝛾𝑤𝑛

𝑖

(

1 −
𝑤𝑛

𝑖
𝑢𝑛𝑖

)

, for 𝑖 = 1,… , 𝑣.

Therefore, we can obtain the numerical solutions using the previous
time solutions 𝑢𝑛 and 𝑤𝑛 as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 + 𝛥𝑡

[

𝑑1𝛥𝑢𝑛𝑖 + 𝑢𝑛𝑖 (1 − 𝑢𝑛𝑖 ) −
𝑎(𝑢𝑛𝑖 )

2𝑤𝑛
𝑖

(𝑢𝑛𝑖 )2 + 𝑏(𝑤𝑛
𝑖 )2

−𝐻𝑢𝑛𝑖

]

,

𝑤𝑛+1
𝑖 = 𝑤𝑛

𝑖 + 𝛥𝑡
[

𝑑2𝛥𝑤𝑛
𝑖 + 𝛾𝑤𝑛

𝑖

(

1 −
𝑤𝑛

𝑖
𝑢𝑛𝑖

)]

.

For a given surface point 𝐱𝑖 in the triangular surface mesh 𝑑 , the
et of surrounding one-ring triangular surface point indices is defined
s 𝐼(𝑖) = {𝑖1, 𝑖2,… , 𝑖𝑚}, where 𝑖1 = 𝑖𝑚, as shown in Fig. 6(b). Then, the

discretized Laplace–Beltrami operator at surface point 𝐱𝑖 can be defined
s follows:

𝛥𝑢𝑖 =
3

(𝐱𝑖)
∑

𝑗∈𝐼(𝑖)

cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗
2

(𝑢𝑗 − 𝑢𝑖),

𝛥𝑤𝑖 =
3

(𝐱 )
∑ cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗

2
(𝑤𝑗 −𝑤𝑖),
𝑖 𝑗∈𝐼(𝑖)
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Fig. 4. Time evolution pictures of the hexagonal pattern. Here, we choose the parameter values: 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and 𝐻 = 0.235.

Fig. 5. Time evolution pictures of the mixed pattern. Here, we choose the parameter values: 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and 𝐻 = 0.21.
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Fig. 6. Visual schematic illustrations: (a) triangular surface mesh, (b) surrounding one-ring surface points set for 𝐱𝑖, (c) triangles 𝑇𝑗 and 𝑇𝑗+ featuring the angles 𝛼𝑖𝑗 and 𝛽𝑖𝑗+ and
(d) vertex 𝐱𝑖 and its corresponding area (𝐱𝑖).
where 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are angles in triangles 𝑇𝑗 and 𝑇𝑗+, respectively, as
shown in Fig. 6(c) [38]. The area enclosed by the one-ring points of
the vertex 𝐱𝑖, as shown in Fig. 6(d), is defined as follows:

(𝐱𝑖) =
∑

𝑗∈𝐼(𝑖)

√

‖𝐱𝑗 − 𝐱𝑖‖2‖𝐱𝑗+ − 𝐱𝑖‖2 −
(

𝐱𝑗 − 𝐱𝑖, 𝐱𝑗+ − 𝐱𝑖
)2

2
.

To simulate pattern formation on the discrete surfaces, such as
spheres and tori, using the discretized harvested predator–prey model
and the above-mentioned explicit time-stepping approach, we conduct
numerical experiments with the following initial conditions:
{

𝑢(𝐱𝑖, 0) = 𝑢∗ + 0.01𝜉∗(𝐱𝑖),
𝑤(𝐱𝑖, 0) = 𝑤∗ + 0.01𝜉∗(𝐱𝑖),

(30)

where 𝜉∗(𝐱𝑖) is the uniformly distributed random perturbation between
−1 and 1.

4.2.2. Pattern formation on the spherical surface
First, let us choose the parameters 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 =

0.2, 𝑑2 = 2.5, and 𝐻 = 0.235 in the model (2). The triangulated spherical
surface mesh 𝑆𝑑 has a radius value of 𝑟 = 50, and it consists of 𝑣 = 11856
triangulated spherical surface points.

As shown in Fig. 7, we present the temporal evolution of behaviors
on the surface of the harvested predator–prey system with a harvesting
coefficient of 𝐻 = 0.235. It demonstrates that spotted patterns fill the
spherical surfaces. Next, we consider the parameter values 𝑎 = 0.78, 𝑏 =
0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and a harvesting coefficient of 𝐻 = 0.21
in the predator–prey model (2). In the numerical results on triangu-
lated spherical surfaces, as the value of the harvesting coefficient 𝐻
approaches 0.21, the frequency of appearance of the stripe patterns
increases, and these stripe patterns form along the great circles of the
spherical surface as shown in Fig. 8. In this case, the stripe and spot
patterns on the spherical surface appear. The initial data used here is
Eq. (30).

4.2.3. Pattern formation on the tours surface
Let us display the pattern formation of the diffusive model (2)

on a triangular surface with a different topological structure from a
spherical surface, such as a torus. Accordingly, the following numerical
experiments will show the pattern formation on a triangulated surface
mesh 𝑇𝑑 of a torus. The torus has a major radius (the length from
the center of the torus to the center of the tube) value of 𝑅 = 50,
a minor radius (generating circle) value of 𝑟 = 20, and the number
of triangulated torus surface points is 𝑣 = 14272. We use the same
initial conditions as mentioned above, while keeping the parameters
𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and 𝐻 = 0.235 in the
model (2). As shown in Fig. 9, the formation of spot patterns emerges on
a triangulated torus as time, represented by the variable 𝑡, progresses.

On the other hand, if we assume that 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 =
0.35, 𝑑 = 0.2, 𝑑 = 2.5, and 𝐻 = 0.21 in the model (2), then both stripe
10
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patterns and spot patterns appear on the surface of the torus, as shown
in Fig. 10.

4.3. Effect of the diffusion rate 𝑑1

In ecological systems, generally, the diffusion rates of prey and
predator species play a significant role in pattern formation. To inves-
tigate this, we will fix the parameters as used in Fig. 8 constant and
only vary the value of the diffusion rate 𝑑1 of the prey species. The
corresponding patterns can be found in Fig. 11. Precisely, when we
take 𝑑1 = 0.05, we observe pattern formation with irregular shapes, as
shown in (a). As we increase 𝑑1 to 𝑑1 = 0.1, a mixture of stripe and spot
patterns emerges, see figure (b). This pattern mixture persists when we
choose 𝑑1 = 0.15 and 𝑑1 = 0.2 in figures (c) and (d), respectively. If
we choose 𝑑1 = 0.25 in figure (e), then it is clear that there are few
stripe patterns format on the spherical surface, and the spot patterns
occupy the majority of the spherical surface. However, as we further
increase 𝑑1 of the prey species, i.e., 𝑑1 = 0.3, both the stripe and spot
patterns completely disappear, as shown in Fig. 11(f). This observation
suggests that the diffusion rate has a significant influence on the pattern
formation in the diffusive predator–prey model (2). Biologically, small
movement of the prey species can lead to spatial self-organization in
the predator–prey model (2), while a higher diffusion rate of the prey
population results in a stable homogeneous state. This phenomenon
may provide a helpful reference to understand the interaction dynamics
between the prey and predator species.

In conclusion, we confirm the validity of our theoretical analysis.
We observe spatial pattern formation in the diffusive model (2) in a 2D
space, on a spherical surface, and on a torus surface by considering the
harvesting coefficient 𝐻 as the Turing instability parameter. Different
patterns can be displayed as we vary the harvesting coefficient 𝐻 . From
the ecological point of view, the distributions of the prey’s and preda-
tor’s densities admit spot and mixed forms in a bounded domain or
surface; meanwhile, the spot patterns and mixed patterns in Figs. 4 and
5,7–10 imply that the densities of the prey and predator populations
will achieve their maximum. However, the blue parts in 2D space and
on the spherical and torus surfaces suggest that the densities of the
prey and predator species have minimum values. Obviously, the change
of the harvesting coefficient of the prey species will lead to different
shapes of the patterns, namely, harvesting has an increasing influence
on the final density of the prey and predator populations. Therefore,
it is possible to control the predator–prey system such that the system
performs different dynamic patterns by adjusting the harvesting rate
of the prey species. As a result, we can theoretically and numerically
predict the influence of the harvesting effect and it can be regarded
as an important mechanism for the appearance of complicated spatial
dynamics in ecological models. Meanwhile, we can observe that the
diffusion rate of the prey species will strongly affect the pattern for-
mation of the model (2), as shown in Fig. 11. These findings highlight
the complex dynamics of the prey–predator interaction, showing how
suitable changes of the harvesting parameter and diffusion rate can lead
to significant shifts in the system’s dynamical behaviors.
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Fig. 7. Pattern formations of prey 𝑢 on a triangulated spherical surface. The parameters used are 𝛥𝑡 = 0.01, 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and the harvesting coefficient
𝐻 = 0.235.

Fig. 8. Pattern formations of prey 𝑢 on a triangulated spherical surface. The parameters used are 𝛥𝑡 = 0.01, 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and the harvesting coefficient
𝐻 = 0.21.
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Fig. 9. Pattern formations of prey 𝑢 on a triangulated torus. The parameters used are 𝛥𝑡 = 0.01, 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and the harvesting coefficient 𝐻 = 0.235.
Fig. 10. Pattern formations of prey 𝑢 on a triangulated torus. The parameters used are 𝛥𝑡 = 0.01, 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑1 = 0.2, 𝑑2 = 2.5, and the harvesting coefficient 𝐻 = 0.21.
5. Conclusions

Harvesting is a common phenomenon in the real world due to
commercial interests or for maintaining ecological balance. In this
paper, we reported the pattern dynamics of a predator–prey model with
the harvesting term in the prey species. Owing to the pattern caused
by Turing instability, we first investigated the stability of the positive
equilibrium for the local temporal model. It was found that the posi-
tive equilibrium 𝐸∗ undergoes ‘‘stable node → stable focus→ unstable
focus → unstable node" and center with the change of the harvesting
constant 𝐻 , see Theorem 2.1. Moreover, we analyzed the occurrence of
supercritical and subcritical Hopf bifurcation near the center using the
first Lyapunov number, see Theorem 2.2. For the diffusive model, we
12
explored the stability of the positive equilibrium 𝐸∗ and the existence
of Turing instability by choosing the harvesting coefficient 𝐻 as the
critical parameter, see Theorem 3.1. To determine the spatial pattern
selection around the Turing instability onset 𝐻 = 𝐻𝑐 , we employed the
weakly nonlinear analysis method to deduce the amplitude equation,
which revealed various spatial patterns, see Theorem 3.2. Finally, we
conducted numerical experiments to validate our theoretical results
for different values of the harvesting coefficient 𝐻 , see Figs. 4–5 and
Figs. 7–10. Especially, these patterns can be formed on spherical and
tours surfaces. Overall, we explored the rich dynamic behaviors of
this predator–prey model with the harvesting term. We found that
the harvesting plays a crucial role in governing the existence of Hopf
bifurcation and Turing instability, and the pattern structure changes
with adjustments in the parameter range of the harvesting constant 𝐻 .
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Fig. 11. Pattern formations of prey 𝑢 on a spherical surface at 𝑡 = 3000. The parameters used are 𝛥𝑡 = 0.01, 𝑎 = 0.78, 𝑏 = 0.25, 𝛾 = 0.35, 𝑑2 = 2.5, and the harvesting coefficient
𝐻 = 0.21.
We look forward to reporting more interesting results of this model in
upcoming works.
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